THE ABEL-TYPE TRANSFORMATIONS INTO \(G_w \)

MULATU LEMMA and GEORGE TESSEMA

(Received 16 January 2001)

Abstract. The Abel-type matrix \(A_{\alpha,t} \) was introduced and studied as a mapping into \(\ell \) by Lemma (1999). The purpose of this paper is to study these transformations as mappings into \(G_w \). The necessary and sufficient conditions for \(A_{\alpha,t} \) to be \(G_w \) are established. The strength of \(A_{\alpha,t} \) in the \(G_w - G_w \) setting is investigated. Also, it is shown that \(A_{\alpha,t} \) is translative in the \(G_w - G_w \) sense for certain sequences.

2000 Mathematics Subject Classification. 40A05, 40D25.

1. Introduction. The Abel-type power series method [1], denoted by \(A_\alpha \), \(\alpha > -1 \), is the following sequence-to-function transformation: if

\[
\sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k x^k \text{ is convergent, for } 0 < x < 1,
\]

\[
\lim_{x \to 1} (1-x)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k x^k = L,
\]

then we say \(u \) is \(A_\alpha \)-summable to \(L \). The matrix analogue of \(A_\alpha \) is the \(A_{\alpha,t} \) matrix [2] whose \(nk \)th entry is given by

\[
a_{nk} = \binom{k+\alpha}{k} t_n^k (1-t_n)^{\alpha+1},
\]

where \(0 < t_n < 1 \) for all \(n \) and \(\lim t_n = 1 \). Thus, the sequence \(u \) is transformed into the sequence \(A_{\alpha,t}u \) whose \(n \)th term is given by

\[
(A_{\alpha,t}u)_n = (1-t_n)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k t_n^k.
\]

The matrix \(A_{\alpha,t} \) is called the Abel-type matrix [2]. Throughout, \(\alpha > -1 \) and \(t \) will denote such a sequence: \(0 < t_n < 1 \) for all \(n \), and \(\lim t_n = 1 \).

2. Basic notations and definitions. Let \(A = (a_{nk}) \) be an infinite matrix defining a sequence-to-sequence summability transformation given by

\[
(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k,
\]

(2.1)
where \((Ax)_n\) denotes the \(n\)th term of the image sequence \(Ax\). The sequence \(Ax\) is called the \(A\)-transform of the sequence \(x\). If \(X\) and \(Z\) are sets of complex number sequences, then the matrix \(A\) is called an \(X-Z\) matrix if the image \(Au\) of \(u\) under the transformation \(A\) is in \(Z\) whenever \(u\) is in \(X\).

Suppose that \(y\) is a complex sequence; then throughout we use the following basic notations and definitions:

\[
\ell = \left\{ y : \sum_{k=0}^{\infty} |y_k| \text{ is convergent} \right\},
\]

\[
d(A) = \left\{ y : \sum_{k=0}^{\infty} a_{nk}y_k \text{ is convergent for each } n \geq 0 \right\},
\]

\[
\ell(A) = \left\{ y : Ay \in \ell \right\},
\]

\[
G_w = \left\{ y : y_k = O(r^k) \text{ for some } r \in (0,w), 0 < w < 1 \right\},
\]

\[
c(A) = \left\{ y : y \text{ is summable by } A \right\},
\]

\[
G_w(A) = \left\{ y : Ay \in G_w \right\},
\]

\[
\Delta x_k = x_k - x_{k+1}.
\]

Definition 2.1. The summability matrix \(A\) is said to be \(G_w\)-translative for a sequence \(u\) in \(G_w(A)\) provided that each of the sequences \(Tu\) and \(Su\) is in \(G_w(A)\), where

\[
Tu = \{u_1, u_2, u_3, \ldots\} \quad \text{and} \quad Su = \{0, u_0, u_1, \ldots\}.
\]

Definition 2.2. The matrix \(A\) is said to be \(G_w\)-stronger than the matrix \(B\) provided \(G_w(B) \subseteq G_w(A)\).

\[3. \text{ The main results} \]

Theorem 3.1. The matrix \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix if and only if \((1 - t)^{\alpha+1} \in G_w\).

Proof. Suppose that \(x \in G_w\), then we show that \(Y \in G_w\), where \(Y\) is the \(A_{\alpha,t}\)-transform of the sequence \(x\). Since \(x \in G\), it follows that \(|x_k| \leq M_1 r^k\) for some \(r \in (0, w)\) and \(M_1 > 0\). Now we have

\[
|Y_n| = (1 - t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^k \right|,
\]

\[
|Y_n| \leq (1 - t_n)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} |x_k| t_n^k
\]

\[
\leq M_1 (1 - t_n)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} r^k t_n^k
\]

\[
\leq M_1 (1 - t_n)^{\alpha+1} (1 - rt_n)^{-(\alpha+1)}
\]

\[
\leq M_2 (1 - t_n)^{\alpha+1}, \quad \text{for some } M_2 > 0.
\]
Hence if \((1-t)^{\alpha+1} \in G_w\), then it follows that \(Y \in G_w\). Conversely, if \((1-t)^{\alpha+1}\) is not in \(G_w\), then the first column of \(A_{\alpha,t}\) is not in \(G_w\) because \(a_{n,0} = t_n(1-t_n)^{\alpha+1}\). Thus, \(A_{\alpha,t}\) is not a \(G_w\)-\(G_w\) matrix. \(\square\)

Remark 3.2. In the \(G_w\)-\(G_w\) setting, \(A_{\alpha,t}\) being a \(G_w\)-\(G_w\) matrix does not imply that \((1-t) \in G_w\). Also, \((1-t) \in G_w\) does not imply that \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix.

This can be demonstrated as follows.

1. Let \(t_n = 1 - (1/3)^n\), \(\alpha = 1\), and \(w = 1/4\). So, we have \((1-t_n)^{\alpha+1} = (1/9)^n\) and hence \((1-t)^{\alpha+1} \in G_w\). This implies that \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix by Theorem 3.1. But observe that \((1-t)\) is not \(G_w\). Hence, \(A_{\alpha,t}\) being a \(G_w\)-\(G_w\) matrix does not imply that \((1-t) \in G_w\).

2. Let \(t_n = 1 - (1/4)^n\), \(\alpha = -1/2\), and \(w = 1/3\). Then we have \((1-t) \in G_w\). But note that \((1-t_n)^{\alpha+1} = (1/2)^n\) and hence \((1-t)^{\alpha+1}\) is not in \(G_w\). This implies that \(A_{\alpha,t}\) is not a \(G_w\)-\(G_w\) matrix by Theorem 3.1. Hence, \((1-t) \in G_w\) does not imply that \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix.

Corollary 3.3. (1) If \(-1 < \alpha \leq 0\), then \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix implies that \((1-t) \in G_w\).

(2) If \(\alpha > 0\), then \((1-t) \in G_w\) implies that \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix.

Proof. (1) Since \(-1 < \alpha \leq 0\) implies that \((1-t_n) \leq (1-t_n)^{\alpha+1}\), it follows that \((1-t) \in G_w\) by Theorem 3.1.

(2) If \(\alpha > 0\), then we have \((1-t_n)^{\alpha+1} < (1-t_n)\) and hence by Theorem 3.1, \(A_{\alpha,t}\) a \(G_w\)-\(G_w\) matrix whenever \((1-t) \in G_w\). \(\square\)

Corollary 3.4. The matrix \(A_{\alpha,t}\) is a \(G\)-\(G_w\) matrix if and only if \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix.

Proof. Since \(G_w\) is a subset of \(G\), \(A_{\alpha,t}\) being a \(G\)-\(G_w\) matrix yields \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix. Conversely, if \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix, then by Theorem 3.1, we have \((1-t)^{\alpha+1} \in G_w\). Now using the same technique used in the proof of Theorem 3.1, we can easily show that \(A_{\alpha,t}\) is a \(G\)-\(G_w\) matrix. Thus, the corollary follows. \(\square\)

The next results indicate that the \(A_{\alpha,t}\) matrix is a strong method in the \(G_w\)-\(G_w\) setting. The \(A_{\alpha,t}\) matrix is \(G_w\)-stronger than the identity matrix.

Theorem 3.5. Suppose that \(-1 < \alpha \leq 0\) and \(A_{\alpha,t}\) is a \(G_w\)-\(G_w\) matrix; then \(G_w(A_{\alpha,t})\) contains the class of all sequences \(x\) whose partial sums are bounded.

Proof. The theorem follows using a similar argument as in the proof of [2, Theorem 8]. \(\square\)

Remark 3.6. Although Theorem 3.5 is stated for \(-1 < \alpha \leq 0\), it is also true for all \(\alpha > -1\) for some sequences, which we will demonstrate as follows. Let \(x\) be the unbounded sequence defined by

\[
x_k = (-1)^k \frac{k + \alpha + 1}{\alpha + 1}.
\]
Let Y be the $A_{\alpha,t}$-transform of x. Then we have
\[
Y_n = \frac{(1 - t_n)^{\alpha+1}}{(1 + t_n)^{\alpha+2}} < (1 - t_n)^{\alpha+1}.
\] (3.3)

Thus, if $A_{\alpha,t}$ is a G_w-G_w matrix, then by Theorem 3.1, $(1 - t)^{\alpha+1} \in G_w$, so $x \in G_w(A_{\alpha,t})$.

Corollary 3.7. Suppose that $-1 < \alpha \leq 0$ and $A_{\alpha,t}$ is a G_w-G_w matrix; then $G_w(A_{\alpha,t})$ contains the class of all sequences x such that $\sum_{k=0}^{\infty} x_k$ is conditionally convergent.

Our next results deal with the G_w-translativity of the $A_{\alpha,t}$ matrix. We will show that the $A_{\alpha,t}$ matrix is G_w-translative for some sequences in $G_w(A_{\alpha,t})$.

Theorem 3.8. Every G_w-$G_wA_{\alpha,t}$ matrix is G_w-translative for each sequence $x \in G_w(A_{\alpha,t})$ for which $\{x_k/k\} \in G_w$, $k = 1, 2, 3, \ldots$.

Proof. Let $x \in G_w(A_{\alpha,t})$. Then we will show that
1. $T_x \in G_w(A_{\alpha,t})$ and
2. $S_x \in G_w(A_{\alpha,t})$.

We first show that (1) holds. Note that
\[
\left|\left(A_{\alpha,t}T_x\right)_n\right| = \left|\left(1 - t_n\right)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_{k+1} t_n^k\right|
\]
\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \left|\sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_{k+1} t_n^{k+1}\right|
\]
\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \left|\sum_{k=1}^{\infty} \binom{k - 1 + \alpha}{k - 1} x_k t_n^k\right|
\]
\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \left|\sum_{k=1}^{\infty} \binom{k + \alpha}{k} x_k t_n^k \frac{k}{k + \alpha}\right|
\]
\[
\leq A_n + B_n,
\] (3.4)

where
\[
A_n = \frac{(1 - t_n)^{\alpha+1}}{t_n} \left|\sum_{k=1}^{\infty} \binom{k + \alpha}{k} x_k t_n^k\right|,
\]
\[
B_n = \frac{|\alpha|(1 - t_n)^{\alpha+1}}{t_n} \left|\sum_{k=1}^{\infty} \binom{k + \alpha}{k} x_k t_n^k\right|.
\] (3.5)

The use of the triangle inequality is legitimate as the radii of convergence of the two power series are at least 1. Now if we show both A and B are in G_w, then (1) holds. But the conditions that $A \in G_w$ and $B \in G_w$ follow easily from the given hypothesis that $x \in G_w(A_{\alpha,t})$ and $\{x_k/k\} \in G_w$, respectively.
Next we will show that (2) holds. Observe that

\[
\left| (A_{\alpha,t}Sx)_n \right| = (1 - t_n)^{\alpha + 1} \left| \sum_{k=1}^{\infty} \binom{k + \alpha}{k} x_{k-1} t_n^k \right|
\]

\[
= (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha + 1}{k + 1} x_k t_n^{k+1} \right|
\]

\[
= (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^{k+1} \left(\frac{k + \alpha + 1}{k + 1} \right) \right|
\]

\[
= (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^{k+1} \left(\frac{1 + \alpha}{k + 1} \right) \right|
\]

\[
\leq E_n + F_n,
\]

where

\[
E_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^k \right|
\]

\[
F_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^{k+1} \right|.
\]

Now the given hypothesis that \(x \in G_w(A_{\alpha,t}) \) and \(\{x_k/k\} \in G_w \) implies that both \(E \) and \(F \) are in \(G_w \). Consequently, (2) holds and hence the theorem follows.

Theorem 3.9. Suppose that \(-1 < \alpha \leq 0\); then every \(G_w \)-\(G_w \) matrix \(A_{\alpha,t} \) is \(G_w \)-translative for each \(A_{\alpha} \)-summable sequence \(x \) in \(G_w(A_{\alpha,t}) \).

Proof. Since the case \(\alpha = 0 \) can be easily proved using the technique used in the proof of [4, Theorem 4.1], here we only consider the case \(-1 < \alpha < 0\). Let \(x \in c(A_{\alpha}) \cap G_w(A_{\alpha,t}) \). Then we will show that

1. \(Tx \in G_w(A_{\alpha,t}) \) and
2. \(Sx \in G_w(A_{\alpha,t}) \).

We first show that (1) holds. Note that

\[
\left| (A_{\alpha,t}Tx)_n \right| = (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_{k+1} t_n^k \right|
\]

\[
= \left(1 - t_n\right)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha + 1}{k + 1} x_{k+1} t_n^{k+1} \right|
\]

\[
= \left(1 - t_n\right)^{\alpha + 1} \left| \sum_{k=1}^{\infty} \binom{k - 1 + \alpha}{k - 1} x_k t_n^k \right|
\]

\[
= \left(1 - t_n\right)^{\alpha + 1} \left| \sum_{k=1}^{\infty} \binom{k + \alpha}{k} x_k t_n^k \left(\frac{k}{k + \alpha} \right) \right|
\]

\[
\leq A_n + B_n,
\]
where
\[A_n = \frac{(1-t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=1}^{\infty} \frac{(k + \alpha)}{k} x_k t_n^k \right|, \]
\[B_n = -\frac{\alpha(1-t_n)^{\alpha + 1}}{t_n} \left| x_1 t_n + \sum_{k=2}^{\infty} \frac{(k + \alpha)}{k + \alpha} t_n^k \right|. \]

(3.9)

The use of the triangle inequality is legitimate as the radii of convergence of the two power series are at least 1. Now if we show that both \(A \) and \(B \) are in \(G_w \), then (1) holds. The condition \(A \in G_w \) follows from the hypothesis that \(x \in G_w(A_{\alpha,t}) \), and \(B \in G_w \) will be shown as follows. Observe that
\[B_n = -\frac{\alpha(1-t_n)^{\alpha + 1}}{t_n} \left| x_1 t_n + \sum_{k=2}^{\infty} \frac{(k + \alpha)}{k + \alpha} t_n^k \right| \]
\[\leq -\alpha |x_1| (1-t_n)^{\alpha + 1} + \frac{\alpha(1-t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=2}^{\infty} \frac{(k + \alpha)}{k + \alpha} t_n^k \right| \]
\[\leq C_n + D_n, \]

where
\[C_n = -\alpha |x_1| (1-t_n)^{\alpha + 1}, \]
\[D_n = -\frac{\alpha(1-t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=2}^{\infty} \frac{(k + \alpha)}{k + \alpha} t_n^k \right|. \]

(3.11)

By Theorem 3.1, the hypothesis that \(A_{\alpha,t} \) is \(G_w\)-G_w implies that \(C \in G_w \), hence there remains only to show \(D \in G_w \) to prove that (1) holds. Now using the same techniques used in the proof of [3, Theorem 2], we can show that
\[D_n \leq \frac{M_1 M_2}{\alpha} (1-t_n) - \frac{M_1 M_2}{\alpha} (1-t_n)^{\alpha + 1}, \]

(3.12)

where \(M_1 \) and \(M_2 \) are some positive real numbers. Note that \(A_{\alpha,t} \) being a \(G_w\)-\(G_w \) matrix implies that \((1-t)^{\alpha + 1} \in G_w \) by Theorem 3.1, and \(-1 < \alpha < 0 \) yields \((1-t) \in G_w \). Consequently, we have \(D \in G_w \) and hence (1) holds. Next we show that (2) holds. We have
\[\left| (A_{\alpha,t} S x)_n \right| = (1-t_n)^{\alpha + 1} \left| \sum_{k=1}^{\infty} \frac{(k + \alpha)}{k} x_k t_n^k \right| \]
\[= (1-t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \frac{(k + \alpha + 1)}{k + 1} x_k t_n^{k+1} \right| \]
\[= (1-t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \frac{(k + \alpha)}{k} x_k t_n^{k+1} \frac{(k + \alpha + 1)}{k + 1} \right| \]
\[= (1-t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \frac{(k + \alpha)}{k} x_k t_n^{k+1} \left(1 + \frac{\alpha}{k + 1}\right) \right| \]
\[\leq E_n + F_n, \]

(3.13)
where

\[E_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^k \right|, \]

\[F_n = -(1 - t_n)^{\alpha + 1} \alpha \sum_{k=0}^{\infty} \binom{k + \alpha}{k} \frac{x_k}{k+1} t_n^{k+1}. \]

The hypothesis that \(x \in G_w(A_{\alpha,t}) \) implies that \(E \in G_w \) and by proceeding as in the proof of (1) above, we can easily show that \(F \in G_w \). Thus, (2) holds and hence our assertion follows.

Theorem 3.10. Suppose that \(\alpha > 0 \) and \((1-t) \in G_w \); then every \(A_{\alpha,t} \) matrix is \(G_w \)-translative for each \(A_{\alpha} \)-summable sequence \(x \) in \(G_w(A_{\alpha,t}) \).

Proof. The theorem follows easily by using similar argument used in the proof of Theorem 3.9.

Our next result is a Tauberian theorem for \(A_{\alpha,t} \) matrix in the \(G_w-G_w \) setting.

Theorem 3.11. Let \(A_{\alpha,t} \) be a \(G_w-G_w \) matrix. If \(x \) is a sequence such that \(A_{\alpha,t}x \) and \(\Delta x \) are in \(G_w \), then \(x \) is in \(G_w \).

Proof. The theorem easily follows by an argument similar to the proof of [4, Theorem 2.1].

References

Mulatu Lemma: Savannah State University, Savannah, GA 31404, USA

E-mail address: lemmam@tigerpaw.ssu.peachnet.edu

George Tessema: Savannah State University, Savannah, GA 31404, USA