A NOTE ON MUES’ CONJECTURE

INDRAJIT LAHIRI

(Received 14 September 2000 and in revised form 30 October 2000)

ABSTRACT. We prove that Mues’ conjecture holds for the second- and higher-order derivatives of a square and higher power of any transcendental meromorphic function.

2000 Mathematics Subject Classification. 30D35.

1. Introduction, definitions, and results. Let \(f \) be a transcendental meromorphic function defined in the open complex plane \(\mathbb{C} \). For a positive integer \(l \) we denote by \(N(r, \infty; f \mid \geq l) \) the counting function of the poles of \(f \) with multiplicities not less than \(l \), where a pole is counted according to its multiplicity. Also for \(\alpha \in \mathbb{C} \), we denote by \(N(r, \alpha; f \mid = 1) \) the counting function of simple zeros of \(f - \alpha \). We do not explain the standard definitions and notations of the value distribution theory as they are available in [1, 6].

In 1971, Mues [4] conjectured that for a positive integer \(k \) the following relation might be true:

\[
\sum_{a \neq \infty} \delta(a; f^{(k)}) \leq 1. \tag{1.1}
\]

Mues [4] himself proved the following theorem.

Theorem 1.1. If \(N(r, f) - \overline{N}(r, f) = o\{N(r, f)\} \), then for \(k \geq 2 \)

\[
\sum_{a \neq \infty} \delta(a; f^{(k)}) \leq 1. \tag{1.2}
\]

In this direction Ishizaki [3] proved the following result.

Theorem 1.2. If for some \(l \geq 2 \) \(N(r, \infty; f \mid \geq l) = o\{N(r, f)\} \), then for all \(k \geq l \)

\[
\sum_{a \neq \infty} \delta(a; f^{(k)}) \leq 1. \tag{1.3}
\]

Yang and Wang [7] also worked on Mues’ conjecture and proved the following theorem.

Theorem 1.3. There exists a positive number \(K = K(f) \) such that for every positive integer \(k \geq K \)

\[
\sum_{a \neq \infty} \delta(a; f^{(k)}) \leq 1. \tag{1.4}
\]
We see that in Theorem 1.3 the set of exceptional integers \(k \) is different for different function \(f \). In this paper, we show that if \(f \) is a square or a higher power of a meromorphic function, then the relation (1.1) holds for any integer \(k \geq 2 \). This result follows as a consequence of the following theorem because such a function has no simple zero.

Theorem 1.4. If \(N(r, \alpha; f \mid= 1) = S(r, f) \) for some \(\alpha \neq \infty \), then for \(k \geq 2 \)

\[
\sum_{a \neq \infty} \delta(a; f^{(k)}) \leq 1.
\] (1.5)

2. Lemmas. In this section, we state two lemmas which will be needed in the proof of Theorem 1.4.

Lemma 2.1 (see [2]). Let \(A > 1 \), then there exists a set \(M(A) \) of upper logarithmic density at most \(\min\{\frac{2e^{A-1} - 1}{1 + e(A-1)\exp(e(1-A))}\} \) such that for \(k = 1, 2, 3, \ldots \)

\[
\limsup_{r \to \infty, r \notin M(A)} T(r, f) \leq 3eA.
\] (2.1)

Lemma 2.2 (see [5]). For any integer \(k(\geq 0) \) and any positive number \(\varepsilon(> 0) \), we get

\[
(k - 2)\tilde{N}(r, f) + N(r, 0; f) \leq 2\tilde{N}(r, 0; f) + N(r, 0; f^{(k)}) + \varepsilon T(r, f) + S(r, f).
\] (2.2)

3. Proof of Theorem 1.4. Without loss of generality, we may choose \(\alpha = 0 \). Let \(g = f - \alpha \). Then \(f^{(k)} = g^{(k)} \) and

\[
N(r, 0; g \mid= 1) = N(r, \alpha; f \mid= 1) = S(r, f) = S(r, g).
\] (3.1)

Applying the second fundamental theorem to \(f^{(k)} \), we get for any \(q \) finite distinct complex numbers \(a_1, a_2, \ldots, a_q \)

\[
m(r, f^{(k)}) + \sum_{j=1}^{q} m(r, a_j; f^{(k)}) \leq 2T(r, f^{(k)}) - N(r, 0; f^{(k+1)}) - 2N(r, f^{(k)}) + N(r, f^{(k+1)}) + S(r, f^{(k)}),
\] (3.2)

that is,

\[
\sum_{j=1}^{q} m(r, a_j; f^{(k)}) \leq T(r, f^{(k)}) + \tilde{N}(r, f) - N(r, 0; f^{(k+1)}) + S(r, f^{(k)}).
\] (3.3)

By Lemma 2.2 and from (3.3) we get

\[
\sum_{j=1}^{q} m(r, a_j; f^{(k)}) \leq T(r, f^{(k)}) + \tilde{N}(r, f) + 2\tilde{N}(r, 0; f) - N(r, 0; f)
\]

\[
- (k - 1)\tilde{N}(r, f) + \varepsilon T(r, f) + S(r, f) + S(r, f^{(k)}).
\] (3.4)
Since $2\tilde{N}(r,0;f) - N(r,0;f) \leq N(r,0;f \mid = 1) = S(r,f)$ and $k \geq 2$, we get from (3.4)
\[
\sum_{j=1}^{q} m(r,a_j;f^{(k)}) \leq T(r,f^{(k)}) + \varepsilon T(r,f) + S(r,f) + S(r,f^{(k)}). \tag{3.5}
\]

Let E be the exceptional set arising out of Lemma 2.2, the second fundamental theorem, and the condition $N(r,0;f \mid = 1) = S(r,f)$. We choose a sequence of positive numbers $\{r_n\}$ tending to infinity such that $r_n \notin E \cup M(A)$. Then from (3.5) we get, for $r = r_n$ in view of Lemma 2.1,
\[
\sum_{j=1}^{q} m(r_n,a_j;f^{(k)}) \leq T(r_n,f^{(k)}) + 3eA\varepsilon T(r_n,f^{(k)}) + o\{T(r_n,f^{(k)})\}, \tag{3.6}
\]
which gives
\[
\sum_{j=1}^{q} \delta(a_j;f^{(k)}) \leq 1 + 3eA\varepsilon. \tag{3.7}
\]
Since $\varepsilon(> 0)$ is arbitrary and q is an arbitrary positive number, we get from (3.7)
\[
\sum_{a \neq \infty} \delta(a;f^{(k)}) \leq 1. \tag{3.8}
\]
This proves the theorem. \qed

ACKNOWLEDGEMENT. The author is thankful to Prof. K. S. L. N. Prasad, Karnataka Arts College, Dharwad, India, for drawing the author’s attention to Mues’ conjecture.

REFERENCES

Indrajit Lahiri: Department of Mathematics, University of Kalyani, West Bengal 741235, India

E-mail address: indrajit@cal2.vsnl.net.in