ON HENSTOCK-DUNFORD AND HENSTOCK-PETTIS INTEGRALS

YE GUOJU and AN TIANQING

(Received 22 October 1998)

ABSTRACT. We give the Riemann-type extensions of Dunford integral and Pettis integral, Henstock-Dunford integral and Henstock-Pettis integral. We discuss the relationships between the Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral. We prove the Harnack extension theorems and the convergence theorems for Henstock-Dunford and Henstock-Pettis integrals.

2000 Mathematics Subject Classification. Primary 26A39, 28B05; Secondary 28B20, 46G10, 46G12.

1. Introduction. During 1957–1958, R. Henstock and J. Kurzweil, independently, gave a Riemann-type integral called the Henstock-Kurzweil integral (or Henstock integral) (see [7]). It is a kind of nonabsolute integral and contains the Lebesgue integral. It has been proved that this integral is equivalent to the special Denjoy integral [7]. The Dunford, Pettis integrals are generalizations of the Lebesgue integral to Banach-valued functions. In [5], R. A. Gordon gave two Denjoy-type extensions of the Dunford, Pettis integrals, the Denjoy-Dunford and Denjoy-Pettis integrals, and discussed their properties.

In this paper, we give the Riemann-type extensions of Dunford, Pettis integrals, the Henstock-Dunford, Henstock-Pettis integrals, and discuss the relationships between the Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral. We prove the Harnack extension theorems and the convergence theorems for Henstock-Dunford and Henstock-Pettis integrals.

Throughout this paper, X denotes a real Banach space and X^* its dual. $B(X^*) = \{x^* \in X^* : \|x^*\| \leq 1\}$ is the unit ball in X^*. $I_0 = [a, b]$ is a closed interval in \mathbb{R}.

We first give some preliminaries. A partition D of $[a, b]$ is a finite collection of interval-point pairs (I, t) with the intervals nonoverlapping and their union $[a, b]$. Here t is the associated point of I. We write $D = \{(I, t)\}$, it is said to be δ-fine partition of $[a, b]$ if for each interval-point pair (I, t), we have $t \in I \subset (t - \delta(t), t + \delta(t))$.

DEFINITION 1.1 (see [7]). A function $f : [a, b] \rightarrow \mathbb{R}$ is Henstock integrable if there exists a function $F : [a, b] \rightarrow \mathbb{R}$ such that for every $\epsilon > 0$ there is a function $\delta(t) > 0$ such that for any δ-fine partition $D = \{[u, v]; t\}$ of $[a, b]$, we have

$$\left| \sum (f(t)(v-u)-F(u,v)) \right| < \epsilon,$$ \hspace{1cm} (1.1)

where the sum \sum is understood to be over $D = \{([u, v], t)\}$ and $F(u, v) = F(v) - F(u)$. We write $(H) \int_{I_0} f = F(I_0)$.

The function f is said to be Henstock integrable on the set $E \subseteq [a, b]$ if the function $f \chi_E$ is Henstock integrable on $[a, b]$. We write $(H) \int_0^1 f \chi_E = (H) \int_0^1 f$.

Definition 1.2 (see [1, 5, 7]). A function $f : [a, b] \rightarrow \mathbb{R}$ is Denjoy (or special Denjoy) integrable if there exists an ACG (or ACG^*) function $F : [a, b] \rightarrow \mathbb{R}$ such that $D_{ap}F(t) = f(t)$ (or $F'(t) = f(t)$) almost everywhere on $[a, b]$, where $D_{ap}F(t)$ denotes the approximate derivative of F at t. We write $(D) \int_0^1 f = F(I_0)$ (or $(D^*) \int_0^1 f = F(I_0)$).

The function f is said to be Denjoy (or special Denjoy) integrable on the set $E \subseteq [a, b]$ if the function $f \chi_E$ is Denjoy (or special Denjoy) integrable on $[a, b]$. We write $(D) \int_0^1 f \chi_E = (D) \int_0^1 f$ (or $(D^*) \int_0^1 f \chi_E = (D^*) \int_0^1 f$).

If f is special Denjoy integrable, then f is Denjoy integrable.

Lemma 1.3 (see [7]). A function $f : [a, b] \rightarrow \mathbb{R}$ is Henstock integrable on $[a, b]$ if and only if f is the special Denjoy integrable on $[a, b]$.

Definition 1.4 (see Gordon [5]). (a) A function $f : [a, b] \rightarrow X$ is Denjoy-Dunford integrable on $[a, b]$ if for each $x^* \in X^*$ the function x^*f is Denjoy integrable on $[a, b]$ and if for every interval I in $[a, b]$ there exists a vector x^*_I in X^* such that $x^*_I(x^*) = \int_I x^* f$ for all $x^* \in X^*$. We write $x^*_I = (DD) \int_0^1 f = F(I_0)$ and F is called the primitive of f on I_0.

(b) A function $f : [a, b] \rightarrow X$ is Denjoy-Pettis integrable on $[a, b]$ if f is Denjoy-Dunford integrable on $[a, b]$ and if for every interval I in $[a, b]$ there exists a vector $x^*_I \in X$ for every interval I in $[a, b]$. We write $x^*_I = (DP) \int_0^1 f = F(I_0)$ and F is called the primitive of f on I_0.

The function f is said to be integrable in one of the above senses on the set $E \subseteq [a, b]$ if the function $f \chi_E$ is integrable in that sense on $[a, b]$.

Lemma 1.5 (see [3]). A function $f : [a, b] \rightarrow X$ is Denjoy-Dunford integrable on $[a, b]$ if and only if x^*f is Denjoy integrable on $[a, b]$ for all $x^* \in X^*$.

2. Definition and properties. In the following, we give the Riemann-type extensions of Dunford, Pettis integrals, and discuss the relationships between Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral.

Definition 2.1. (a) A function $f : [a, b] \rightarrow X$ is Henstock-Dunford integrable on $[a, b]$ if for each $x^* \in X^*$ the function x^*f is Henstock integrable on $[a, b]$ and if for every interval I in $[a, b]$ there exists a vector $x^*_I \in X^*$ such that $x^*_I(x^*) = \int_I x^* f$ for all $x^* \in X^*$. We write $x^*_I = (HD) \int_0^1 f = F(I_0)$ and F is called the primitive of f on I_0.

(b) A function $f : [a, b] \rightarrow X$ is Henstock-Pettis integrable on $[a, b]$ if f is Henstock-Dunford integrable on $[a, b]$ and if for every interval I in $[a, b]$ there exists a vector $x^*_I \in X$ for every interval I in $[a, b]$. We write $x^*_I = (HP) \int_0^1 f = F(I_0)$ and F is called the primitive of f on I_0.

The function f is said to be integrable in one of the above senses on the set $E \subseteq [a, b]$ if the function $f \chi_E$ is integrable in that sense on $[a, b]$.

By the above definitions and **Definition 1.4**, it is easy to see that if f is Henstock-Dunford (or Henstock-Pettis) integrable on I_0, then f is Denjoy-Dunford (or Denjoy-Pettis) integrable.
Theorem 2.2. A function \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\) if and only if \(x^* f \) is Henstock integrable on \([a, b]\) for all \(x^* \in X^* \).

Proof. If \(f \) is Henstock-Dunford integrable on \([a, b]\), for every \(x^* \in X^* \), by Definition 2.1, \(x^* f \) is Henstock integrable on \([a, b]\). Conversely, if \(x^* f \) is Henstock integrable on \([a, b]\), it follows from Lemma 1.3 that \(x^* f \) is Denjoy integrable on \([a, b]\) and \((D) \int_a^b x^* f = (H) \int_a^b x^* f \). It follows from Lemma 1.5 that \(f \) is Denjoy-Dunford integrable on \([a, b]\), and for every interval \(I \) in \([a, b]\) there exists a vector \(x^*_I \) in \(X^* \) such that \(x^*_I (x^*) = (D) \int_I x^* f \) for all \(x^* \) in \(X^* \), that is, \(x^*_I (x^*) = (H) \int_I x^* f \) for all \(x^* \) in \(X^* \). So \(f \) is Henstock-Dunford integrable on \([a, b]\). \(\square \)

Theorem 2.3. If the function \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\), then each perfect set in \([a, b]\) contains a portion on which \(f \) is Dunford integrable.

Proof. Since the function \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\), then for each \(x^* \in X^* \), \(x^* f \) is Henstock integrable on \([a, b]\). It follows from [8] that each perfect set in \([a, b]\) contains a portion on which \(x^* f \) is Lebesgue integrable. So \(f \) is Dunford integrable on a portion. \(\square \)

Theorem 2.4. If the function \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\), then there is a sequence \(\{X_k\} \) of closed subsets such that \(X_k \subset X_{k+1} \) for all \(k \), \(\bigcup_{k=1}^\infty X_k = [a, b] \), \(f \) is Dunford integrable on each \(X_k \) and

\[
\lim_{k \to \infty} (\text{Dunford}) \int_{X_k \cap [a, x]} f(t) \, dt = (HD) \int_a^x f(t) \, dt \quad \text{weakly} \quad (2.1)
\]

uniformly on \([a, b]\).

Proof. It follows from Theorem 2.2 that a function \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\) if and only if \(x^* f \) is Henstock integrable on \([a, b]\) for all \(x^* \in X^* \). From [8], \(x^* f \) is Henstock integrable on \([a, b]\), then there is a sequence \(\{X_k\} \) of closed subsets such that \(X_k \subset X_{k+1} \) for all \(k \), \(\bigcup_{k=1}^\infty X_k = [a, b] \), \(x^* f \) is Lebesgue integrable on each \(X_k \) and

\[
\lim_{k \to \infty} (L) \int_{X_k \cap [a, x]} x^* f(t) \, dt = (H) \int_a^x x^* f(t) \, dt \quad (2.2)
\]

uniformly on \([a, b]\) for each \(x^* \in X^* \). So we obtain that \(f \) is Dunford integrable on each \(X_k \) and

\[
\lim_{k \to \infty} (\text{Dunford}) \int_{X_k \cap [a, x]} f(t) \, dt = (HD) \int_a^x f(t) \, dt \quad \text{weakly} \quad (2.3)
\]

uniformly on \([a, b]\).

Theorem 2.5. If the function \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\), then there exists a sequence \(\{X_k\} \) of closed sets, \(\bigcup_{k=1}^\infty X_k = [a, b] \), \(f \) is Dunford integrable on each \(X_k \).

Proof. Since \(f \) Henstock-Dunford integrable on \([a, b]\), by Definition 2.1, for each \(x^* \in X^* \), \(x^* f \) is Henstock integrable on \([a, b]\), and for every interval \(I \subset [a, b] \),
\[\int x^* f = x^* \int f, \] and \(F(I) = \int f \in X. \) Since \(x^* f \) is Henstock integrable, then \(x^* F \) is \(ACG^* \). So there is a sequence \(\{ X_k \} \) of closed subsets such that \(\bigcup_{k=1}^{\infty} X_k = [a, b] \) and \(x^* F \) is \(VB^* \) on each \(X_k \). From [7, Lemma 6.18], \(x^* f \) is Lebesgue integrable on each \(X_k \). So we obtain that \(f \) is Dunford integrable on each \(X_k \).

Theorem 2.6. Suppose that \(X \) contains no copy of \(c_0 \) and \(f : [a, b] \to X. \) If the function \(f \) is Henstock-Pettis integrable on \([a, b]\), then each perfect set in \([a, b]\) contains a portion on which \(f \) is Pettis integrable.

Proof. Since the function \(f : [a, b] \to X \) is Henstock-Pettis integrable on \([a, b]\), then \(f \) is Denjoy-Pettis integrable on \([a, b]\). It follows from [5, Theorem 38] that each perfect set in \([a, b]\) contains a portion on which \(f \) is Pettis integrable.

In the fact, from [3, Theorem 10], we have that if each Henstock-Pettis integrable function defined on \([a, b]\) is Pettis integrable on a portion of every close set, then \(X \) does not contain \(c_0 \).

Theorem 2.7. Suppose that \(X \) contains no copy of \(c_0 \) and \(f : [a, b] \to X \) is measurable. If the function \(f : [a, b] \to X \) is Henstock-Pettis integrable on \([a, b]\), then there exists a sequence \(\{ X_k \} \) of closed sets such that for each \(x^* \in X^* \), \(f \) is Pettis integrable on each \(X_k \), and

\[\lim_{k \to \infty} (\text{Pettis}) \int_{X_k} f = (HP) \int_a^b f \text{ weakly.} \] \hspace{1cm} (2.4)

Proof. Since \(f \) is Henstock-Pettis integrable on \([a, b]\), and by Definition 2.1, for each \(x^* \in X^* \), \(x^* F \) is Henstock integrable on \([a, b]\), and for every interval \(I \subset [a, b]\),

\[\int_I x^* f = x^* \int f, \] and \(F(I) = \int f \in X. \) Since \(x^* f \) is Henstock integrable, then \(x^* F \) is \(ACG^* \). So there is a sequence \(\{ X_k \} \) of closed subsets such that \(\bigcup_{k=1}^{\infty} X_k = [a, b] \) and \(x^* F \) is \(VB^* \) on each \(X_k \). From [7, Lemma 6.18], \(x^* f \) is Lebesgue integrable on each \(X_k \). So we obtain that \(f \) is Dunford integrable on each \(X_k \).

Theorem 2.8. Suppose that \(X \) contains no copy of \(c_0 \). If the function \(f : [a, b] \to X \) is Henstock-Pettis integrable on \([a, b]\), then there exists a sequence \(\{ X_k \} \) of closed sets, \(\bigcup_{k=1}^{\infty} X_k = [a, b] \), \(f \) is Pettis integrable on each \(X_k \).

Proof. Since \(f \) is Henstock-Pettis integrable on \([a, b]\), by Definition 2.1, for each \(x^* \in X^* \), \(x^* f \) is Henstock integrable on \([a, b]\), and for every interval \(I \subset [a, b]\),
\[\int_{I} x^{*} f = x^{*} \int_{I} f, \] and \(F(I) = \int_{I} f \in X \). Since \(x^{*} f \) is Henstock integrable, then \(x^{*} F \) is \(ACG^{*} \). So there is a sequence \(\{X_k\} \) of closed subsets such that \(\bigcup_{k=1}^{\infty} X_k = [a, b] \) and \(x^{*} F \) is \(VB^{*} \) on each \(X_k \). For each \(k \in N \), let \((a, b) - X_k = \bigcup_{n=1}^{\infty} (c_{kn}^{h}, d_{kn}^{h}) \). Then

\[\sum_{n=1}^{\infty} |x^{*} \int_{c_{kn}^{h}}^{d_{kn}^{h}} f| < \infty. \]

(2.8)

Since \(X \) contains no copy of \(c_0 \), by Bessaga-Pelczynski theorem [2, page 22], \(\sum_{n=1}^{\infty} \int_{c_{kn}^{h}}^{d_{kn}^{h}} f \) is unconditionally convergent in norm. Also

\[\sum_{n=1}^{\infty} \sup_{[a_{kn}^{h}, b_{kn}^{h}] \subset [a_{kn}^{h}, d_{kn}^{h}]} \left| x^{*} \int_{a_{kn}^{h}}^{b_{kn}^{h}} f \right| < \infty. \]

(2.9)

By Harnack extension theorem [7, page 41], we have

\[\int_{X_k} x^{*} f = \int_{a}^{b} x^{*} f - \sum_{n=1}^{\infty} \int_{c_{kn}^{h}}^{d_{kn}^{h}} x^{*} f = x^{*} \left(\int_{a}^{b} f - \sum_{n=1}^{\infty} \int_{c_{kn}^{h}}^{d_{kn}^{h}} f \right). \]

(2.10)

Hence \(\int_{X_k} f = \int_{a}^{b} f - \sum_{n=1}^{\infty} \int_{c_{kn}^{h}}^{d_{kn}^{h}} f \in X \) and \(\int_{X_k} x^{*} f = x^{*} \int_{X_k} f \).

So, for every closed set \(H \subset X_k \), we have \(\int_{H} x^{*} f = x^{*} \int_{H} f \) and \(\int_{H} f \in X \). Since \(\int_{a}^{b} f \chi_{X_k} = \int_{X_k} f \in X \), \(\int_{a}^{b} f \chi_{H} = \int_{H} f \in X \), then for every closed interval \(I \subset [a, b] \), \(\int_{I} f \chi_{X_k} = \int_{I \cap X_k} f \in X \). By [5, Theorem 23, page 79], \(f \chi_{X_k} \) is Pettis integrable on \([a, b]\), that is, \(f \) is Pettis integrable on each \(X_k \).

\[\boxed{\text{Hence} \int_{X_k} f = \\ \int_{a}^{b} f - \sum_{n=1}^{\infty} \int_{c_{kn}^{h}}^{d_{kn}^{h}} f \in X \text{ and } \int_{X_k} x^{*} f = x^{*} \int_{X_k} f.} \]

3. The extension theorems and convergence theorems. Now we consider the extension theorems and convergence theorems of the Henstock-Dunford and Henstock-Pettis integrals.

Theorem 3.1. Let \(E \) be a closed subset in \([a, b]\) and \((a, b) - E\) the union of \(\{(a_k, b_k)\} \), \(k = 1, 2, \ldots \). If \(f : [a, b] \to X \) is Henstock-Dunford integrable on \(E \) and each interval \([a_k, b_k]\) with

\[\sum_{k=1}^{\infty} \omega\left(\int_{a_k}^{b} x^{*} f, [a_k, b_k] \right) < \infty \]

(3.1)

for each \(x^{*} \in X^{*} \), then \(f \) is Henstock-Dunford integrable on \([a, b]\) and

\[\left< x^{*}, (HD) \int_{a}^{b} f \right> = \left< x^{*}, (HD) \int_{a}^{b} f \chi_{E} \right> + \sum_{k=1}^{\infty} \left< x^{*}, (HD) \int_{a_k}^{b_k} f \right> \]

(3.2)

for each \(x^{*} \in X^{*} \).

Proof. From the conditions of **Theorem 3.1**, we have the function \(x^{*} f \) satisfies the hypothesis of [7, Corollary 7.11]. So we have \(x^{*} f \) is Henstock integrable on \([a, b]\) and

\[(H) \int_{a}^{b} x^{*} f = (H) \int_{a}^{b} x^{*} f \chi_{E} + \sum_{k=1}^{\infty} (H) \int_{a_k}^{b_k} x^{*} f. \]

(3.3)
It follows from Theorem 2.2 that \(f \) is Henstock-Dunford integrable on \([a,b]\) and the above equality means that

\[
\left\langle x^*, (HD) \int_a^b f \right\rangle = \left\langle x^*, (HD) \int_a^b f \chi_E \right\rangle + \sum_{k=1}^{\infty} \left\langle x^*, (HD) \int_{a_k}^{b_k} f \right\rangle
\]

(3.4)

for each \(x^* \in X^* \).

Theorem 3.2. Let \(E \) be a closed subset in \([a,b]\) and \(\{ (a_k, b_k) \} \) be an enumeration of the intervals contiguous to \(E \) in \((a,b)\). Suppose that \(f : [a,b] \to X \) is Henstock-Pettis integrable on \(E \) and each interval \([a_k, b_k]\). If \(\sum_{k=1}^{\infty} \omega(\int_{a_k}^{b_k} x^* f, (a_k, b_k)) < \infty \) for each \(x^* \in X^* \) and the series \(\sum_{k=1}^{\infty} (HP) \int_{[a_k, b_k] \cap J} f \) is unconditionally convergent for every subinterval \(J \) of \([a,b]\), then \(f \) is Henstock-Pettis integrable on \([a,b]\) and

\[
(HP) \int_a^b f = (HP) \int_a^b f \chi_E + \sum_{k=1}^{\infty} (HP) \int_{a_k}^{b_k} f.
\]

(3.5)

Proof. From Theorem 3.1, we have the function \(f \) is Henstock-Dunford integrable on \([a,b]\) and \((H) \int_a^b x^* f = (H) \int_a^b x^* f \chi_E + \sum_{k=1}^{\infty} (H) \int_{a_k}^{b_k} x^* f \). To show that \(f \) is in fact Henstock-Pettis integrable on \([a,b]\), we need to show that \((HD) \int_{J} f \) belongs to \(X \) for each closed interval \(J \) in \([a,b]\).

Let \(E_0 = E \cap J \). Then \(E_0 \) is a closed set. Since \(f \chi_E \) is Henstock-Pettis integrable on \(J \), then \(f \chi_{E_0} \) is Henstock-Pettis integrable on \(J \), that is, \(f \) is Henstock-Pettis integrable on \(E_0 \). And \(\{ (a_k, b_k) \cap J \} \) is an enumeration of the intervals contiguous to \(E_0 \) in \(J \), so \(f \) is Henstock-Pettis integrable on them and \(\sum_{k=1}^{\infty} (HP) \int_{[a_k, b_k] \cap J} f \) is an unconditionally convergent series in \(X \). Now, if we apply Theorem 3.1 to \(E_0 \) in \(J \), we get

\[
\left\langle x^*, (HD) \int_{J} f \right\rangle = \left\langle x^*, (HP) \int_{J} f \chi_{E_0} \right\rangle + \sum_{k=1}^{\infty} \left\langle x^*, (HP) \int_{[a_k, b_k] \cap J} f \right\rangle
\]

(3.6)

for each \(x^* \in X^* \), that is,

\[
\left\langle x^*, (HD) \int_{J} f \right\rangle = \left\langle x^*, (HP) \int_{J} f \chi_{E_0} + \sum_{k=1}^{\infty} (HP) \int_{[a_k, b_k] \cap J} f \right\rangle
\]

(3.7)

for each \(x^* \in X^* \). We conclude that

\[
(HP) \int_a^b f = (HP) \int_a^b f \chi_{E_0} + \sum_{k=1}^{\infty} (HP) \int_{[a_k, b_k] \cap J} f.
\]

(3.8)

Hence, \(f \) is Henstock-Pettis integrable on \([a,b]\) and

\[
(HP) \int_a^b f = (HP) \int_a^b f \chi_{E_0} + \sum_{k=1}^{\infty} (HP) \int_{[a_k, b_k] \cap J} f.
\]

(3.9)

Corollary 3.3. Suppose that \(X \) contains no copy of \(c_0 \). Let \(E \) be a closed subset in \([a,b]\) and \(\{ (a_k, b_k) \} \) be an enumeration of the intervals contiguous to \(E \) in \((a,b)\). Suppose that \(f : [a,b] \to X \) is Henstock-Pettis integrable on \(E \) and each interval \([a_k, b_k]\).
If \(\sum_{k=1}^{\infty} \omega([a_k, b_k]) < \infty \) for each \(x^* \in X^* \), then \(f \) is Henstock-Pettis integrable on \([a, b]\) and
\[
(HP) \int_{a}^{b} f = (HP) \int_{a}^{b} f \chi_E + \sum_{k=1}^{\infty} (HP) \int_{a_k}^{b_k} f. \tag{3.10}
\]

Theorem 3.4. Suppose that \(X \) is weakly sequentially complete and \(f : [a, b] \to X \) is Henstock-Dunford integrable on \([a, b]\). If \(f \) is measurable, then \(f \) is Henstock-Pettis integrable on \([a, b]\).

Proof. It is similar to the proof of [5, Theorem 40]. \(\square \)

Lemma 3.5 (see [1, 5]). Let \(\Gamma \) be a family of open intervals in \((a, b)\) and suppose that \(\Gamma \) has the following properties:
1. if \((\alpha, \beta)\) and \((\beta, \gamma)\) belong to \(\Gamma \), then \((\alpha, \gamma)\) belongs to \(\Gamma \);
2. if \((\alpha, \beta)\) belong to \(\Gamma \), then every open interval in \((\alpha, \beta)\) belongs to \(\Gamma \);
3. if all of the intervals contiguous to the perfect set \(E \subset [a, b] \) belong to \(\Gamma \), then there exists an interval \(I \) in \(\Gamma \) such that \(I \cap E \neq \emptyset \).
Then \(\Gamma \) contains the interval \((a, b)\).

Lemma 3.6. Suppose that \(f_n : [a, b] \to \mathbb{R}, f : [a, b] \to \mathbb{R} \), and
1. \(f_n \to f \) almost everywhere on \([a, b]\) as \(n \to \infty \), where each \(f_n \) is Henstock (or \(D^* \)) integrable on \([a, b]\);
2. the primitives \(F_n \) of \(f_n \) are continuous uniformly in \(n \) and \(ACG^* \) uniformly in \(n \).
Then \(f \) is Henstock (or \(D^* \)) integrable on \([a, b]\) and
\[
\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} f. \tag{3.11}
\]

Definition 3.7. Let \(F : [a, b] \to X \) and let \(E \) be a subset of \([a, b]\).
(a) \(F \) is \(BV^* \) on \(E \) if \(\sup \{ \sum_i \omega(F; [c_i, d_i]) \} \) is finite, where the supremum is taken over all finite collections \([c_i, d_i]\) of nonoverlapping intervals that have endpoints in \(E \), \(\omega \) denotes the oscillation of \(F \) over \([c_i, d_i]\), that is,
\[
\omega(F; [c_i, d_i]) = \sup \{ ||F(x) - F(y)|| ; x, y \in [c_i, d_i] \}. \tag{3.12}
\]
(b) \(F \) is \(AC^* \) on \(E \) if for each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(\sum_i \omega(F; [c_i, d_i]) < \epsilon \) whenever \([c_i, d_i]\) is a finite collection of nonoverlapping intervals that have endpoints in \(E \) and satisfy \(\sum_i (d_i - c_i) < \delta \).
(c) \(F \) is \(BVG^* \) on \(E \) if \(E \) can be expressed as a countable union of sets on each of which \(F \) is \(BV^* \).
(d) \(F \) is \(ACG^* \) on \(E \) if \(F \) is continuous on \(E \) and if \(E \) can be expressed as a countable union of sets on each of which \(F \) is \(AC^* \).

Theorem 3.8. Suppose that \(X \) is weakly sequentially complete and
1. \(f_n \to f \) weakly almost everywhere on \([a, b]\) as \(n \to \infty \), where each \(f_n \) is Henstock-Pettis integrable on \([a, b]\);
2. the primitives \(F_n \) of \(f_n \) are continuous uniformly in \(n \) and \(ACG^* \) uniformly in \(n \).
Then f is Henstock-Pettis integrable on $[a, b]$ and
\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.} \tag{3.13}
\]

Proof. Let
\[
\Gamma = \left\{ (\alpha, \beta) \in [a, b] : f \text{ is Henstock-Pettis integrable on } [\alpha, \beta], \int_{\alpha}^{\beta} f_n \to \int_{\alpha}^{\beta} f \text{ weakly} \right\}.
\]

We must show that Γ contains (a, b) and by Lemma 3.5 it is sufficient to verify that Γ satisfies Romanovski’s four conditions.

Conditions (1) and (2) are easily verified.

Suppose that (α, β) belongs to Γ for every interval $[\alpha, \beta]$ in (c, d). For each positive integer $n > 2/(d - c)$, define $I_n = (c + 1/n, d - 1/n)$ and let $x_n = x_{n}^{**}$.

Then we have
\[
x^{**}_{(c,d)}(x^*) = \int_c^d x^* f = \lim_{n \to \infty} \int_{I_n} x^* f = \lim_{n \to \infty} x_n^{*}(x_n) \tag{3.15}
\]
for each x^* in X^*. Since X is weakly sequentially complete, the sequence $\{x_n\}$ converges weakly to an element x_0 of X and we must have $x^{**}_{(c,d)} = x_0$. It follows easily that (c, d) belongs to Γ and this verifies condition (3).

Now let E be a perfect set in $[a, b]$ such that each of the intervals in $[a, b]$ contiguous to E belongs to Γ.

Since $\{F_n\}$ is continuous uniformly in n and ACG^* uniformly in n, then for each $x^* \in X^*$, $\{x^* F_n\}$ is continuous uniformly in n and ACG^* uniformly in n, and $x^* f_n \to x^* f$ almost everywhere in $[a, b]$. It follows from [1] that $x^* f$ is special Denjoy integrable on $[a, b]$. So there exists an interval $[u, v] \subset P$ and $\{k_n\}_n$ such that $\{F_n\}$ is AC^* uniformly in n on $P = E \cap (u, v)$ and the series $\sum_k \omega(F_n; [u_k, v_k])$ unconditionally converges where $(u, v) - E = \cup_k (u_k, v_k)$. Since $\sum_k \omega(\int_{u_k}^{v_k} x^* f_n; [u_k, v_k]) < \infty$ for each $x^* \in X^*$. By Corollary 3.3, we have
\[
\int_u^v f_n = \int_p f_n + \sum_k \int_{u_k}^{v_k} f_n. \tag{3.16}
\]

It follows from [4, Theorem 3] that f is Pettis integrable on P and $\int_p f_n \to \int_p f$ weakly.

Since $\{F_n\}$ is AC^* uniformly in n on P, so for every $\epsilon > 0$ there exists N such that $\sum_{k \geq N} \parallel \int_{u_k}^{v_k} f_n \parallel < \epsilon$, $n = 1, 2, \ldots$. For every $x^* \in B(X^*)$, we have $\sum_{k \geq N} \parallel \int_{u_k}^{v_k} x^* f_n \parallel < \epsilon$, $n = 1, 2, \ldots$. So $\sum_{k \geq N} \parallel \int_{u_k}^{v_k} x^* f \parallel < \epsilon$. Since X is weakly sequentially complete and X does not contain c_0, hence $\sum_{k \geq N} \int_{u_k}^{v_k} f$ unconditionally converges. By (3.16),
\[
x^* \int_u^v f_n = x^* \int_p f_n + x^* \sum_k \int_{u_k}^{v_k} f_n. \tag{3.18}
\]
Let \(n \to \infty \), we have
\[
x^{**}(u,v) = x^* \int_p f + x^* \sum_k \int_{u_k}^v f.
\]
Hence
\[
x^{**}(u,v) = \int_p f + \sum_k \int_{u_k}^v f \in X,
\]
that is, \(f \) is Henstock-Pettis integrable on \([u,v]\). So \((u,v) \in \Gamma\). This shows that \((u,v)\) belongs to \(\Gamma\) and \(\Gamma\) satisfies condition (4). This completes the proof.

Theorem 3.9. Suppose that \(X \) is weakly sequentially complete and \(f_n \to f \) weakly almost everywhere on \([a,b]\) as \(n \to \infty \), where each \(f_n \) is Henstock-Pettis integrable on \([a,b]\). If there is a scalar function \(g \) with \(\| f_n(\cdot) \| \leq g(\cdot) \) almost everywhere for all \(n \) and if \(g < \infty \), then \(f \) is Henstock-Pettis integrable on \([a,b]\) and
\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.}
\]

Proof. It is similar to the proof of Theorem 3.8.

Definition 3.10. Let \(\{f_n\} \) be a family of Henstock-Pettis integrable functions defined on \([a,b]\). The family \(\{x^* f_n : x^* \in B(X^*)\} \) is uniformly integrable in the generalized sense on \([a,b]\), if for each perfect set \(E \subset [a,b] \) there exists an interval \([c,d] \subset [a,b]\) with \(c,d \in E \) and \(E \cap (c,d) \neq \emptyset \) such that \(\{x^* f_n : x^* \in B(X^*)\} \) is uniformly integrable on \(P = E \cap (c,d) \) and for every \(\alpha \) the series \(\sum_k \int_{c_k}^{d_k} f_n \) is unconditionally convergent where \((c,d) - E = \bigcup k(c_k,d_k) \).

Theorem 3.11. Suppose that \(X \) is weakly sequentially complete and

1. \(f_n \to f \) weakly almost everywhere on \([a,b]\) as \(n \to \infty \), where each \(f_n \) is Henstock-Pettis integrable on \([a,b]\).
2. The family \(\{x^* f_n : x^* \in B(X^*) \} \) is uniformly integrable in the generalized sense on \([a,b]\).
3. For each \(x^* \in X^* \), \(\lim_{n \to \infty} \int_{c}^{d} x^* f_n = \int_{c}^{d} x^* f \) uniformly for every \([c,d] \subset [a,b]\).

Then \(f \) is Henstock-Pettis integrable on \([a,b]\) and
\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.}
\]

Proof. It is similar to the proof of Theorem 3.8. The only difference is that the family \(\{x^* f_n : x^* \in B(X^*) \} \) is uniformly integrable in the generalized sense on \([a,b]\), then there is a portion \(P = E \cap I \) of \(E \) such that the family \(\{x^* f_n X|E| \} \) is uniformly integrable on \(P \). So \(f \) is Pettis integrable on \(P \).

Theorem 3.12. Suppose that \(X \) is weakly sequentially complete and

1. \(f_n \to f \) weakly almost everywhere on \([a,b]\) as \(n \to \infty \), where each \(f_n \) is Henstock-Pettis integrable on \([a,b]\) and \(f \) is measurable,
2. the primitives \(F_n \) of \(f_n \) are weakly continuous uniformly in \(n \) and weakly ACG* uniformly in \(n \), that is, for every \(x^* \in X^* \), \(x^* F_n \) are continuous uniformly in \(n \) and ACG* uniformly in \(n \).
Then f is Henstock-Pettis integrable on $[a,b]$ and
\[\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.} \] (3.23)

Proof. For each x^* in X^*, we have
(1) $x^* f_n \to x^* f$ almost everywhere on $[a,b]$ as $n \to \infty$, where each $x^* f_n$ is Henstock integrable on $[a,b]$,
(2) the primitives $x^* F_n$ of $x^* f_n$ are continuous uniformly in n and ACG* uniformly in n. It follows from Lemma 3.6 that $x^* f$ is Henstock integrable on $[a,b]$ and
\[\int_a^b x^* f_n \to \int_a^b x^* f \text{ as } n \to \infty. \] (3.24)

By Theorem 2.2, f is Henstock-Dunford integrable on $[a,b]$. Since X is weakly sequentially complete and f is measurable, by Theorem 3.4, f is Henstock-Pettis integrable on $[a,b]$. \qed

Theorem 3.13. Suppose that the unit ball $B(X^*)$ of X^* is weak* sequentially compact and
(1) $f_n \to f$ weakly almost everywhere in $[a,b]$ as $n \to \infty$, where each f_n is Henstock-Pettis integrable on $[a,b]$,
(2) the primitives F_n of f_n are continuous uniformly in n and ACG* uniformly in n. Then f is Henstock-Pettis integrable on $[a,b]$ and
\[\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.} \] (3.25)

Proof. Suppose that $I \subset I_0$. Let C be the weak closure of $\{\int_I f_n : n \in \mathbb{N}\}$. For each x^* in X^*, $\{x^* F_n : n \in \mathbb{N}\}$ is continuous uniformly in n and ACG* uniformly in n in $[a,b]$, and further $\int_a^b x^* f_n = x^* \int_a^b f_n$. A convergence theorem, namely Lemma 3.6, guarantees that $x^* f$ is Henstock integrable on $[a,b]$ and $\lim_{n \to \infty} \int_a^b x^* f_n = \int_a^b x^* f$ for each x^* in X^*. We observe that C is bounded and that $C - \{\int_I f_n : n \in \mathbb{N}\}$ contains at most one point. We will prove that C is weakly compact.

Suppose that C is not weakly compact. An appeal to a theorem of James [6, Theorem 1] produces a bounded sequence (x^*_k) in X^*, a sequence (x_n) in C, and an $\epsilon > 0$ such that $x^*_k (x_n) = 0$ for $k > n$ and $x^*_k (x_n) > \epsilon$ for $n \geq k$. By passing to subsequences and relabelling, we can find a subsequence $(\int_I g_n)$ of $(\int_I f_n)$ and a subsequence (y^*_k) of x^*_k such that
\[
\begin{align*}
\int_I g_n &= \int_I y^*_k g_n = 0 \quad \text{for } k > n, \\
\int_I g_n &= \int_I y^*_k g_n > \epsilon \quad \text{for } n \geq k, \\
\lim_{n \to \infty} \int_I x^* g_n &= \int_I x^* f \quad \forall x^* \text{ in } X^*.
\end{align*}
\] (3.26)

Since the unit ball $B(X^*)$ of X^* is weak* sequentially compact, the sequence (y^*_k) has a subsequence (y^*_k) which weak* converges to y^*_0, so $\lim_{j \to \infty} y^*_k f = y^*_0 f$ on I_0. \qed
\[
\lim_{j \to \infty} y^*_j F = y^*_0 F \text{ on } I_0, \text{ that is, } \lim_{j \to \infty} \int_{I_j} y^*_j f = \int_I y^*_0 f. \text{ To force a contradiction, note that for each } k, \lim_{n \to \infty} \int_{I_k} y^*_k f_n = \int_I y^*_0 f. \text{ Hence } \int_{I_k} y^*_k f \geq \epsilon \text{ for each } k, \text{ and } \int_I y^*_0 f \geq \epsilon. \text{ On the other hand, notice that since each } g_n \text{ is Henstock-Pettis integrable, } (y^*_{kj}) \text{ weak* converges to } y^*_0, \text{ hence}
\]

\[
\lim_{j \to \infty} \int_{I_j} y^*_j g_n = \lim_{j \to \infty} y^*_j \int_{I_j} g_n = \int_I y^*_0 g_n.
\]

(3.27)

Since this holds for each \(n \), and since \(\lim_{n \to \infty} \int_I y^*_0 g_n = \int_I y^*_0 f \), we see that \(\int_I y^*_0 f \) exists weakly in \(X \). Denote \(F(I) = \int_I f \), then \(x^* F(I) = \int_I x^* f \) for each \(x^* \) in \(X^* \). So \(f \) is Henstock-Pettis integrable on \([a, b]\) and

\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly}. \tag{3.28}
\]

Corollary 3.14. Suppose that \(X \) is a reflexive Banach space and

1. \(f_n \to f \) weakly almost everywhere on \([a, b]\) as \(n \to \infty \), where each \(f_n \) is Henstock-Pettis integrable on \([a, b]\),

2. the primitives \(F_n \) of \(f_n \) are weakly continuous uniformly in \(n \) and weakly \(ACG^* \) uniformly in \(n \) on \([a, b]\).

Then \(f \) is Henstock-Pettis integrable on \([a, b]\) and

\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.} \tag{3.29}
\]

Theorem 3.15. If the following conditions are satisfied:

1. \(\lim_{n \to \infty} f_n = f \) weakly almost everywhere on \([a, b]\) as \(n \to \infty \), where each \(f_n \) is Henstock-Dunford integrable on \([a, b]\),

2. the primitives \(F_n \) of \(f_n \) are weakly continuous uniformly in \(n \) and weakly \(ACG^* \) uniformly in \(n \).

Then \(f \) is Henstock-Dunford integrable on \([a, b]\) and

\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.} \tag{3.30}
\]

Proof. Since

1. \(\lim_{n \to \infty} x^* f_n = x^* f \) almost everywhere on \([a, b]\),

2. the primitives \(x^* F_n \) of \(x^* f_n \) are continuous uniformly in \(n \) and \(ACG^* \) uniformly in \(n \).

Then, as in the proof of Theorem 3.12, \(x^* f \) is Henstock integrable on \([a, b]\) and

\[
\lim_{n \to \infty} \int_a^b x^* f_n = \int_a^b x^* f. \tag{3.31}
\]

By Theorem 2.2, \(f \) is Henstock-Dunford integrable on \([a, b]\) and

\[
\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \text{ weakly.} \tag{3.32}
\]
References

Ye Guoju: Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
E-mail address: yeguoju@21cn.com

An Tianqing: Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
Submit your manuscripts at http://www.hindawi.com