ON n-FOLD FUZZY POSITIVE IMPLICATIVE IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN and KYUNG HO KIM

(Received 11 March 2000)

ABSTRACT. We consider the fuzzification of the notion of an n-fold positive implicative ideal. We give characterizations of an n-fold fuzzy positive implicative ideal. We establish the extension property for n-fold fuzzy positive implicative ideals, and state a characterization of PIn-Noetherian BCK-algebras. Finally we study the normalization of n-fold fuzzy positive implicative ideals.

2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

1. Introduction. For the general development of BCK-algebras, the ideal theory plays an important role. In 1999, Huang and Chen [1] introduced the notion of n-fold positive implicative ideals in BCK-algebras. In this paper, we consider the fuzzification of n-fold positive implicative ideals in BCK-algebras. We first define the notion of n-fold fuzzy positive implicative ideals of BCK-algebras, and then discuss the related properties. We give the relation between a fuzzy ideal and an n-fold fuzzy positive implicative ideal. We state a condition for a fuzzy ideal to be an n-fold fuzzy positive implicative ideal. Using level sets, we give a characterization of an n-fold fuzzy positive implicative ideal. We establish the extension property for an n-fold fuzzy positive implicative ideal. Using a family of n-fold fuzzy positive implicative ideals, we make a new n-fold fuzzy positive implicative ideal. We define the notion of PIn-Noetherian BCK-algebras, and give its characterization. Furthermore, we study the normalization of an n-fold fuzzy positive implicative ideal.

2. Preliminaries. By a BCK-algebra we mean an algebra (X; *, 0) of type (2, 0) satisfying the axioms

(I) ((x * y) * (x * z)) * (z * y) = 0,
(II) (x * (x * y)) * y = 0,
(III) x * x = 0,
(IV) 0 * x = 0,
(V) x * y = 0 and y * x = 0 imply x = y,

for all x, y, z ∈ X. We can define a partial ordering ≤ on X by x ≤ y if and only if x * y = 0. A BCK-algebra X is said to be n-fold positive implicative (see Huang and Chen [1]) if there exists a natural number n such that x * y^{n+1} = x * y^n for all x, y ∈ X.

In any BCK-algebra X, the following hold:

(P1) x * 0 = x,
(P2) x * y ≤ x,
(P3) (x * y) * z = (x * z) * y,
(P4) \((x \ast z) \ast (y \ast z) \leq x \ast y\),

(P5) \(x \leq y\) implies \(x \ast z \leq y \ast z\) and \(z \ast y \leq z \ast x\).

Throughout this paper \(X\) will always mean a BCK-algebra unless otherwise specified.

A nonempty subset \(I\) of \(X\) is called an ideal of \(X\) if it satisfies

(I1) \(0 \in I\),

(I2) \(x \ast y \in I\) and \(y \in I\) imply \(x \in I\).

A nonempty subset \(I\) of \(X\) is said to be a positive implicative ideal if it satisfies

(I1) \(0 \in I\),

(I3) \((x \ast y) \ast z \in I\) and \(y \ast z \in I\) imply \(x \ast z \in I\).

Theorem 2.1 (see [3, Theorem 3]). A nonempty subset \(I\) of \(X\) is a positive implicative ideal of \(X\) if and only if it satisfies

(I1) \(0 \in I\),

(I4) \(((x \ast y) \ast y) \ast z \in I\) and \(z \in I\) imply \(x \ast y \in I\).

We now review some fuzzy logic concepts. A fuzzy set in a set \(X\) is a function \(\mu : X \to [0,1]\). For a fuzzy set \(\mu\) in \(X\) and \(t \in [0,1]\) define \(U(\mu; t)\) to be the set \(U(\mu; t) = \{x \in X \mid \mu(x) \geq t\}\).

A fuzzy set \(\mu\) in \(X\) is said to be a fuzzy ideal of \(X\) if

(F1) \(\mu(0) \geq \mu(x)\) for all \(x \in X\),

(F2) \(\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\}\) for all \(x, y \in X\).

Note that every fuzzy ideal \(\mu\) of \(X\) is order reversing, that is, if \(x \leq y\) then \(\mu(x) \geq \mu(y)\).

A fuzzy set \(\mu\) in \(X\) is called a fuzzy positive implicative ideal of \(X\) if it satisfies

(F1) \(\mu(0) \geq \mu(x)\) for all \(x \in X\),

(F3) \(\mu(x \ast z) \geq \min\{\mu((x \ast y) \ast z), \mu(y \ast z)\}\) for all \(x, y, z \in X\).

Theorem 2.2 (see [2, Proposition 1]). For any fuzzy ideal \(\mu\) of \(X\), we have

\[
\mu(x \ast y) \geq \mu((x \ast y) \ast y) \iff \mu((x \ast z) \ast (y \ast z)) \geq \mu((x \ast y) \ast z) \quad \forall x, y, z \in X.
\] (2.1)

3. \(n\)-fold fuzzy positive implicative ideals

For any elements \(x\) and \(y\) of a BCK-algebra, \(x \ast y^n\) denotes

\[
(\cdots ((x \ast y) \ast y) \ast \cdots) \ast y
\] (3.1)

in which \(y\) occurs \(n\) times. Using **Theorem 2.1**, Huang and Chen [1] introduced the concept of an \(n\)-fold positive implicative ideal as follows.

Definition 3.1. A subset \(A\) of \(X\) is called an \(n\)-fold positive implicative ideal of \(X\) if

(I1) \(0 \in A\),

(I5) \(x \ast y^n \in A\) whenever \((x \ast y^{n+1}) \ast z \in A\) and \(z \in A\) for every \(x, y, z \in X\).

We try to fuzzify the concept of \(n\)-fold positive implicative ideal.

Definition 3.2. Let \(n\) be a positive integer. A fuzzy set \(\mu\) in \(X\) is called an \(n\)-fold fuzzy positive implicative ideal of \(X\) if

(F1) \(\mu(0) \geq \mu(x)\) for all \(x \in X\),
(F4) \(\mu(x * y^n) \geq \min\{\mu((x * y^{n+1}) * z), \mu(z)\} \) for all \(x, y, z \in X \).

Notice that the 1-fold fuzzy positive implicative ideal is a fuzzy positive implicative ideal.

Example 3.3. Let \(X = \{0, a, b\} \) be a BCK-algebra with the following Cayley table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a fuzzy set \(\mu : X \rightarrow [0, 1] \) by \(\mu(0) = t_0, \mu(a) = t_1, \) and \(\mu(b) = t_2 \) where \(t_0 > t_1 > t_2 \) in \([0, 1]\). Then \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \) for every natural number \(n \).

Proposition 3.4. Every \(n \)-fold fuzzy positive implicative ideal is a fuzzy ideal for every natural number \(n \).

Proof. Let \(\mu \) be an \(n \)-fold fuzzy positive implicative ideal of \(X \). Then

\[
\mu(x) = \mu(x * 0^n) = \mu((x * 0^{n+1}) * z), \mu(z) \\
= \min\{\mu(x * z), \mu(z)\} \quad \forall x, z \in X.
\]

(3.2)

Hence \(\mu \) is a fuzzy ideal of \(X \). \(\square \)

The following example shows that the converse of Proposition 3.4 may not be true.

Example 3.5. Let \(X = \mathbb{N} \cup \{0\} \), where \(\mathbb{N} \) is the set of natural numbers, in which the operation \(* \) is defined by \(x * y = \max\{0, x - y\} \) for all \(x, y \in X \). Then \(X \) is a BCK-algebra [1, Example 1.3]. Let \(\mu \) be a fuzzy set in \(X \) given by \(\mu(0) = t_0 > t_1 = \mu(x) \) for all \(x (\neq 0) \in X \). Then \(\mu \) is a fuzzy ideal of \(X \). But \(\mu \) is not a 2-fold fuzzy positive implicative ideal of \(X \) because \(\mu(5 * 2^2) = \mu(1) = t_1 \) and \(\mu((5 * 2^3) * 0) = \mu(0) = t_0 \), and so

\[
\mu(5 * 2^2) \neq \min\{\mu((5 * 2^3) * 0), \mu(0)\}.
\]

(3.3)

Let \(X \) be an \(n \)-fold positive implicative BCK-algebra and let \(\mu \) be a fuzzy ideal of \(X \). For any \(x, y, z \in X \) we have

\[
\mu(x * y^n) = \mu(x * y^{n+1}) \geq \min\{\mu((x * y^{n+1}) * z), \mu(z)\}.
\]

(3.4)

Hence \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). Combining this and Proposition 3.4, we have the following theorem.

Theorem 3.6. In an \(n \)-fold positive implicative BCK-algebra, the notion of \(n \)-fold fuzzy positive implicative ideals and fuzzy ideals coincide.

Proposition 3.7. Let \(\mu \) be a fuzzy ideal of \(X \). Then \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \) if and only if it satisfies the inequality \(\mu(x * y^n) \geq \mu(x * y^{n+1}) \) for all \(x, y \in X \).
Suppose that (F2) does not hold. Then there exist $a, b \in X$. Then

$$\mu(x \ast y^n) \geq \min \{\mu((x \ast y^{n+1}) \ast 0), \mu(0)\}$$

$$= \min \{\mu(x \ast y^{n+1}), \mu(0)\}$$

$$= \mu(x \ast y^{n+1}).$$

(3.5)

Conversely, let μ be a fuzzy ideal of X satisfying the inequality

$$\mu(x \ast y^n) \geq \mu(x \ast y^{n+1}) \quad \forall x, y \in X. \quad (3.6)$$

Then

$$\mu(x \ast y^n) \geq \mu(x \ast y^{n+1}) \geq \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\} \quad \forall x, y, z \in X. \quad (3.7)$$

Hence μ is an n-fold fuzzy positive implicative ideal of X. □

Corollary 3.8. Every n-fold fuzzy positive implicative ideal μ of X satisfies the inequality $\mu(x \ast y^n) \geq \mu(x \ast y^{n+k})$ for all $x, y \in X$ and $k \in \mathbb{N}$.

Proof. Using Proposition 3.7, the proof is straightforward by induction. □

Lemma 3.9. Let A be a nonempty subset of X and let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} t_1 & \text{if } x \in A, \\ t_2 & \text{otherwise}, \end{cases} \quad (3.8)$$

where $t_1 > t_2$ in $[0, 1]$. Then μ is a fuzzy ideal of X if and only if A is an ideal of X.

Proof. Let A be an ideal of X. Since $0 \in A$, therefore $\mu(0) = t_1 \geq \mu(x)$ for all $x \in X$. Suppose that (F2) does not hold. Then there exist $a, b \in X$ such that $\mu(a) = t_2$ and $\min\{\mu(a \ast b), \mu(b)\} = t_1$. Thus $\mu(a \ast b) = t_1 = \mu(b)$, and so $a \ast b \in A$ and $b \in A$. It follows from (I2) that $a \in A$ so that $\mu(a) = t_1$. This is a contradiction. Suppose that μ is a fuzzy ideal of X. Since $\mu(0) \geq \mu(x)$ for all $x \in X$, we have $\mu(0) = t_1$ and hence $0 \in A$. Let $x, y \in X$ be such that $x \ast y \in A$ and $y \in A$. Using (F2), we get $\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\} = t_1$ and so $\mu(x) = t_1$, that is, $x \in A$. Consequently, A is an ideal of X. □

Proposition 3.10. Let A be a nonempty subset of X, n a positive integer, and μ a fuzzy set in X defined as follows:

$$\mu(x) := \begin{cases} t_1 & \text{if } x \in A, \\ t_2 & \text{otherwise}, \end{cases} \quad (3.9)$$

where $t_1 > t_2$ in $[0, 1]$. Then μ is an n-fold fuzzy positive implicative ideal of X if and only if A is an n-fold positive implicative ideal of X.

Proof. Assume that μ is an n-fold fuzzy positive implicative ideal of X. Then μ is a fuzzy ideal of X. It follows from Lemma 3.9 that A is an ideal of X. Let $x, y \in X$ be such that $x \ast y^{n+1} \in A$. Using Proposition 3.7, we get $\mu(x \ast y^n) \geq \mu(x \ast y^{n+1}) = t_1$ and so
\[\mu(x \ast y^n) = t_1, \]
that is, \(x \ast y^n \in A \). Hence by [1, Theorem 1.5], we conclude that \(A \) is an \(n \)-fold positive implicative ideal of \(X \). Conversely, suppose that \(A \) is an \(n \)-fold positive implicative ideal of \(X \). Then \(A \) is an ideal of \(X \) (see [1, Proposition 1.2]). It follows from Lemma 3.9 that \(\mu \) is a fuzzy ideal of \(X \). For any \(x, y \in X \), either \(x \ast y^n \in A \) or \(x \ast y^n \notin A \). The former induces \(\mu(x \ast y^n) = t_1 \geq \mu(x \ast y^{n+1}) \). In the latter, we know that \(x \ast y^{n+1} \notin A \) by [1, Theorem 1.5]. Hence \(\mu(x \ast y^n) = t_2 = \mu(x \ast y^{n+1}) \). From Proposition 3.7 it follows that \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). \(\square \)

Proposition 3.11. A fuzzy set \(\mu \) in \(X \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \) if and only if it satisfies

\begin{align*}
& (F1) \quad \mu(0) \geq \mu(x), \\
& (F5) \quad \mu(x \ast z^n) \geq \min\{\mu((x \ast y) \ast z^n), \mu(y \ast z^n)\}, \text{ for all } x, y, z \in X.
\end{align*}

Proof. Suppose that \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \) and let \(x, y, z \in X \). Then \(\mu \) is a fuzzy ideal of \(X \) (see Proposition 3.4), and so \(\mu \) is order reversing. It follows from (P3), (P4), and (P5) that

\[\mu((x \ast z^n) \ast (y \ast z^n)) = \mu(((x \ast z^n) \ast (y \ast z^n)) \ast z^n) \geq \mu((x \ast y) \ast z^n). \] (3.10)

Using (F2) and Corollary 3.8, we get

\[\mu(x \ast z^n) \geq \mu(x \ast z^{2n}) \geq \min\{\mu((x \ast z^n) \ast (y \ast z^n)), \mu(y \ast z^n)\} \]

\[\geq \min\{\mu((x \ast y) \ast z^n), \mu(y \ast z^n)\}, \] (3.11)

which proves (F5). Conversely, assume that \(\mu \) satisfies conditions (F1) and (F5). Taking \(z = 0 \) in (F5) and using (P1), we conclude that

\[\mu(x) = \mu(x \ast 0) \geq \min\{\mu((x \ast y) \ast 0^n), \mu(y \ast 0^n)\} = \min\{\mu(x \ast y), \mu(y)\}. \] (3.12)

Hence \(\mu \) is a fuzzy ideal of \(X \). Putting \(z = y \) in (F5) and applying (III), (IV), and (F1), we have

\[\mu(x \ast y^n) \geq \min\{\mu((x \ast y) \ast y^n), \mu(y \ast y^n)\} \]

\[= \min\{\mu(x \ast y^{n+1}), \mu(0)\} = \mu(x \ast y^{n+1}). \] (3.13)

By Proposition 3.7, we know that \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). \(\square \)

Now we give a condition for a fuzzy ideal to be an \(n \)-fold fuzzy positive implicative ideal.

Theorem 3.12. A fuzzy set \(\mu \) in \(X \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \) if and only if \(\mu \) is a fuzzy ideal of \(X \) in which the following inequality holds:

\[(F6) \quad \mu((x \ast z^n) \ast (y \ast z^n)) \geq \mu((x \ast y) \ast z^n) \text{ for all } x, y, z \in X. \]

Proof. Assume that \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). By Proposition 3.4, it follows that \(\mu \) is a fuzzy ideal of \(X \). Let \(a = x \ast (y \ast z^n) \) and \(b = x \ast y \). Then

\[\mu((a \ast b) \ast z^n) = \mu(((x \ast (y \ast z^n)) \ast (x \ast y)) \ast z^n) \]

\[\geq \mu((y \ast (y \ast z^n)) \ast z^n) = \mu(0), \] (3.14)
and so $\mu((a * b) * z^n) = \mu(0)$. Using (F5) we obtain
\[
\mu((x * z^n) * (y * z^n)) = \mu((x * (y * z^n)) * z^n) = \mu(a * z^n)
\geq \min\{\mu((a * b) * z^n), \mu(b * z^n)\}
= \min\{\mu(0), \mu(b * z^n)\}
= \mu(b * z^n) = \mu((x * y) * z^n),
\]
which is condition (F6). Conversely, let μ be a fuzzy ideal of X satisfying condition (F6). It is sufficient to show that μ satisfies condition (F5). For any $x, y, z \in X$ we have
\[
\mu(x * z^n) \geq \min\{\mu((x * z^n) * (y * z^n)), \mu(y * z^n)\}
\geq \min\{\mu((x * y) * z^n), \mu(y * z^n)\},
\]
which is precisely (F5). Hence μ is an n-fold fuzzy positive implicative ideal of X. \hfill \Box

Theorem 3.13. Let μ be a fuzzy set in X and let n be a positive integer. Then μ is an n-fold fuzzy positive implicative ideal of X if and only if the nonempty level set $U(\mu; t)$ of μ is an n-fold positive implicative ideal of X for every $t \in [0, 1]$.

Proof. Assume that μ is an n-fold fuzzy positive implicative ideal of X and $U(\mu; t) \neq \emptyset$ for every $t \in [0, 1]$. Then there exists $x \in U(\mu; t)$. It follows from (F1) that $\mu(0) \geq \mu(x) \geq t$ so that $0 \in U(\mu; t)$. Let $x, y, z \in X$ be such that $(x * y^{n+1}) * z \in U(\mu; t)$ and $z \in U(\mu; t)$. Then $\mu((x * y^{n+1}) * z) \geq t$ and $\mu(z) \geq t$, which imply from (F4) that
\[
\mu(x * y^n) \geq \min\{\mu((x * y^{n+1}) * z), \mu(z)\} \geq t,
\]
so that $x * y^n \in U(\mu; t)$. Therefore $U(\mu; t)$ is an n-fold positive implicative ideal of X. Conversely, suppose that $U(\mu; t) \neq \emptyset$ is an n-fold positive implicative ideal of X for every $t \in [0, 1]$. For any $x \in X$, let $\mu(x) = t$. Then $x \in U(\mu; t)$. Since $0 \in U(\mu; t)$, we get $\mu(0) \geq t = \mu(x)$ and so $\mu(0) \geq \mu(x)$ for all $x \in X$. Now assume that there exist $a, b, c \in X$ such that $\mu(a * b^n) < \min\{\mu((a * b^{n+1}) * c), \mu(c)\}$. Selecting $s_0 = (1/2)(\mu(a * b^n) + \min(\mu((a * b^{n+1}) * c), \mu(c)))$, then
\[
\mu(a * b^n) < s_0 < \min\{\mu((a * b^{n+1}) * c), \mu(c)\}.
\]
It follows that $(a * b^{n+1}) * c \in U(\mu; s_0), c \in U(\mu; s_0)$, and $a * b^n \notin U(\mu; s_0)$. This is a contradiction. Hence μ is an n-fold fuzzy positive implicative ideal of X. \hfill \Box

Theorem 3.14. If μ is an n-fold fuzzy positive implicative ideal of X, then the set
\[
X_\mu := \{x \in X \mid \mu(x) = \mu(0)\}
\]
is an n-fold positive implicative ideal of X.

Proof. Let μ be an n-fold fuzzy positive implicative ideal of X. Clearly $0 \in X_\mu$. Let $x, y, z \in X$ be such that $(x * y^{n+1}) * z \in X_\mu$ and $z \in X_\mu$. Then
\[
\mu(x * y^n) \geq \min\{\mu((x * y^{n+1}) * z), \mu(z)\} = \mu(0).
\]
It follows from (F1) that $\mu(x * y^n) = \mu(0)$ so that $x * y^n \in X_\mu$. Hence X_μ is an n-fold positive implicative ideal of X. \hfill \Box
\textbf{Theorem 3.15} (extension property for n-fold fuzzy positive implicative ideals). Let \(\mu \) and \(\nu \) be fuzzy ideals of \(X \) such that \(\mu(0) = \nu(0) \) and \(\mu \equiv \nu \), that is, \(\mu(x) \leq \nu(x) \) for all \(x \in X \). If \(\mu \) is an n-fold fuzzy positive implicative ideal of \(X \), then so is \(\nu \).

\textbf{Proof.} Using Proposition 3.7, it is sufficient to show that \(\nu \) satisfies the inequality \(\nu(x^*y^n) \geq \nu(x^*y^{n+1}) \) for all \(x,y \in X \). Let \(x,y \in X \). Then

\[
\nu(0) = \mu(0) = \mu((x^*y^n)^n) \leq \mu((x^*y^{n+1})^n) = \mu((x^*y^n)\cdot (x^*y^{n+1})) \leq \nu((x^*y^n)\cdot (x^*y^{n+1})).
\]

(3.21)

Since \(\nu \) is a fuzzy ideal, it follows from (F1) and (F2) that

\[
\nu(x^*y^n) \geq \min \{ \nu((x^*y^n)\cdot (x^*y^{n+1})), \nu(x^*y^{n+1}) \}
\]

\[
\geq \min \{ \nu(0), \nu(x^*y^{n+1}) \} = \nu(x^*y^{n+1}).
\]

(3.22)

This completes the proof.

\textbf{4. PIn.Noetherian BCK-algebras}

\textbf{Definition 4.1.} A BCK-algebra \(X \) is said to satisfy the PIn.ascending (resp., PIn.descending) chain condition (briefly, PIn.ACC (resp., PIn.DCC)) if for every ascending (resp., descending) sequence \(A_1 \subseteq A_2 \subseteq \cdots \) (resp., \(A_1 \supseteq A_2 \supseteq \cdots \)) of n-fold positive implicative ideals of \(X \) there exists a natural number \(r \) such that \(A_r = A_k \) for all \(r \geq k \).

If \(X \) satisfies the PIn.ACC, we say that \(X \) is a PIn.Noetherian BCK-algebra.

\textbf{Theorem 4.2.} Let \(\{ A_k \mid k \in \mathbb{N} \} \) be a family of n-fold positive implicative ideals of \(X \) which is nested, that is, \(A_1 \supseteq A_2 \supseteq \cdots \). Let \(\mu \) be a fuzzy set in \(X \) defined by

\[
\mu(x) = \begin{cases}
\frac{k}{k+1} & \text{if } x \in A_k \setminus A_{k+1}, \; k = 0,1,2,\ldots, \\
1 & \text{if } x \in \cap_{k=0}^\infty A_k,
\end{cases}
\]

(4.1)

for all \(x \in X \), where \(A_0 \) stands for \(X \). Then \(\mu \) is an n-fold fuzzy positive implicative ideal of \(X \).

\textbf{Proof.} Clearly \(\mu(0) \geq \mu(x) \) for all \(x \in X \). Let \(x,y,z \in X \). Suppose that

\[
(x^*y^{n+1})z \in A_k \setminus A_{k+1}, \quad z \in A_r \setminus A_{r+1}
\]

(4.2)

for \(k = 0,1,2,\ldots, r = 0,1,2,\ldots \). Without loss of generality, we may assume that \(k \leq r \). Then obviously \(z \in A_k \). Since \(A_k \) is an n-fold positive implicative ideal, it follows that \(x^*y^n \in A_k \) so that

\[
\mu(x^*y^n) \geq \frac{k}{k+1} = \min \{ \mu((x^*y^{n+1})z), \mu(z) \}.
\]

(4.3)

If \((x^*y^{n+1})z \in \cap_{k=0}^\infty A_k \) and \(z \in \cap_{k=0}^\infty A_k \), then \(x^*y^n \in \cap_{k=0}^\infty A_k \). Hence

\[
\mu(x^*y^n) = 1 = \min \{ \mu((x^*y^{n+1})z), \mu(z) \}.
\]

(4.4)
If \((x * y^{n+1}) * z \notin \cap_{k=0}^{\infty} A_k\) and \(z \in \cap_{k=0}^{\infty} A_k\), then there exists \(i \in \mathbb{N}\) such that \((x * y^{n+1}) * z \in A_i \setminus A_{i+1}\). It follows that \(x * y^n \in A_i\) so that
\[
\mu(x * y^n) \geq \frac{i}{i+1} = \min \{\mu((x * y^{n+1}) * z), \mu(z)\}. \tag{4.5}
\]

Finally, assume that \((x * y^{n+1}) * z \in \cap_{k=0}^{\infty} A_k\) and \(z \notin \cap_{k=0}^{\infty} A_k\). Then \(z \in A_j \setminus A_{j+1}\) for some \(j \in \mathbb{N}\). Hence \(x * y^n \in A_j\), and thus
\[
\mu(x * y^n) \geq \frac{j}{j+1} = \min \{\mu((x * y^{n+1}) * z), \mu(z)\}. \tag{4.6}
\]

Consequently, \(\mu\) is an \(n\)-fold fuzzy positive implicative ideal of \(X\).

Theorem 4.2 tells that if every \(n\)-fold fuzzy positive implicative ideal of \(X\) has a finite number of values, then \(X\) satisfies the PI\(^n\)-DCC.

Now we consider the converse of **Theorem 4.2**.

Theorem 4.3. Let \(X\) be a BCK-algebra satisfying PI\(^n\)-DCC and let \(\mu\) be an \(n\)-fold fuzzy positive implicative ideal of \(X\). If a sequence of elements of \(\text{Im}(\mu)\) is strictly increasing, then \(\mu\) has a finite number of values.

Proof. Let \(\{t_k\}\) be a strictly increasing sequence of elements of \(\text{Im}(\mu)\). Hence \(0 \leq t_1 < t_2 < \cdots < 1\). Then \(U(\mu;r) := \{x \in X \mid \mu(x) \geq t_r\}\) is an \(n\)-fold positive implicative ideal of \(X\) for all \(r = 2, 3, \ldots\). Let \(x \in U(\mu;r)\). Then \(\mu(x) \geq t_r \geq t_{r-1}\), and so \(x \in U(\mu;r-1)\). Hence \(U(\mu;r) \subseteq U(\mu;r-1)\). Since \(t_{r-1} \in \text{Im}(\mu)\), there exists \(x_{r-1} \in X\) such that \(\mu(x_{r-1}) = t_{r-1}\). It follows that \(x_{r-1} \in U(\mu;r-1)\), but \(x_{r-1} \notin U(\mu;r)\). Thus \(U(\mu;r) \subsetneq U(\mu;r-1)\), and so we obtain a strictly descending sequence
\[
U(\mu;1) \supseteq U(\mu;2) \supseteq U(\mu;3) \supseteq \cdots \tag{4.7}
\]
of \(n\)-fold positive implicative ideals of \(X\) which is not terminating. This contradicts the assumption that \(X\) satisfies the PI\(^n\)-DCC. Consequently, \(\mu\) has a finite number of values.

Theorem 4.4. The following are equivalent.

(i) \(X\) is a PI\(^n\)-Noetherian BCK-algebra.

(ii) The set of values of any \(n\)-fold fuzzy positive implicative ideal of \(X\) is a well-ordered subset of \([0, 1]\).

Proof. (i)\(\Rightarrow\)(ii). Let \(\mu\) be an \(n\)-fold fuzzy positive implicative ideal of \(X\). Assume that the set of values of \(\mu\) is not a well-ordered subset of \([0, 1]\). Then there exists a strictly decreasing sequence \(\{t_k\}\) such that \(\mu(x_k) = t_k\). It follows that
\[
U(\mu;1) \supseteq U(\mu;2) \supseteq U(\mu;3) \supseteq \cdots \tag{4.8}
\]
is a strictly ascending chain of \(n\)-fold positive implicative ideals of \(X\), where \(U(\mu;r) = \{x \in X \mid \mu(x) \geq t_r\}\) for every \(r = 1, 2, \ldots\). This contradicts the assumption that \(X\) is PI\(^n\)-Noetherian.

(ii)\(\Rightarrow\)(i). Assume that condition (i) is satisfied and \(X\) is not PI\(^n\)-Noetherian. Then there exists a strictly ascending chain
\[
A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \tag{4.9}
\]
of \(n \)-fold positive implicative ideals of \(X \). Let \(A = \bigcup_{k \in \mathbb{N}} A_k \). Then \(A \) is an \(n \)-fold positive implicative ideal of \(X \). Define a fuzzy set \(\nu \) in \(X \) by

\[
\nu(x) = \begin{cases}
0 & \text{if } x \notin A_k, \\
\frac{1}{r} & \text{where } r = \min \{k \in \mathbb{N} \mid x \in A_k\}.
\end{cases} \tag{4.10}
\]

We claim that \(\nu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). Since \(0 \in A_k \) for all \(k = 1, 2, \ldots \), we have \(\nu(0) = 1 \geq \nu(x) \) for all \(x \in X \). Let \(x, y, z \in X \). If \((x \ast y^{n+1}) \ast z \in A_k \setminus A_{k-1} \) and \(z \in A_k \setminus A_{k-1} \) for \(k = 2, 3, \ldots \), then \(x \ast y^n \in A_k \). It follows that

\[
\nu(x \ast y^n) \geq \frac{1}{k} - \min \{ \nu((x \ast y^{n+1}) \ast z), \nu(z) \}. \tag{4.11}
\]

Suppose that \((x \ast y^{n+1}) \ast z \in A_k \) and \(z \in A_k \setminus A_r \) for all \(r < k \). Since \(A_k \) is an \(n \)-fold positive implicative ideal, it follows that \(x \ast y^n \in A_k \). Hence

\[
\nu(x \ast y^n) \geq \frac{1}{k} - \frac{1}{r + 1} \geq \nu(z), \quad \nu(x \ast y^n) \geq \min \{ \nu((x \ast y^{n+1}) \ast z), \nu(z) \}. \tag{4.12}
\]

Similarly for the case \((x \ast y^{n+1}) \ast z \in A_k \setminus A_r \) and \(z \in A_k \), we have

\[
\nu(x \ast y^n) \geq \min \{ \nu((x \ast y^{n+1}) \ast z), \nu(z) \}. \tag{4.13}
\]

Thus \(\nu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). Since the chain (4.9) is not terminating, \(\nu \) has a strictly descending sequence of values. This contradicts the assumption that the value set of any \(n \)-fold fuzzy positive implicative ideal is well ordered. Therefore \(X \) is PI\(^n\)-Noetherian. This completes the proof.

We note that a set is well ordered if and only if it does not contain any infinite descending sequence.

Theorem 4.5. Let \(S = \{t_k \mid k = 1, 2, \ldots \} \cup \{0\} \) where \(\{t_k\} \) is a strictly descending sequence in \((0, 1)\). Then a BCK-algebra \(X \) is PI\(^n\)-Noetherian if and only if for each \(n \)-fold fuzzy positive implicative ideal \(\mu \) of \(X \), \(\text{Im}(\mu) \subseteq S \) implies that there exists a natural number \(k \) such that \(\text{Im}(\mu) \subseteq \{t_1, t_2, \ldots, t_k\} \cup \{0\} \).

Proof. Assume that \(X \) is a PI\(^n\)-Noetherian BCK-algebra and let \(\mu \) be an \(n \)-fold fuzzy positive implicative ideal of \(X \). Then by Theorem 4.4 we know that \(\text{Im}(\mu) \) is a well-ordered subset of \([0, 1]\) and so the condition is necessary.

Conversely, suppose that the condition is satisfied. Assume that \(X \) is not PI\(^n\)-Noetherian. Then there exists a strictly ascending chain of \(n \)-fold positive implicative ideals

\[
A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \tag{4.14}
\]

Define a fuzzy set \(\mu \) in \(X \) by

\[
\mu(x) = \begin{cases}
t_1 & \text{if } x \in A_1, \\
t_k & \text{if } x \in A_k \setminus A_{k-1}, \quad k = 2, 3, \ldots, \\
0 & \text{if } x \in X \setminus \bigcup_{k=1}^{n} A_k.
\end{cases} \tag{4.15}
\]
Since $0 \in A_1$, we have $\mu(0) = t_1 \geq \mu(x)$ for all $x \in X$. If either $(x \ast y^{n+1}) \ast z$ or z belongs to $X \setminus \bigcup_{k=1}^{\infty} A_k$, then either $\mu((x \ast y^{n+1}) \ast z)$ or $\mu(z)$ is equal to 0 and hence

$$\mu(x \ast y^n) \geq 0 = \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\}. \tag{4.16}$$

If $(x \ast y^{n+1}) \ast z \in A_1$ and $z \in A_1$, then $x \ast y^n \in A_1$ and thus

$$\mu(x \ast y^n) = t_1 \geq \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\}. \tag{4.17}$$

If $(x \ast y^{n+1}) \ast z \in A_k \setminus A_{k-1}$ and $z \in A_k \setminus A_{k-1}$, then $x \ast y^n \in A_k$. Hence

$$\mu(x \ast y^n) \geq t_k = \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\}. \tag{4.18}$$

Assume that $(x \ast y^{n+1}) \ast z \in A_1$ and $z \in A_1 \setminus A_{k-1}$ for $k = 2, 3, \ldots$. Then $x \ast y^n \in A_k$ and therefore

$$\mu(x \ast y^n) \geq t_k = \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\}. \tag{4.19}$$

Similarly for $(x \ast y^{n+1}) \ast z \in A_k \setminus A_{k-1}$ and $z \in A_1, k = 2, 3, \ldots$, we obtain

$$\mu(x \ast y^n) \geq t_k = \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\}. \tag{4.20}$$

Consequently, μ is an n-fold fuzzy positive implicative ideal of X. This contradicts our assumption. \hfill \Box

5. Normalizations of n-fold fuzzy positive implicative ideals

Definition 5.1. An n-fold fuzzy positive implicative ideal μ of X is said to be normal if there exists $x \in X$ such that $\mu(x) = 1$.

Example 5.2. Let $\{0, a, b\}$ be a BCK-algebra in Example 3.3. Then the fuzzy set μ in X defined by $\mu(0) = 1$, $\mu(a) = 0.8$, and $\mu(b) = 0.5$ is a normal n-fold fuzzy positive implicative ideal of X.

Note that if μ is a normal n-fold fuzzy positive implicative ideal of X, then clearly $\mu(0) = 1$, and hence μ is normal if and only if $\mu(0) = 1$.

Proposition 5.3. Given an n-fold fuzzy positive implicative ideal μ of X let μ^+ be a fuzzy set in X defined by $\mu^+(x) = \mu(x) + 1 - \mu(0)$ for all $x \in X$. Then μ^+ is a normal n-fold fuzzy positive implicative ideal of X which contains μ.

Proof. We have $\mu^+(0) = \mu(0) + 1 - \mu(0) = 1 \geq \mu(x)$ for all $x \in X$. For any $x, y, z \in X$, we have

$$\min \{\mu^+((x \ast y^{n+1}) \ast z), \mu^+(z)\}$$

$$= \min \{\mu((x \ast y^{n+1}) \ast z) + 1 - \mu(0), \mu(z) + 1 - \mu(0)\}$$

$$= \min \{\mu((x \ast y^{n+1}) \ast z), \mu(z)\} + 1 - \mu(0)$$

$$\leq \mu(x \ast y^n) + 1 - \mu(0) = \mu^+(x \ast y^n). \tag{5.1}$$

Hence μ^+ is a normal n-fold fuzzy positive implicative ideal of X, and obviously $\mu \subseteq \mu^+$. \hfill \Box
Noticing that \(\mu \subseteq \mu^+ \), we have the following corollary.

Corollary 5.4. If there is \(x \in X \) such that \(\mu^+(x) = 0 \), then \(\mu(x) = 0 \).

Using Proposition 3.10, we know that for any \(n \)-fold positive implicative ideal \(A \) of \(X \), the characteristic function \(\chi_A \) of \(A \) is a normal \(n \)-fold fuzzy positive implicative ideal of \(X \). It is clear that \(\mu \) is a normal \(n \)-fold fuzzy positive implicative ideal of \(X \) if and only if \(\mu^+ = \mu \).

Proposition 5.5. If \(\mu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \), then \((\mu^+)^+ = \mu^+ \).

Proof. The proof is straightforward.

Corollary 5.6. If \(\mu \) is a normal \(n \)-fold fuzzy positive implicative ideal of \(X \), then \((\mu^+)^+ = \mu \).

Proposition 5.7. Let \(\mu \) and \(\nu \) be \(n \)-fold fuzzy positive implicative ideals of \(X \). If \(\mu \subseteq \nu \) and \(\mu(0) = \nu(0) \), then \(X_{\mu} \subseteq X_{\nu} \).

Proof. If \(x \in X_{\mu} \), then \(\nu(x) \geq \mu(x) = \mu(0) = \nu(0) \) and so \(\nu(x) = \nu(0) \), that is, \(x \in X_{\nu} \). Therefore \(X_{\mu} \subseteq X_{\nu} \).

Proposition 5.8. Let \(\mu \) be an \(n \)-fold fuzzy positive implicative ideal of \(X \). If there is an \(n \)-fold fuzzy positive implicative ideal \(\nu \) of \(X \) satisfying \(\nu^+ \subseteq \mu \), then \(\mu \) is normal.

Proof. Assume that there is an \(n \)-fold fuzzy positive implicative ideal \(\nu \) of \(X \) such that \(\nu^+ \subseteq \mu \). Then \(1 = \nu^+(0) \leq \mu(0) \), and so \(\mu(0) = 1 \). Hence \(\mu \) is normal.

Given an \(n \)-fold fuzzy positive implicative ideal, we construct a new normal \(n \)-fold fuzzy positive implicative ideal.

Theorem 5.9. Let \(\mu \) be an \(n \)-fold fuzzy positive implicative ideal of \(X \) and let \(f : [0, \mu(0)] \to [0, 1] \) be an increasing function. Let \(\mu_f : X \to [0, 1] \) be a fuzzy set in \(X \) defined by \(\mu_f(x) = f(\mu(x)) \) for all \(x \in X \). Then \(\mu_f \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). In particular, if \(f(\mu(0)) = 1 \) then \(\mu_f \) is normal; and if \(f(t) \geq t \) for all \(t \in [0, \mu(0)] \), then \(\mu \subseteq \mu_f \).

Proof. Since \(\mu(0) \geq \mu(x) \) for all \(x \in X \) and since \(f \) is increasing, we have \(\mu_f(0) = f(\mu(0)) \geq f(\mu(x)) = \mu_f(x) \) for all \(x \in X \). For any \(x, y, z \in X \) we get

\[
\min \{ \mu_f((x \ast y^{n+1}) \ast z), \mu_f(z) \} = \min \{ f(\mu((x \ast y^{n+1}) \ast z)), f(\mu(z)) \}
\]

\[
= f(\min \{ \mu((x \ast y^{n+1}) \ast z), \mu(z) \}) \leq f(\mu(x \ast y^n)) = \mu_f(x \ast y^n).
\]

Hence \(\mu_f \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). If \(f(\mu(0)) = 1 \), then clearly \(\mu_f \) is normal. Assume that \(f(t) \geq t \) for all \(t \in [0, \mu(0)] \). Then \(\mu_f(x) = f(\mu(x)) \geq \mu(x) \) for all \(x \in X \), which proves \(\mu \subseteq \mu_f \).

Let \(N(X) \) denote the set of all normal \(n \)-fold fuzzy positive implicative ideals of \(X \).

Theorem 5.10. Let \(\mu \in N(X) \) be nonconstant such that it is a maximal element of the poset \((N(X), \subseteq) \). Then \(\mu \) takes only the values 0 and 1.
Proof. Since \(\mu \) is normal, we have \(\mu(0) = 1 \). Let \(x \in X \) be such that \(\mu(x) \neq 1 \). It is sufficient to show that \(\mu(x) = 0 \). If not, then there exists \(a \in X \) such that \(0 < \mu(a) < 1 \). Define a fuzzy set \(\nu \) in \(X \) by \(\nu(x) = (1/2) \{ \mu(x) + \mu(a) \} \) for all \(x \in X \). Clearly, \(\nu \) is well defined, and we get

\[
\nu(0) = \frac{1}{2} \{ \mu(0) + \mu(a) \} = \frac{1}{2} \{ 1 + \mu(a) \} \geq \frac{1}{2} \{ \mu(x) + \mu(a) \} = \nu(x) \quad \forall x \in X.
\]

Let \(x, y, z \in X \). Then

\[
\nu(x * y^n) = \frac{1}{2} \{ \mu(x * y^n) + \mu(a) \} \geq \frac{1}{2} \{ \min \{ \mu((x * y^{n+1}) * z), \mu(z) \} + \mu(a) \}
\]

\[
= \min \left\{ \frac{1}{2} \{ \mu((x * y^{n+1}) * z) + \mu(a) \}, \frac{1}{2} \{ \mu(z) + \mu(a) \} \right\}
\]

\[
= \min \{ \nu((x * y^{n+1}) * z), \nu(z) \}.
\]

Hence \(\nu \) is an \(n \)-fold fuzzy positive implicative ideal of \(X \). By Proposition 5.3, \(\nu^+ \) is a maximal \(n \)-fold fuzzy positive implicative ideal of \(X \), where \(\nu^+ \) is defined by \(\nu^+(x) = \nu(x) + 1 - \nu(0) \) for all \(x \in X \). Note that

\[
\nu^+(a) = \nu(a) + 1 - \nu(0) = \frac{1}{2} \{ \mu(a) + \mu(a) \} + 1 - \frac{1}{2} \{ \mu(0) + \mu(a) \}
\]

\[
= \frac{1}{2} \{ \mu(a) + 1 \} > \mu(a)
\]

and \(\nu^+(a) < 1 = \nu^+(0) \). It follows that \(\nu^+ \) is nonconstant, and \(\mu \) is not a maximal element of \((\mathcal{N}(X), \subseteq) \). This is a contradiction. \(\square \)

Definition 5.11. An \(n \)-fold fuzzy positive implicative ideal \(\mu \) of \(X \) is said to be fuzzy maximal if \(\mu \) is nonconstant and \(\mu^+ \) is a maximal element of the poset \((\mathcal{N}(X), \subseteq) \).

For any positive implicative ideal \(I \) of \(X \) let \(\mu_I \) be a fuzzy set in \(X \) defined by

\[
\mu_I(x) = \begin{cases} 1 & \text{if } x \in I, \\ 0 & \text{otherwise}. \end{cases}
\]

Theorem 5.12. Let \(\mu \) be an \(n \)-fold fuzzy positive implicative ideal of \(X \). If \(\mu \) is fuzzy maximal, then

(i) \(\mu \) is normal,

(ii) \(\mu \) takes only the values 0 and 1,

(iii) \(\mu^+ \) is a maximal \(n \)-fold positive implicative ideal of \(X \).

Proof. Let \(\mu \) be an \(n \)-fold fuzzy positive implicative ideal of \(X \) which is fuzzy maximal. Then \(\mu^+ \) is a nonconstant maximal element of the poset \((\mathcal{N}(X), \subseteq) \). It follows from Theorem 5.10 that \(\mu^+ \) takes only the values 0 and 1. Note that \(\mu^+(x) = 1 \) if and only if \(\mu(x) = \mu(0) \), and \(\mu^+(x) = 0 \) if and only if \(\mu(x) = \mu(0) - 1 \). By Corollary 5.4, we have \(\mu(x) = 0 \), and so \(\mu(0) = 1 \). Hence \(\mu \) is normal and \(\mu^+ = \mu \). This proves (i) and (ii).

(iii) Observe that \(\mu \subseteq \mu^+ \). If \(\mu(x) = 0 \), then \(\mu \subseteq \mu^+ \). If \(\mu(x) = 1 \), then \(x \in X \mu \) and so \(\mu^+(x) = 1 \). This shows that \(\mu \subseteq \mu^+ \).
(iv) Since \(\mu\) is nonconstant, \(X_\mu\) is a proper \(n\)-fold positive implicative ideal of \(X\). Let \(J\) be an \(n\)-fold positive implicative ideal of \(X\) containing \(X_\mu\). Then \(\mu = \mu_{X_\mu} \subseteq \mu_J\). Since \(\mu\) and \(\mu_J\) are normal \(n\)-fold fuzzy positive implicative ideals of \(X\) and since \(\mu = \mu^+\) is a maximal element of \(N(X)\), we have that either \(\mu = \mu_J\) or \(\mu_J = 1\) where \(1 : X \to [0, 1]\) is a fuzzy set defined by \(1(x) = 1\) for all \(x \in X\). The later case implies that \(J = X\). If \(\mu = \mu_J\), then \(X_\mu = X_{\mu_J} = J\). This shows that \(X_\mu\) is a maximal \(n\)-fold positive implicative ideal of \(X\). This completes the proof.

\[\square\]

Acknowledgement. The first author was supported by Korea Research Foundation Grant (KRF-2000-005-D00003).

References

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea
E-mail address: ybjun@nongae.gsnu.ac.kr

Kyung Ho Kim: Department of Mathematics, Chungju National University, Chungju 380-702, Korea
E-mail address: gkhim@gukwon.chungju.ac.kr