SUBMANIFOLDS OF F-STRUCTURE MANIFOLD SATISFYING

$$F^K + (-)^{K+1} F = 0$$

LOVEJOY S. DAS

(Received 2 May 2000)

Abstract. The purpose of this paper is to study invariant submanifolds of an n-dimensional manifold M endowed with an F-structure satisfying $F^K + (-)^{K+1} F = 0$ and $F^W + (-)^{W+1} F \neq 0$ for $1 < W < K$, where K is a fixed positive integer greater than 2. The case when K is odd (≥ 3) has been considered in this paper. We show that an invariant submanifold \tilde{M}, embedded in an F-structure manifold M in such a way that the complementary distribution D_m is never tangential to the invariant submanifold $\Psi(\tilde{M})$, is an almost complex manifold with the induced \tilde{F}-structure. Some theorems regarding the integrability conditions of induced \tilde{F}-structure are proved.

2000 Mathematics Subject Classification. 53C15, 53C40, 53D10.

1. Introduction. Invariant submanifolds have been studied by Blair et al. [1], Kubo [4], Yano and Okumura [7, 8], and among others. Yano and Ishihara [6] have studied and shown that any invariant submanifold of codimension 2 in a contact Riemannian manifold is also a contact Riemannian manifold. We consider an F-structure manifold M and study its invariant submanifolds. Let F be a nonzero tensor field of the type $(1, 1)$ and of class C^∞ on an n-dimensional manifold M such that (see [3])

$$F^K + (-)^{K+1} F = 0, \quad F^W + (-)^{W+1} F \neq 0, \quad \text{for } 1 < W < K, \quad (1.1)$$

where K is a fixed positive integer greater than 2. Such a structure on M is called an F-structure of rank r and of degree K. If the rank of F is constant and $r = r(F)$, then M is called an F-structure manifold of degree $K(\geq 3)$.

Let the operator on M be defined as follows (see [3])

$$\ell = (-)^{K} F^{K-1}, \quad m = I + (-)^{K+1} F^{K-1}, \quad (1.2)$$

where I denotes the identity operator on M. For the operators defined by (1.2), we have

$$\ell + m = I, \quad \ell^2 = \ell; \quad m^2 = m. \quad (1.3)$$

For F satisfying (1.1), there exist complementary distribution D_ℓ and D_m corresponding to the projection operators ℓ and m, respectively. If rank$(F) = \text{constant}$ on M, then $\dim D_\ell = r$ and $\dim D_m = (n - r)$. We have the following results (see [3]).

$$F\ell = \ell F = F, \quad Fm = m F = 0, \quad (1.4a)$$

$$F^{K-1} = (-)^K \ell, \quad F^{K-1} \ell = -\ell; \quad F^{K-1} m = 0. \quad (1.4b)$$

Thus F^{K-1} acts on D_ℓ as an almost complex structure and on D_m as a null operator.
2. Invariant submanifolds of F-structure manifold. Let \tilde{M} be a differentiable manifold embedded differentially as a submanifold in an n-dimensional C^∞ Riemannian manifold M with an F-structure and we denote its embedding by $\Psi: \tilde{M} \to M$. Denote by $B: T(\tilde{M}) \to T(M)$ the differential mapping of Ψ, where $d\Psi = B$ is the Jacobson map of Ψ. $T(\tilde{M})$ and $T(M)$ are tangent bundles of \tilde{M} and M, respectively. We call $T(\tilde{M},M)$ as the set of all vectors tangent to the submanifold $\Psi(\tilde{M})$. It is known that $B: T(\tilde{M}) \to T(\tilde{M},M)$ is an isomorphism (see [5]).

Let \tilde{X} and \tilde{Y} be two C^∞ vector fields defined along $\Psi(\tilde{M})$ and tangent to $\Psi(\tilde{M})$. Let X and Y be the local extensions of \tilde{X} and \tilde{Y}. The restriction of $[X,Y]_{\tilde{M}}$ is determined independently of the choice of these local extensions X and Y. Therefore, we can define

$$[\tilde{X}, \tilde{Y}] = [X,Y]_{\tilde{M}}.$$ (2.1)

Since B is an isomorphism, it is easy to see that $[B\tilde{X}, B\tilde{Y}] = B[X, Y]$ for all $\tilde{X}, \tilde{Y} \in T(\tilde{M})$. We denote by G the Riemannian metric tensor of M and put

$$\tilde{g}(\tilde{X}, \tilde{Y}) = g(B\tilde{X}, B\tilde{Y}) \quad \forall \tilde{X}, \tilde{Y} \in T(\tilde{M}),$$ (2.2)

where g is the Riemannian metric in M and \tilde{g} is the induced metric of \tilde{M}.

Definition 2.1. We say that \tilde{M} is an invariant submanifold of M if

(i) the tangent space $T_p(\Psi(\tilde{M}))$ of the submanifold $\Psi(\tilde{M})$ is invariant by the linear mapping F at each point p of $\Psi(\tilde{M})$,

(ii) for each $\tilde{X} \in T(\tilde{M})$, we have

$$F^{(K-1)/2}(B\tilde{X}) = B\tilde{X}^t.$$ (2.3)

Definition 2.2. Let \tilde{F} be a $(1,1)$-tensor field defined in \tilde{M} such that $\tilde{F}(\tilde{X}) = \tilde{X}^t$ and M is an invariant submanifold, then we have

$$F(B\tilde{X}) = B(\tilde{F}\tilde{X}),$$ (2.4a)

$$F^{(K-1)/2}(B\tilde{X}) = B(\tilde{F}^{(K-1)/2}\tilde{X}).$$ (2.4b)

We see that there are two cases for any invariant submanifold \tilde{M}. We assume the following cases.

Case 1. The distribution D_m is never tangential to $\Psi(\tilde{M})$.

Case 2. The distribution D_m is always tangential to $\Psi(\tilde{M})$.

We will consider Case 1 and assume that no vector field of the type mX, where $X \in T(\Psi(\tilde{M}))$ is tangential to $\Psi(\tilde{M})$.

Theorem 2.3. An invariant submanifold \tilde{M} is an almost complex manifold if the following two conditions are satisfied:

(i) the distribution D_m is never tangential to $\Psi(\tilde{M})$, and

(ii) \tilde{F} in \tilde{M} defines an induced almost complex structure satisfying $\tilde{F}^{K-1} = (-)^K I$.

Proof. Applying $F^{(K-1)/2}$ in (2.4), we obtain

$$F^{(K-1)/2}(F^{(K-1)/2}(B\tilde{X})) = F^{(K-1)/2}(B(\tilde{F}^{(K-1)/2}\tilde{X})).$$ (2.5)
Making use of (2.4a) in (2.5), we get
\[F^{K-1}(B\tilde{X}) = B(\tilde{F}^{K-1}\tilde{X}). \] (2.6)

In order to show that vector fields of the type \(B\tilde{X} \) belong to the distribution \(D_\ell \), we suppose that \(m(B\tilde{X}) \neq 0 \), then using (1.2) we have
\[m(B\tilde{X}) = (I + (-)^{K+1}F^{K-1})B\tilde{X} = B\tilde{X} + (-)^{K+1}F^{K-1}(B\tilde{X}) \] (2.7)
which in view of (2.6) becomes
\[m(B\tilde{X}) = B\tilde{X} + (-)^{K+1}B(\tilde{F}^{K-1}\tilde{X}) = B[\tilde{X} + (-)^{K+1}\tilde{F}^{K-1}\tilde{X}] \] (2.8)
which, contrary to our assumption, shows that \(m(B\tilde{X}) \) is tangential to \(\Psi(\tilde{M}) \). Thus \(m(B\tilde{X}) = 0 \).

Also, in view of (1.4b), (1.3), and (2.6) we obtain
\[B(\tilde{F}^{K-1}\tilde{X}) = F^{K-1}(B\tilde{X}) = (-)^{K}\ell(B\tilde{X}) = (-)^{K}(I - m)B\tilde{X} \]
\[= (-)^{K}B\tilde{X} - (-)^{K}mB\tilde{X}, \]
\[B(\tilde{F}^{K-1}\tilde{X}) = (-)^{K}B\tilde{X}. \] (2.9)

Since \(B \) is an isomorphism, we get
\[\tilde{F}^{K-1} = (-)^{K}I. \] (2.10)

Let \(\mathcal{F}(M) \) be the ring of real-valued differentiable functions on \(M \), and let \(\mathcal{X}(M) \) be the module of derivatives of \(\mathcal{F}(M) \). Then \(\mathcal{X}(M) \) is Lie algebra over the real numbers and the elements of \(\mathcal{X}(M) \) are called vector fields. Then \(M \) is equipped with \((1,1)\)-tensor field \(F \) which is a linear map such that
\[F : \mathcal{X}(M) \longrightarrow \mathcal{X}(M). \] (2.11)

Let \(M \) be of degree \(K \) and let \(K \) be a positive odd integer greater than 2. Then we consider a positive definite Riemannian metric with respect to which \(D_\ell \) and \(D_m \) are orthogonal so that
\[g(X,Y) = g(HX,HY) + g(mX,Y), \] (2.12)
where \(H = F^{(K-1)/2} \) for all \(X,Y \in \mathcal{X}(M) \). \(\square \)

Definition 2.4. The induced metric \(\tilde{g} \) defined by (2.2) is Hermitian if the following is satisfied:
\[\tilde{g}(H\tilde{X},H\tilde{Y}) = \tilde{g}(\tilde{X},\tilde{Y}), \quad \text{where} \quad H = F^{(K-1)/2}. \] (2.13)

Theorem 2.5. If \(F \)-structure manifold has the following two properties, that is,
(1) \(\tilde{M} \) is an invariant submanifold of \(F \)-structure manifold \(M \) such that distribution \(D_m \) is never tangential to \(\Psi(\tilde{M}) \),
(2) the Riemannian metric \(g \) on \(M \) is defined by (2.12).
Then the induced metric \(\tilde{g} \) of \(\tilde{M} \) defined by (2.2) is Hermitian.
In view of (2.2) and (2.13) we obtain
\[\tilde{g}(F^{(K-1)/2}\bar{X},F^{(K-1)/2}\bar{Y}) = g(B\tilde{F}^{(K-1)/2}\bar{X},B\tilde{F}^{(K-1)/2}\bar{Y}). \] (2.14)

Applying (2.4) and (2.12) in (2.14), we get
\[\tilde{g}(F^{(K-1)/2}\bar{X},F^{(K-1)/2}\bar{Y}) = g(F^{(K-1)/2}B\bar{X},F^{(K-1)/2}B\bar{Y}) \]
\[= g(B\bar{X},B\bar{Y}) - g(mB\bar{X},B\bar{Y}). \] (2.15)

Since the distribution \(D_m \) is never tangential to \(\Psi(\bar{M}) \), on using (2.2) we get
\[\tilde{g}(F^{(K-1)/2}\bar{X},F^{(K-1)/2}\bar{Y}) = g(B\tilde{X},B\tilde{Y}) = \tilde{g}(\tilde{X},\tilde{Y}). \] (2.16)

Now, we consider the second case and assume that the distribution \(D_m \) is always tangential to \(\Psi(\bar{M}) \). In view of Case 2, we have \(m(B\tilde{X}) = B\tilde{X}^* \), where \(\tilde{X}^* \in T(\bar{M}) \) for some \(\tilde{X}^* \in T(\bar{M}) \).

We define (1,1)-tensor fields \(\tilde{m} \) and \(\tilde{\ell} \) in \(\bar{M} \) as follows:
\[\tilde{\ell} = (-)^K\tilde{F}^{K-1}, \quad \tilde{m} = \tilde{I} + (-)^{K+1}\tilde{F}^{K-1}, \] (2.17a)
\[\tilde{m}\tilde{X} = \tilde{X}^*, \quad m(B\tilde{X}) = B(\tilde{m}\tilde{X}). \] (2.17b)

Theorem 2.6. We have
\[B(\tilde{\ell}\tilde{X}) = \ell(B\tilde{X}). \] (2.18)

Proof. In view of (2.17a), equation (2.18) assumes the following form:
\[B(\tilde{\ell}\tilde{X}) = B((-)^K\tilde{F}^{K-1}\tilde{X}) = (-)^KB(\tilde{F}^{K-1}\tilde{X}). \] (2.19)

Making use of (2.6) and (2.15) in (2.19), we get
\[B(\tilde{\ell}\tilde{X}) = (-)^K\tilde{F}^{K-1}(B\tilde{X}) = \tilde{\ell}(B\tilde{X}). \] (2.20)

Theorem 2.7. For \(\tilde{\ell} \) and \(\tilde{m} \) satisfying (2.17a), we have
\[\tilde{\ell} + \tilde{m} = \tilde{I}, \quad \tilde{\ell}^2 = \tilde{\ell}, \quad \tilde{m}^2 = \tilde{m}. \] (2.21)

Proof. From (1.3) we have \(\ell + m = I \), which can be written as \((\ell + m)B\tilde{X} = B\tilde{X} \), thus we have
\[\ell B\tilde{X} + mB\tilde{X} = B\tilde{X} \] (2.22)
which in view of (2.17b) and (2.18) becomes
\[B(\tilde{\ell}\tilde{X}) + B(\tilde{m}\tilde{X}) = B(\tilde{\ell} + \tilde{m})\tilde{X} = B\tilde{X}. \] (2.23)

Therefore \(\tilde{\ell} + \tilde{m} = \tilde{I} \) since \(B \) is an isomorphism. Proof of the other relations follows in a similar manner.

Theorem 2.7 shows that \(\tilde{\ell} \) and \(\tilde{m} \) defined by (2.17a) are complementary projection operators on \(\bar{M} \).
Theorem 2.8. If F-structure manifold has the following property, that is, \tilde{M} is an invariant submanifold of F-structure manifold M such that distribution D_m is always tangential to $\Psi(\tilde{M})$. Then there exists an induced \tilde{F}-structure manifold which admits a similar Riemannian metric \tilde{g} satisfying

$$\tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{H}\tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(m\tilde{X}\tilde{Y}).$$

(2.24)

Proof. From (2.4b) we get

$$B(\tilde{F}^{(K-1)/2} \tilde{X}) = F^{(K-1)/2}(B\tilde{X}).$$

(2.25)

Furthermore,

$$B(\tilde{F}^K \tilde{X}) = F^K(B\tilde{X})$$

(2.26)

which in view of (1.1) and (2.4a) yields

$$B(\tilde{F}^K \tilde{X}) = B(-(-)^{K+1}F\tilde{X})$$

(2.27)

which shows that \tilde{F} defines an \tilde{F}-structure manifold which satisfies

$$\tilde{F}^K + (-)^{K+1}\tilde{F} = 0.$$

(2.28)

In consequence of (2.2), (2.4b), and (2.12) we obtain

$$\tilde{g}(\tilde{H}, \tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(m\tilde{X}, \tilde{Y}) = g(BH\tilde{X}, BH\tilde{Y}) + g(Bm\tilde{X}, B\tilde{Y})$$

$$= g(HB\tilde{X}, HB\tilde{Y}) + g(mB\tilde{X}, B\tilde{Y})$$

$$= g(B\tilde{X}, B\tilde{Y}), \text{ where } \tilde{H} = \tilde{F}^{(K-1)/2}$$

(2.29)

which in view of the fact that B is an isomorphism gives

$$\tilde{g}(\tilde{H}, \tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(m\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}).$$

(2.30)

3. **Integrability conditions.** The Nijenhuis tensor N of the type (1.2) of F satisfying (1.1) in M is given by (see [2])

$$N(X, Y) = [FX, FY] - F[FX, Y] - F[X, FY] + F^2[X, Y],$$

(3.1)

and the Nijenhuis tensor \tilde{N} of \tilde{F} satisfying (2.28) in \tilde{M} is given by

$$N(\tilde{X}, \tilde{Y}) = [\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - \tilde{F}[\tilde{F}\tilde{X}, \tilde{Y}] - \tilde{F}[\tilde{X}\tilde{F}\tilde{Y}] + \tilde{F}^2[\tilde{X}, \tilde{Y}].$$

(3.2)

Theorem 3.1. The Nijenhuis tensors N and \tilde{N} of M and \tilde{M} given by (3.1) and (3.2) satisfy the following relation:

$$N(B\tilde{X}, B\tilde{Y}) = B\tilde{N}(\tilde{X}, \tilde{Y}).$$

(3.3)

Proof. We have

$$N(B\tilde{X}, B\tilde{Y}) = [F(B\tilde{X}), F(B\tilde{Y})] - F[F(B\tilde{X}), B\tilde{Y}] - F[B\tilde{X}, F(B\tilde{Y})] + F^2[B\tilde{X}, B\tilde{Y}]$$

(3.4)
which in view of (2.4a) becomes

\[N(B\hat{X},B\hat{Y}) = B[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] - F[B(\hat{\mathcal{F}}\hat{X}),B\hat{Y}] - F[(B\hat{X},B\hat{F}\hat{Y})] + F^2[B\hat{X},B\hat{Y}] \]

\[= B[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] - FB[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] - FB[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] + BF^2[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] \]

\[= B[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] - B\hat{\mathcal{F}}[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] + B\hat{\mathcal{F}}^2[\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}] = B\tilde{N}(\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}). \]

Theorem 3.2. The following identities hold:

\[B\tilde{N}(\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y}) = N(\hat{\mathcal{F}}B\hat{X},\hat{\mathcal{F}}B\hat{Y}), \quad B\tilde{N}(\hat{m}\hat{X},\hat{m}\hat{Y}) = N(mB\hat{X},mB\hat{Y}), \quad B\{m\tilde{N}(\hat{\mathcal{F}}\hat{X},\hat{\mathcal{F}}\hat{Y})\} = mN(B\hat{X},B\hat{Y}). \]

Proof. The proof of (3.6) follows by virtue of Theorem 3.1, equations (1.4a), (2.4a), (2.17a), (2.17b), and (3.3).

For \(\hat{\mathcal{F}} \) satisfying (2.28), there exists complementary distribution \(D_\ell \) and \(D_m \) corresponding to the projection operators \(\ell \) and \(m \) in \(\hat{\mathcal{M}} \) given by (2.17a). Then in view of the integrability conditions of \(\hat{\mathcal{F}} \) structure we state the following theorems.

Theorem 3.3. If \(D_\ell \) is integrable in \(M \), then \(D_\ell \) is also integrable in \(\hat{\mathcal{M}} \). If \(D_m \) is integrable in \(M \), then \(D_m \) is also integrable in \(\hat{\mathcal{M}} \).

Theorem 3.4. If \(D_\ell \) and \(D_m \) are both integrable in \(M \), then \(D_\ell \) and \(D_m \) are also integrable in \(\hat{\mathcal{M}} \).

Theorem 3.5. If \(F \)-structure is integrable in \(M \), then the induced structure \(\hat{F} \) is also integrable in \(\hat{\mathcal{M}} \).

References

Lovejoy S. Das: Department of Mathematics and Computer Science, Kent State University, Tuscarawas Campus, New Philadelphia, OH 44663, USA

E-mail address: das@tusc.kent.edu