REGULAR-UNIFORM CONVERGENCE AND THE OPEN-OPEN TOPOLOGY

KATHRYN F. PORTER

(Received 12 February 1999)

ABSTRACT. In 1994, Bânzaru introduced the concept of regular-uniform, or r-uniform, convergence on a family of functions. We discuss the relationship between this topology and the open-open topology, which was described in 1993 by Porter, on various collections of functions.

2000 Mathematics Subject Classification. Primary 54C35, 54E15; Secondary 54A10, 54A20.

1. Introduction. In [1], Bânzaru introduced the concept of regular-uniform, or r-uniform, convergence on a family of functions \(F \subset Y^X \) and proved a number of facts about the topological space \((F, T_r)\) where \(T_r \) is the topology induced by this convergence. Porter introduced the open-open topology [5] in 1993 and proved that on families of self-homeomorphisms on \(X \) that the open-open topology is equivalent to the topology of Pervin quasi-uniform convergence [3]; this in fact is true on \(C(X, Y) \), the collection of all continuous functions from \(X \) to \(Y \). We shall show that the topology of r-uniform convergence on any subfamily \(F \) of the class of all continuous functions on \(X \) into \(Y \) is equivalent to the open-open topology [5], \(T_{oo} \), on \(F \) and hence, equivalent to the topology of Pervin quasi-uniform convergence on \(F \).

Throughout this paper let \((X, T)\) and \((Y, T')\) be topological spaces. We will use \(Y^X \) to mean the collection of all functions from \(X \) into \(Y \) while \(C(X, Y) \) will represent the collection of all continuous functions from \(X \) into \(Y \), and \(H(X) \) is the collection of all self-homeomorphisms on \(X \).

2. Preliminaries. A net of functions \(\{f_\alpha: (X, T) \rightarrow (Y, T')\}_{\alpha \in I} \) converges r-uniformly (or regular uniformly) to \(f \in Y^X \) [1] if and only if for any \(O \in T' \) such that \(f^{-1}(O) \neq \phi \), there exists \(i_0 \in I = [0, 1] \) such that \(f_i(x) \in O \) for all \(i \in I \) with \(i \geq i_0 \) and for all \(x \in f^{-1}(O) \). This convergence defines a topology on \(F \) called the topology of r-uniform or regular uniform convergence.

In the same paper, Bânzaru also defined a topology, \(T_r \), on \(F \subset Y^X \) as follows: let \(f \in F \) and \(O \in T' \). Set

\[
S(f; O) = \{g \in F : g(f^{-1}(O)) \subset O\},
\]

then \(S = \{S(f; O) : f \in F \text{ and } O \in T'\} \) is a subbasis for a topology \(T_r \) on \(F \). Bânzaru then proved that this topology \(T_r \) on \(F \) is actually equivalent to the topology of r-uniform convergence on \(F \).
Now let \(O \in T \) and \(U \in T' \) and define

\[
(U,V) = \{ h \in F : h(O) \subseteq U \}.
\] (2.2)

Then \(S_{oo} = \{(O,U) : O \in T \text{ and } U \in T'\} \) is a subbasis for the open-open topology, \(T_{oo} \), [5] on \(F \).

In addition, the set \(S_{co} = \{(C,U) \subseteq F : C \text{ is compact in } X \text{ and } U \text{ is open in } Y\} \) is a subbasis for the well-known compact-open topology, \(T_{co} \), on \(F \).

Let \(X \) be a nonempty set and let \(Q \) be a collection of subsets of \(X \times X \) such that

1. for all \(U \in Q \), \(\Delta = \{(x,x) \in X \times X : x \in X\} \subseteq U \),
2. for all \(U \in Q \), if \(U \subseteq V \) then \(V \in Q \),
3. for all \(U,V \in Q \), \(U \cap V \in Q \), and
4. for all \(U \in Q \), there exists some \(W \in Q \) such that \(W \circ W \subseteq U \) where \(W \circ W = \{(p,q) \in X \times X : \text{there exists some } r \in X \text{ with } (p,r),(r,q) \in W\} \) then \(Q \) is a quasi-uniformity on \(X \).

A quasi-uniformity, \(Q \), on \(X \) induces a topology, \(T_Q \), on \(X \), where for each \(x \in X \), the set \(\{U[x] : U \in Q\} \) is a neighborhood system at \(x \) where \(U[x] \) is defined by \(U[x] = \{y \in X : (x,y) \in U\} \).

A family, \(S \) of subsets of \(X \times X \) which satisfies

(i) for all \(R \in S \), \(\Delta \subseteq R \), and
(ii) for all \(R \in S \), there exists \(T \in S \) such that \(T \circ T \subseteq R \), is a subbasis for a quasi-uniformity, \(Q \), on \(X \). This subbasis \(S \) generates a basis, \(B \), for the quasi-uniformity, \(Q \), where \(B \) is the collection of all finite intersections of elements of \(S \). The basis, \(B \), generates the quasi-uniformity \(Q = \{ U \subseteq X \times X : \hat{B} \subseteq U \text{ for some } \hat{B} \in B\} \).

For a more thorough background on quasi-uniform spaces, see [2].

In 1962, Pervin [4] constructed a specific quasi-uniformity which induces a compatible topology for a given topological space. His construction is as follows: Let \((X,T) \) be a topological space. For \(O \in T \) define

\[
S_O = (O \times O) \cup ((X \setminus O) \times X).
\] (2.3)

One can show that for \(O \in T \), \(S_O \circ S_O = S_O \) and \(\Delta \subseteq S_O \), hence, the collection \(\{S_O : O \in T\} \) is a subbasis for a quasi-uniformity, \(P \), on \(X \), called the Pervin quasi-uniformity.

Let \(Q \) be a compatible quasi-uniformity for \((X,T) \) and let \(F \subseteq C(X,Y) \). For \(U \in Q \), define the set

\[
W(U) = \{(f,g) \subseteq F \times F : (f(x),g(x)) \subseteq U \text{ for all } x \in X\}.
\] (2.4)

Then the collection \(B = \{W(U) : U \in Q\} \) is a basis for a quasi-uniformity, \(Q^* \), on \(F \), called the quasi-uniformity of quasi-uniform convergence with respect to \(Q \) [3]. The topology, \(T_{Q^*} \), induced by \(Q^* \) on \(F \), is called the topology of quasi-uniform convergence with respect to \(Q \). If \(Q \) is the Pervin quasi-uniformity, \(P \), then \(T_{P^*} \) is called the topology of Pervin quasi-uniform convergence.
3. The topologies. We first extend, to subsets of $C(X,Y)$, the result from [5] that the open-open topology is equivalent to the topology of Pervin quasi-uniform convergence on a subgroup G of $H(X)$.

Theorem 3.1. Let $F \subset C(X,Y)$. The open-open topology, T_{oo}, is equivalent to the topology of Pervin quasi-uniform convergence, T_{Perv}, on F.

Proof. Assume $F \subset C(X,Y)$. Let (O,U) be a subbasic open set in T_{oo} and let $f \in F$. Then $f(O) \subset U$. So $f \in W(S(U))[f]$ where

$$W(S(U))[f] = \{g \in F : (f(x),g(x)) \in S(U) = U \times U \cup (X \setminus U) \times X, \forall x \in X\}. \quad (3.1)$$

Hence, if $g \in W(S(U))[f]$ and $x \in O$, then $f(x) \in U$ so $g(x) \in U$. Thus, $g \in (O,U)$ and $W(S(U))[f] \subset (O,U)$. Therefore, $T_{oo} \subset T_{Perv}$.

Now let $V \in T_{Perv}$ and $f \in V$. Then there exists $U \in P$ such that $f \in W(U)[f] \subset V$. Since $U \in P$, there exists some finite collection, $\{U_i : i = 1,2,\ldots,n\} \subset T$ such that $\cap_{i=1}^n S(U_i) \subset U$. Define $A = \cap_{i=1}^n (f^{-1}(U_i),U_i)$. Then A is an open set in T_{oo} and $f \in A$. Assume $g \in A$ and let $x \in X$. If $f(x) \in U_j$ for some $j \in \{1,2,\ldots,n\}$, then $x \in f^{-1}(U_j)$. Then, since $g \in A$, $g(x) \in U_j$, hence, $(f(x),g(x)) \in U_j \times U_j \subset S(U_j)$. If $f(x) \notin U_j$ for some $j \in \{1,2,\ldots,n\}$, then $(f(x),g(x)) \in (X - U_j) \times X \subset S(U_j)$. Thus, $g \in W(\cap_{i=1}^n S(U_i))[f] \subset W(U)[f] \subset V$ so that $A \subset V$. Therefore, $T_{oo} = T_{Perv}$ on F. \hfill \Box

Next we show that the regular-uniform topology is equivalent to the open-open topology on any subset, F, of $C(X,Y)$, and hence, also to the topology of Pervin quasi-uniform convergence on F.

Theorem 3.2. For $F \subset C(X,Y)$, $T_{oo} = T_{r}$ on F.

Proof. Note that a subbasic open set in T_{r}, $S(f;O) = \{g \in F : g(f^{-1}(O)) \subset O\}$ is equal to $(f^{-1}(O),O)$. Hence, if $f^{-1}(O)$ is open in X, which is the case when f is continuous, $S(f;O)$ is a subbasic open set in T_{oo}. Therefore, $T_{r} \subset T_{oo}$.

Now let (O,U) be a subbasic open set in T_{oo} and let $f \in (O,U)$. Then $f(O) \subset U$ which implies that $O \subset f^{-1} \circ f(O) \subset f^{-1}(U)$. Since $f \circ f^{-1}(U) = U$, $f \in (f^{-1}(U),U) = S(f;U) \subset T_{r}$. If $g \in (f^{-1}(U),U)$, then $g(f^{-1}(U)) \subset U$. If $x \in O$, then $x \in f^{-1}(U)$ so that $g(x) \in U$ giving us that $g \in (O,U)$, whence $T_{oo} \subset T_{r}$ and we are done. \hfill \Box

While it is always true that $T_{oo} \subset T_{r}$ on $F \subset Y^{X}$, it is not necessarily true that $T_{r} = T_{oo}$ for $F \subset Y^{X}$ as the following example shows.

Example 3.3. Define the sets $X = \{1,2,3\}$, $T = \{\{1\},\phi,X\}$, $Y = \{1,2,3,4\}$, $T' = \{\{1,2\},\{3,4\},\phi,Y\}$ and $F = \{f_1,f_2,f_3,f_4\}$ which are given in Table 3.1. Then $T_{oo} = \{\phi,F,\{f_1,f_2,f_3\},\{f_4\}\}$. But $S(f_3;\{3,4\}) = \{f_3\} \notin T_{oo}$. In fact, T_{r} is the discrete topology on F.

Bânsaru proved that for any $F \subset Y^{X}$, the compact-open topology, T_{co}, is coarser than T_{r}. However, although $T_{co} \subset T_{oo}$ on F when $F \subset C(X,Y)$, it is not necessarily true that $T_{co} \subset T_{oo}$ for $F \subset Y^{X}$. Consider Example 3.3 again. We have that $\{\{2\},\{3,4\}\}$ is in T_{co} and equals $\{f_3\}$, but $\{f_3\} \notin T_{oo}$. In this example, the compact-open topology on F is also the discrete topology and thus equals the regular-uniform topology on F.

Another fact that has been proved in [1] about the regular-uniform topology is that if the topology for Y is regular, then $(C(X,Y), T_r)$ is closed in (Y^X, T_r). However, this is not true when Y^X is given the open-open topology; that is, let (X,T) and (Y,T') be topological spaces such that (Y,T') is regular. Then $(C(X,Y), T_r)$, which is the same as $(C(X,Y), T_{oo})$, is not necessarily closed in (Y^X, T_{oo}). The following example illustrates this.

Example 3.4. Let $X = \{1, 2\}$, $T = \{\emptyset, X, \{1\}\}$, $Y = \{1, 2, 3\}$, and $T' = \{\emptyset, Y, \{1\}, \{2, 3\}\}$. The collection Y^X is given in Table 3.2. Note that T' is a partition topology and is thus regular. Also note that $f_1^{-1}(\{2, 3\}) = \{2\}$ and so f_1 is not continuous. The only open sets in (Y^X, T_{oo}) that contain f_1 are $(\emptyset, Y) = Y^X$ and $(\{1\}, \{1\}) = \{f_1, f_2, f_3\}$. Both of these sets contain the function f_2 which is continuous. Thus, $C(X,Y)$ is not closed in (Y^X, T_{oo}), even though (Y, T') is regular.

ACKNOWLEDGEMENT. Professor Porter would like to thank the Faculty Development Committee of Saint Mary’s College of California for their support.

References

KATHRYN F. PORTER: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SAINT MARY’S COLLEGE OF CALIFORNIA, MORAGA, CA 94575, USA

E-mail address: kporter@stmarys-ca.edu