ON SOLUTIONS OF THE GOŁĄB-SCHINZEL EQUATION

ANNA MUREŃKO

(Received 29 January 2001)

ABSTRACT. We determine the solutions $f : (0, \infty) \to [0, \infty)$ of the functional equation $f(x + f(x)y) = f(x)f(y)$ that are continuous at a point $a > 0$ such that $f(a) > 0$. This is a partial solution of a problem raised by Brzdek.

2000 Mathematics Subject Classification. 39B22.

The well-known Gołąb-Schinzel functional equation

$$f(x + f(x)y) = f(x)f(y)$$

has been studied by many authors (cf. [1, 3, 5, 7, 10]) in many classes of functions. Recently Aczél and Schwaiger [2], motivated by a problem of Kahlig, solved the following conditional version of (1)

$$f(x + f(x)y) = f(x)f(y)$$

for $x \geq 0, y \geq 0$, (2)

in the class of continuous functions $f : \mathbb{R} \to \mathbb{R}$, where \mathbb{R} denotes the set of real numbers. Some further conditional generalizations of (1) have been considered by Reich [9] (see also [8] and Brzdek [4]).

At the 38th International Symposium on Functional Equations (Noszvaj, Hungary, June 11–17, 2000) Brzdek raised, among others, the problem (see [6]) of solving the equation

$$f(x + f(x)y) = f(x)f(y),$$

whenever $x, y, x + f(x)y \in \mathbb{R}_+$, (3)

in the class of functions $f : \mathbb{R}_+ \to \mathbb{R}$ that are continuous at a point, where $\mathbb{R}_+ = (0, \infty)$. We give a partial solution to the problem, namely we determine the solutions $f : \mathbb{R}_+ \to [0, \infty)$ of (3) that are continuous at a point $a \in \mathbb{R}_+$ such that $f(a) > 0$. Note that actually equations (1) and (3) have the same solutions in the class of functions $f : \mathbb{R}_+ \to [0, \infty]$.

From now on we assume that $f : \mathbb{R}_+ \to [0, \infty)$ is a solution of (3), continuous at a point $a \in \mathbb{R}_+$ such that $f(a) > 0$.

We start with some lemmas.

Lemma 1. Suppose that $y_2 > y_1 > 0$ and $f(y_1) = f(y_2) > 0$. Then

(a) $f(t + (y_2 - y_1)) = f(t)$ for $t \geq y_1$;

(b) for every $z > 0$ such that $f(z) > 0$,

$$f(t + f(z)(y_2 - y_1)) = f(t)$$

for $t \geq z + y_1f(z)$; (4)
(c) If \(z_1, z_2 > 0 \) and \(f(z_2) > f(z_1) > 0 \), then
\[
f(t + (f(z_2) - f(z_1))(y_2 - y_1)) = f(t) \quad \text{for} \ t \geq \max \{ z_1 + y_1 f(z_1), z_2 + y_1 f(z_2) \}.
\] (5)

Proof. (a) We argue in the same way as in [2, 7]. Namely, for \(t \geq y_1 \), by (3) we have
\[
f(t + (y_2 - y_1)) = f\left(y_2 + \frac{t - y_1}{f(y_1)} f(y_1)\right) = f\left(y_2 + \frac{t - y_1}{f(y_1)} f(y_2)\right)
\]
\[
= f(y_2) f\left(\frac{t - y_1}{f(y_1)}\right) = f(y_1) f\left(\frac{t - y_1}{f(y_1)}\right)
\]
\[
= f\left(y_1 + \frac{t - y_1}{f(y_1)} f(y_1)\right) = f(t).
\] (6)

(b) For every \(z > 0 \) such that \(f(z) > 0 \) we have
\[
f(z + y_1 f(z)) = f(z) f(y_1) = f(z) f(y_2) = f(z + y_2 f(z))
\] (7)
and consequently by (a) (with \(y_1 \) and \(y_2 \) replaced by \(z + y_1 f(z) \) and \(z + y_2 f(z) \))
\[
f(t) = f\left[t + (z + y_2 f(z) - z - y_1 f(z))\right] = f(t + f(z)(y_2 - y_1))
\] (8)
for \(t \geq z + y_1 f(z) \).

(c) Since \((f(z_2) - f(z_1))(y_2 - y_1) > 0 \), \(t + (f(z_2) - f(z_1))(y_2 - y_1) \geq \max\{z_1 + y_1 f(z_1), z_2 + y_1 f(z_2)\} \) for \(t \geq \max\{z_1 + y_1 f(z_1), z_2 + y_1 f(z_2)\} \). Thus using (b) twice, for \(z = z_1 \) and \(z = z_2 \) (the first time with \(t \) replaced by \(t + (f(z_2) - f(z_1))(y_2 - y_1) \)), we have
\[
f(t + (f(z_2) - f(z_1))(y_2 - y_1))
\]
\[
= f\left[t + (f(z_2) - f(z_1))(y_2 - y_1) + f(z_1) (y_2 - y_1)\right]
\]
\[
= f(t + f(z_2)(y_2 - y_1)) = f(t)
\] (9)
for \(t \geq \max\{z_1 + y_1 f(z_1), z_2 + y_1 f(z_2)\} \). \(\square \)

Lemma 2. Let \(y_2 > y_1 > 0 \) and \(f(y_1) = f(y_2) > 0 \). Then there exists \(x_0 > 0 \) such that for every \(a > 0 \) there is \(c \in (0, a) \) with \(f(t + c) = f(t) \) for \(t \geq x_0 \).

Proof. First suppose that there is a neighbourhood \(U = (a - \delta, a + \delta) \) of \(a \) on which \(f \) is constant. Then for every \(x \in U \) such that \(a < x \), from Lemma 1(a), we get
\[
f(t + (x - a)) = f(t) \quad \text{for} \ t \geq a.
\] (10)
Thus it is enough to take \(x_0 = a \).

Now assume that there does not exist any neighbourhood of \(a \) on which \(f \) is constant. Take \(\varepsilon \in (0, f(a)) \). The continuity of \(f \) at \(a \) implies that there exists \(\delta \in (0, 1) \) such that for every \(x \in U_1 = (a - \delta, a + \delta) \) we have \(f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon) \). Take \(x_1, x_2 \in U_1 \) such that \(f(x_1) < f(x_2) \). Then \(f(x_2) - f(x_1) < 2\varepsilon \). From \(\varepsilon < f(a) \) we infer \(f(x_1) > 0 \) and by Lemma 1(c) we get
\[
f(t + (f(x_2) - f(x_1))(y_2 - y_1)) = f(t) \quad \text{for} \ t \geq \max\{x_1 + y_1 f(x_1), x_2 + y_1 f(x_2)\}.
\] (11)
Next by a suitable choice of \(\varepsilon \) the value \(c := (f(x_2) - f(x_1))(y_2 - y_1) \) can be made arbitrarily small. Moreover, \(x_1, x_2 > a + 1 \) and \(f(x_1), f(x_2) < f(a) + \varepsilon < 2f(a) \), which means that \(f(t + c) = f(t) \) for \(t \geq x_0 := a + 1 + y_1 f(a) \). This completes the proof. \(\square \)
LEMMA 3. If for some $y_2 > y_1 > 0$, $f(y_1) = f(y_2) > 0$, then for every $\varepsilon > 0$ and $\epsilon > 0$ there is $c \in (0, \epsilon)$ with $f(t + c) = f(t)$ for $t \geq \varepsilon$.

PROOF. By Lemma 2 there exists $x_0 > 0$ such that for arbitrarily small $c > 0$

$$f(t + c) = f(t) \quad \text{for} \quad t \geq x_0. \quad (12)$$

By induction, from Lemma 1(a), we get $f(y_1) = f(y_1 + n(y_2 - y_1))$ for any positive integer n. Consequently there exists $x_1 \in [x_0, \infty)$ with $f(x_1) = f(y_1)$.

Put $B = \{x > x_0 : f(x) > 0\}$. Clearly $x_1 \in B$. Thus (12) implies that $B \cap A \neq \emptyset$ for every nontrivial interval $A \subset [x_0, \infty)$. Define a function $f_1 : [0, \infty) \to [x_0, \infty)$ by

$$f_1(x) = x_1 + x f(x_1). \quad (13)$$

Note that f_1 is increasing. Let $\varepsilon > 0$ and $y_0 \in B \cap (f_1(0), f_1(\varepsilon)) \neq \emptyset$. By the continuity of f_1 there exists $z_0 \in (0, \varepsilon)$ such that $f_1(z_0) = y_0$. Take $d > 0$ with $f(t + d) = f(t)$ for $t \geq x_0$. Then

$$f(y_0) = f(y_0 + d) \neq 0. \quad (14)$$

The form of the function f_1 implies that there exists $z_1 > z_0$ such that $f_1(z_1) = y_0 + d$. Note that (14) yields

$$f(x_1 + z_0 f(x_1)) = f(f_1(z_0))$$

$$= f(y_0) = f(y_0 + d) = f(f_1(z_1))$$

$$= f(x_1 + z_1 f(x_1)) \neq 0. \quad (15)$$

Further by (3)

$$f(x_1) f(z_0) = f(x_1) f(z_1) \neq 0, \quad (16)$$

and consequently $f(z_0) = f(z_1) > 0$. Hence, in view of Lemma 1(a), we infer that

$$f(t + (z_1 - z_0)) = f(t) \quad \text{for} \quad t \geq z_0. \quad (17)$$

This completes the proof, because $\varepsilon > z_0$ and, choosing sufficiently small d, we can make $c := (z_1 - z_0)$ arbitrarily small. \hfill \Box

LEMMA 4. If there exist $y_2 > y_1 > 0$ such that $f(y_1) = f(y_2) > 0$, then $f \equiv 1$.

PROOF. First we show that $f(x) = f(a) = b$ for $x \in \mathbb{R}_+$. For the proof by contradiction suppose that there exists $t_0 > 0$ with $f(t_0) \neq f(a)$. Put

$$\varepsilon_0 = |f(t_0) - f(a)|. \quad (18)$$

The continuity of f at a implies that there exists $\delta > 0$ such that if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon_0$. By Lemma 3 there exists $y_0 > 0$ such that $|y_0 - a| < \delta$ and $f(y_0) = f(t_0)$, which means that $|f(t_0) - f(a)| < \varepsilon_0$, contrary to (18). Thus we have proved that $f \equiv b$. Clearly from (3) we get $b = f(a) = f(a + f(a)) = f(a)^2 = b^2$ and consequently $b = 1$. This completes the proof. \hfill \Box

LEMMA 5. If f is nonconstant then $(f(x) - 1)/x$ is constant for all $x > 0$ with $f(x) > 0$.

Moreover, by the continuity of f, $f(x) > 0$ for every $x > 0$. Clearly, $\delta = \inf_{B} f(b) < 0$. Thus, by Lemma 4, $f = 1$, a contradiction.

Remark 6. If we denote the constant in Lemma 5 by c, then from Lemma 5 we get $f(x) \in \{cx+1, 0\}$ for every $x > 0$. In the case $c < 0$ we have $f(x) = 0$ for every $x \geq -1/c$ (because $f \geq 0$).

Lemma 7. Suppose that f is nonconstant. Then,

(a) in the case $c := (f(a) - 1)/a < 0$, $f(x) = cx + 1$ for $x \in (0, -1/c)$;

(b) in the case $c := (f(a) - 1)/a > 0$, $f(x) = cx + 1$ for $x > 0$.

Proof. The continuity of f at a implies that there exists $\delta \in (0, a)$ such that $f(x) > 0$ for every $x \in U = (a - \delta, a + \delta)$. Thus, by Remark 6, $f(x) = cx + 1$ for $x \in U$.

Let $I = (a, -1/c)$ if $c < 0$ and $I = (a, \infty)$ if $c > 0$. Put $B_{1} := \{x \in (0, a) : f(x) = 0\}$, $B_{2} := \{x \in I : f(x) = 0\}$, $B = B_{1} \cup B_{2},$

\[
d_{1} := \begin{cases}
sup B_{1} & \text{if } B_{1} \neq \emptyset, \\
a - \delta & \text{if } B_{1} = \emptyset,
\end{cases}
\quad d_{2} := \begin{cases}
\inf B_{2} & \text{if } B_{2} \neq \emptyset, \\
a + \delta & \text{if } B_{2} = \emptyset.
\end{cases}
\]

Clearly $f(x) > 0$ on the interval $A = (d_{1}, d_{2}) \supset (a - \delta, a + \delta)$.

(a) For the proof by contradiction suppose that there exists $b_{1} \in (0, -1/c)$ with $f(b_{1}) = 0$. Notice that $d_{2} < -1/c$. Indeed, if $B_{2} \neq \emptyset$ then, since $B_{2} \subset (a, -1/c)$, so $\inf B_{2} < -1/c$. If not, then from Remark 6 we have that $a + \delta < -1/c$. Consequently $d_{2} < -1/c$. Thus $cd_{2} > -1$ and consequently $\delta + \delta cd_{2} > 0$. Take $b \in B$ and $z \in A$ such that $|z - b| < \delta + \delta cd_{2}$. Define functions $h, g : U \to \mathbb{R}$ by

\[
h(x) = x + zf(x) \quad \text{for} \ x \in U, \\
g(x) = x + bf(x) \quad \text{for} \ x \in U.
\]

By the continuity of f on U, h is continuous. Next, since $z < d_{2}$, so $cz > cd_{2}$ and $\delta + \delta cz > \delta + \delta cd_{2} > 0$. Hence

\[
h(a) - h(a - \delta) = a + z(c(a + 1) + 1) - a - \delta - z[\delta + \delta cz] > 0,
\]

\[
h(a + \delta) - h(a) = a + \delta + z[\delta + \delta cz] - a - z(c + 1) > 0.
\]

Moreover $1 > c(a + 1) = f(a) > 0$, whence

\[
|h(a) - g(a)| = |a + z(c(a + 1) + 1) - a - b(c(a + 1))| \\
= |z - b||c(a + 1)| < |z - b| < \delta + \delta cd_{2} < \delta + \delta cz.
\]

From (23) and (24) we obtain

\[
h(a - \delta) < g(a) < h(a + \delta).
\]
The continuity of h implies that there exists $x_0 \in (a - \delta, a + \delta)$ such that $h(x_0) = g(a)$. Since $a, x_0, z \in A$ and $b \in B$, so we have

$$0 \neq f(x_0)f(z) = f(x_0 + zf(x_0)) = f(h(x_0)) = f(g(a)) = f(a + bf(a)) = f(a)f(b) = 0.$$ \hspace{1cm} (26)

This contradiction ends the proof of (a).

(b) For the proof by contradiction suppose that $f(b_1) = 0$ for some $b_1 > 0$. Since $ca + 1 = f(a) > 0$, there are $b \in B$ and $z \in A$ such that $|z - b| < \delta/(ca + 1)$. Define functions $h, g : U \to \mathbb{R}$ in the same way as in the proof of (a). Then (23) holds and

$$|h(a) - g(a)| = |z - b|(ca + 1) < \frac{\delta}{ca + 1} (ca + 1) = \delta < \delta + \delta cz.$$ \hspace{1cm} (27)

Hence

$$h(a - \delta) < g(a) < h(a + \delta).$$ \hspace{1cm} (28)

We obtain a contradiction in a similar way as in the proof of (a).

Lemma 8. If $c := (f(a) - 1)/a = 0$, then $f(x) = 1$ for $x > 0$.

Proof. The continuity of f at a implies that there exists $\delta > 0$ such that $f(x) > 0$ for every $x \in [a - \delta, a + \delta]$. Thus, by Lemma 5 and Remark 6, $f(x) = cx + 1 = 1$ for every $x \in [a - \delta, a + \delta]$. Hence Lemma 4 implies that $f(x) = 1$ for every $x > 0$.

Finally from Lemmas 7 and 8 and Remark 6 we get the following theorem.

Theorem 9. If a function $f : \mathbb{R}^+ \to [0, \infty)$ is continuous at a point a such that $f(a) \neq 0$ and satisfies (3), then

$$f(x) = \max\{cx + 1, 0\} \quad \forall x \in \mathbb{R}^+.$$ \hspace{1cm} (29)

Acknowledgement. I wish to thank Professor Janusz Brzdęk for paying my attention to the problem and for his most valuable suggestions during the preparation of this paper.

References

Anna Mureńko: Department of Mathematics, Pedagogical University, Rejtana 16 A, 35-310 Rzeszów, Poland
E-mail address: amurenko@poczta.onet.pl
Submit your manuscripts at http://www.hindawi.com