ON β-DUAL OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX

SUTHEP SUANTAI and WINATE SANHAN

Received 13 April 2001 and in revised form 10 October 2001

The β-dual of a vector-valued sequence space is defined and studied. We show that if an X-valued sequence space E is a BK-space having AK property, then the dual space of E and its β-dual are isometrically isomorphic. We also give characterizations of β-dual of vector-valued sequence spaces of Maddox $\ell(X,p)$, $\ell_\infty(X,p)$, $c_0(X,p)$, and $c(X,p)$.

2000 Mathematics Subject Classification: 46A45.

1. Introduction. Let $(X, \| \cdot \|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let \mathbb{N} be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in \mathbb{N}$. The X-valued sequence spaces of Maddox are defined as

\begin{align*}
c_0(X,p) &= \left\{ x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0 \right\}; \\
c(X,p) &= \left\{ x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X \right\}; \\
\ell_\infty(X,p) &= \left\{ x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty \right\}; \\
\ell(X,p) &= \left\{ x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty \right\}. \tag{1.1}
\end{align*}

When $X = \mathbb{K}$, the scalar field of X, the corresponding spaces are written as $c_0(p)$, $c(p)$, $\ell_\infty(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_0(p)$, $c(p)$, $\ell(p)$, and $\ell_\infty(p)$ and has given characterizations of β-dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_p[X]$, where $\ell_p[X]$, $1 < p < \infty$, is defined by

$$\ell_p[X] = \left\{ x = (x_k) : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \text{ for each } f \in X' \right\}. \tag{1.2}$$

In this paper, the β-dual of a vector-valued sequence space is defined and studied and we give characterizations of β-dual of vector-valued sequence spaces of Maddox.
\(\ell(X,p), \ell_\infty(X,p), c_0(X,p), \) and \(c(X,p) \). Some results, obtained in this paper, are generalizations of some in [1, 3].

2. Notation and definitions. Let \((X,\| \cdot \|)\) be a Banach space. Let \(W(X) \) and \(\Phi(X) \) denote the space of all sequences in \(X \) and the space of all finite sequences in \(X \), respectively. A sequence space in \(X \) is a linear subspace of \(W(X) \). Let \(E \) be an \(X \)-valued sequence space. For \(x \in E \) and \(k \in \mathbb{N} \) we write that \(x_k \) stand for the \(k \)th term of \(x \). For \(x \in E \) and \(k \in \mathbb{N} \), we let \(e^{(k)}(x) \) be the sequence \((0,0,0,\ldots,0,x,0,\ldots)\) with \(x \) in the \(k \)th position and let \(e(x) \) be the sequence \((x,x,x,\ldots)\). For a fixed scalar sequence \(u = (u_k) \), the sequence space \(E_u \) is defined as

\[
E_u = \{ x = (x_k) \in W(X) : (u_kx_k) \in E \}. \tag{2.1}
\]

An \(X \)-valued sequence space \(E \) is said to be normal if \((y_k) \in E \) whenever \(\| y_k \| \leq \| x_k \| \) for all \(k \in \mathbb{N} \) and \((x_k) \in E \). Suppose that the \(X \)-valued sequence space \(E \) is endowed with some linear topology \(\tau \). Then \(E \) is called a \(K \)-space if, for each \(k \in \mathbb{N} \), the \(k \)th coordinate mapping \(p_k : E \rightarrow X \), defined by \(p_k(x) = x_k \), is continuous on \(E \). In addition, if \((E,\tau)\) is a Fréchet (Banach) space, then \(E \) is called an FK-(BK)-space. Now, suppose that \(E \) contains \(\Phi(X) \), then \(E \) is said to have property \(AK \) if \(\sum_{k=1}^{n} e^{(k)}(x_k) \rightarrow x \) in \(E \) as \(n \to \infty \) for every \(x = (x_k) \in E \).

The spaces \(c_0(p) \) and \(c(p) \) are FK-spaces. In \(c_0(X,p) \), we consider the function \(g(x) = \sup_k ||x_k||^{p_k/M} \), where \(M = \max\{1,\sup_k p_k\} \), as a paranorm on \(c_0(X,p) \), and it is known that \(c_0(X,p) \) is an FK-space having property \(AK \) under the paranorm \(g \) defined as above. In \(\ell(X,p) \), we consider it as a paranormed sequence space with the paranorm given by \(\| (x_k) \| = (\sum_{k=1}^{\infty} ||x_k||^{p_k})^{1/M} \). It is known that \(\ell(X,p) \) is an FK-space under the paranorm defined as above.

For an \(X \)-valued sequence space \(E \), define its Köthe dual with respect to the dual pair \((X,X')\) (see [2]) as follows:

\[
E^\times|_{(X,X')} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} |f_k(x_k)| < \infty \ \forall \ x = (x_k) \in E \right\}. \tag{2.2}
\]

In this paper, we denote \(E^\times|_{(X,X')} \) by \(E^\alpha \) and it is called the \(\alpha \)-dual of \(E \).

For a sequence space \(E \), the \(\beta \)-dual of \(E \) is defined by

\[
E^\beta = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x_k) \text{ converges } \forall (x_k) \in E \right\}. \tag{2.3}
\]

It is easy to see that \(E^\alpha \subseteq E^\beta \).

For the sake of completeness we introduce some further sequence spaces that will be considered as \(\beta \)-dual of the vector-valued sequence spaces of Maddox:

\[
M_0(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{M^{-1/p_k}} < \infty \text{ for some } M \in \mathbb{N} \right\};
\]

\[
M_\infty(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{n^{-1/p_k}} < \infty \ \forall \ n \in \mathbb{N} \right\};
\]
\[\ell_0(X, p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^p M^{-p_k} < \infty \text{ for some } M \in \mathbb{N}, \quad p_k > 1 \ \forall k \in \mathbb{N} \right\}, \]

\[cs[X'] = \left\{(f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges } \forall x \in X \right\}. \]

When \(X = \mathbb{K} \), the scalar field of \(X \), the corresponding first two sequence spaces are written as \(M_0 (p) \) and \(M_\infty (p) \), respectively. These two spaces were first introduced by Grosse-Erdmann [1].

3. Main results

We begin by giving some general properties of \(\beta \)-dual of vector-valued sequence spaces.

Proposition 3.1. Let \(X \) be a Banach space and let \(E, E_1, \) and \(E_2 \) be \(X \)-valued sequence spaces. Then

(i) \(E^\alpha \subseteq E^\beta \).

(ii) If \(E_1 \subseteq E_2 \), then \(E_2^\beta \subseteq E_1^\beta \).

(iii) If \(E = E_1 + E_2 \), then \(E^\beta = E_1^\beta \cap E_2^\beta \).

(iv) If \(E \) is normal, then \(E^\alpha = E^\beta \).

Proof. Assertions (i), (ii), and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that \(E^\beta \subseteq E^\alpha \). Let \((f_k) \in E^\beta \) and \(x = (x_k) \in E \). Then \(\sum_{k=1}^{\infty} f_k(x_k) \) converges. Choose a scalar sequence \((t_k) \) with \(|t_k| = 1 \) and \(f_k(t_k x_k) = |f_k(x_k)| \) for all \(k \in \mathbb{N} \). Since \(E \) is normal, \((t_k x_k) \in E \). It follows that \(\sum_{k=1}^{\infty} |f_k(x_k)| \) converges, hence \((f_k) \in E^\alpha \).

If \(E \) is a BK-space, we define a norm on \(E^\beta \) by the formula

\[\| (f_k) \|_{E^\beta} = \sup_{\| (x_k) \| \leq 1} \left\| \sum_{k=1}^{\infty} f_k(x_k) \right\| \]

(3.1)

It is easy to show that \(\| \cdot \|_{E^\beta} \) is a norm on \(E^\beta \).

Next, we give a relationship between \(\beta \)-dual of a sequence space and its continuous dual. Indeed, we need a lemma.

Lemma 3.2. Let \(E \) be an \(X \)-valued sequence space which is an FK-space containing \(\Phi(X) \). Then for each \(k \in \mathbb{N} \), the mapping \(T_k : X \to E \), defined by \(T_k x = e^k(x) \), is continuous.

Proof. Let \(V = \{ e^k(x) : x \in X \} \). Then \(V \) is a closed subspace of \(E \), so it is an FK-space because \(E \) is an FK-space. Since \(E \) is a \(K \)-space, the coordinate mapping \(p_k : V \to X \) is continuous and bijective. It follows from the open mapping theorem that \(p_k \) is open, which implies that \(p_k^{-1} : X \to V \) is continuous. But since \(T_k = p_k^{-1} \), we thus obtain that \(T_k \) is continuous.

Theorem 3.3. If \(E \) is a BK-space having property AK, then \(E^\beta \) and \(E' \) are isometrically isomorphic.
Proof. We first show that for \(x = (x_k) \in E \) and \(f \in E' \),
\[
f(x) = \sum_{k=1}^{\infty} f(e^k(x_k)).
\] (3.2)
To show this, let \(x = (x_k) \in E \) and \(f \in E' \). Since \(E \) has property AK,
\[
x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{(k)}(x_k).
\] (3.3)
By the continuity of \(f \), it follows that
\[
f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} f(e^k(x_k)) = \sum_{k=1}^{\infty} f(e^k(x_k)),
\] (3.4)
so (3.2) is obtained. For each \(k \in \mathbb{N} \), let \(T_k : X \to E \) be defined as in Lemma 3.2. Since \(E \) is a BK-space, by Lemma 3.2, \(T_k \) is continuous. Hence \(f \circ T_k \in X' \) for all \(k \in \mathbb{N} \). It follows from (3.2) that
\[
f(x) = \sum_{k=1}^{\infty} (f \circ T_k)(x) \quad \forall x = (x_k) \in E.
\] (3.5)
It implies, by (3.5), that \((f \circ T_k)_{k=1}^{\infty} \in E^\beta\). Define \(\varphi : E' \to E^\beta \) by
\[
\varphi(f) = (f \circ T_k)_{k=1}^{\infty} \quad \forall f \in E'.
\] (3.6)
It is easy to see that \(\varphi \) is linear. Now, we show that \(\varphi \) is onto. Let \((f_k) \in E^\beta\). Define \(f : E \to K \), where \(K \) is the scalar field of \(X \), by
\[
f(x) = \sum_{k=1}^{\infty} f_k(x_k) \quad \forall x = (x_k) \in E.
\] (3.7)
For each \(k \in \mathbb{N} \), let \(p_k \) be the \(k \)th coordinate mapping on \(E \). Then we have
\[
f(x) = \sum_{k=1}^{\infty} (f_k \circ p_k)(x) = \lim_{n \to \infty} \sum_{k=1}^{n} (f \circ p_k)(x).
\] (3.8)
Since \(f_k \) and \(p_k \) are continuous linear, so is also continuous \(f \circ p_k \). It follows by Banach-Steinhaus theorem that \(f \in E' \) and we have by (3.7) that, for each \(k \in \mathbb{N} \) and each \(z \in X \), \((f \circ T_k)(z) = f(e^k(z)) = f_k(z)\). Thus \(f \circ T_k = f_k \) for all \(k \in \mathbb{N} \), which implies that \(\varphi(f) = (f_k) \), hence \(\varphi \) is onto.

Finally, we show that \(\varphi \) is linear isometry. For \(f \in E' \), we have
\[
\|f\| = \sup_{\|x_k\| \leq 1} \|f((x_k))\| = \sup_{\|x_k\| \leq 1} \left| \sum_{k=1}^{\infty} f(e^k(x_k)) \right| (\text{by (3.2)}) = \sup_{\|x_k\| \leq 1} \left| \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \right| (3.9)
\]
\[
= \|((f \circ T_k)_{k=1}^{\infty})\|_{E^\beta} = \|\varphi(f)\|_{E^\beta}.
\]
Hence φ is isometry. Therefore, $\varphi : E' \to E^\beta$ is an isometrically isomorphism from E' onto E^β. This completes the proof.

We next give characterizations of β-dual of the sequence space $\ell(X, p)$ when $p_k > 1$ for all $k \in \mathbb{N}$.

Theorem 3.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^\beta = \ell_0(X', q)$, where $q = (q_k)$ is a sequence of positive real numbers such that $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$.

Proof. Suppose that $(f_k) \in \ell_0(X', q)$. Then $\sum_{k=1}^{\infty} \|f_k\|^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. Then for each $x = (x_k) \in \ell(X, p)$, we have

$$\sum_{k=1}^{\infty} \|f_k(x_k)\| \leq \sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} M^{1/p_k} \|x_k\|$$

$$\leq \sum_{k=1}^{\infty} \left(\|f_k\|^{q_k} M^{-q_k/p_k} + M \|x_k\|\right)^{p_k}$$

$$= \sum_{k=1}^{\infty} \|f_k\|^{q_k} M^{-(q_k-1)} + M \sum_{k=1}^{\infty} \|x_k\|\right)^{p_k}$$

$$= M \sum_{k=1}^{\infty} \|f_k\|^{q_k} M^{-q_k} + M \sum_{k=1}^{\infty} \|x_k\|^{p_k}$$

$$< \infty,$$ \hfill (3.10)

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^\beta$.

On the other hand, assume that $(f_k) \in \ell(X, p)^\beta$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$. For each $x = (x_k) \in \ell(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_k x_k) \in \ell(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x \in \ell(X, p).$$ \hfill (3.11)

We want to show that $(f_k) \in \ell_0(X', q)$, that is, $\sum_{k=1}^{\infty} \|f_k\|^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. If it is not true, then

$$\sum_{k=1}^{\infty} \|f_k\|^{q_k} M^{-q_k} = \infty \quad \forall m \in \mathbb{N}.\quad \hfill (3.12)$$

It implies by (3.12) that for each $k \in \mathbb{N}$,

$$\sum_{i \geq k} |f_i|^{q_i} m^{-q_i} = \infty \quad \forall m \in \mathbb{N}.\quad \hfill (3.13)$$

By (3.12), let $m_1 = 1$, then there is a $k_1 \in \mathbb{N}$ such that

$$\sum_{k=k_1}^{\infty} \|f_k\|^{q_k} m_1^{-q_k} > 1.\quad \hfill (3.14)$$
By (3.13), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that
\[
\sum_{k_1 < k < k_2} \left\| f_k \right\|_{q_k}^{q_k} m_2^{-q_k} > 1.
\] (3.15)

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < \cdots$ and $m_1 < m_2 < \cdots$, such that $m_i > 2^i$ and
\[
\sum_{k_{i-1} < k < k_i} \left\| f_k \right\|_{q_k}^{q_k} m_i^{-q_k} > 1.
\] (3.16)

For each $i \in \mathbb{N}$, choose x_k in X with $\| x_k \| = 1$ for all $k \in \mathbb{N}$, $k_{i-1} < k \leq k_i$ such that
\[
\sum_{k_{i-1} < k < k_i} \left\| f_k(x_k) \right\|_{q_k}^{q_k} m_i^{-q_k} > 1 \quad \forall i \in \mathbb{N}.
\] (3.17)

Let $a_i = \sum_{k_{i-1} < k < k_i} |f_k(x_k)|^{q_k} m_i^{-q_k}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-q_k} f_k(x_k) |q_k^{-1} x_k$ for all $k \in \mathbb{N}$ with $k_{i-1} < k \leq k_i$. By using the fact that $p_k q_k = p_k + q_k$ and $p_k (q_k - 1) = q_k$ for all $k \in \mathbb{N}$, we have that for each $i \in \mathbb{N}$,
\[
\sum_{k_{i-1} < k < k_i} \| y_k \|_{p_k}^{p_k} = \sum_{k_{i-1} < k < k_i} \left\| a_i^{-1} m_i^{-q_k} f_k(x_k) |q_k^{-1} x_k \right\|_{p_k}^{p_k}
= \sum_{k_{i-1} < k < k_i} a_i^{-p_k} m_i^{-p_k q_k} |f_k(x_k)|^{q_k}
= \sum_{k_{i-1} < k < k_i} a_i^{-p_k} m_i^{-p_k} m_i^{-q_k} |f_k(x_k)|^{q_k}
\leq a_i^{-1} m_i^{-1} \sum_{k_{i-1} < k < k_i} m_i^{-q_k} |f_k(x_k)|^{q_k}
\leq a_i^{-1} m_i^{-1} a_i
= m_i^{-1}
< \frac{1}{2^i},
\] (3.18)

so we have that $\sum_{k=1}^{\infty} \| y_k \|_{p_k}^{p_k} \leq \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in \mathbb{N}$, we have
\[
\sum_{k_{i-1} < k < k_i} |f_k(y_k)| = \sum_{k_{i-1} < k < k_i} \left| f_k \left(a_i^{-1} m_i^{-q_k} f_k(x_k) |q_k^{-1} x_k \right) \right|
= \sum_{k_{i-1} < k < k_i} a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k}
= a_i^{-1} \sum_{k_{i-1} < k < k_i} m_i^{-q_k} |f_k(x_k)|^{q_k}
= 1,
\] (3.19)

so that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.11). Hence $(f_k) \in \ell_0(X', q)$. The proof is now complete. \qed
The following theorem gives a characterization of β-dual of $\ell(X,p)$ when $p_k \leq 1$ for all $k \in \mathbb{N}$. To do this, the following lemma is needed.

Lemma 3.5. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_\infty(X,p) = \bigcup_{n=1}^{\infty} \ell_\infty(X,(n^{-1/p_k})$.

Proof. Let $x \in \ell_\infty(X,p)$, then there is some $n \in \mathbb{N}$ with $\|x_k\|^{p_k} \leq n$ for all $k \in \mathbb{N}$. Hence $\|x_k\|^{n^{-1/p_k}} \leq 1$ for all $k \in \mathbb{N}$, so that $x \in \ell_\infty(X,(n^{-1/p_k})$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_\infty(X,(n^{-1/p_k})$, then there are some $n \in \mathbb{N}$ and $M > 1$ such that $\|x_k\|^{n^{-1/p_k}} \leq M$ for every $k \in \mathbb{N}$. Then we have $\|x_k\|^{p_k} \leq nM^{p_k} \leq nM^\alpha$ for all $k \in \mathbb{N}$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_\infty(X,p)$.

Theorem 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in \mathbb{N}$. Then $\ell(X,p)^\beta = \ell_\infty(X',p)$.

Proof. If $(f_k) \in \ell(X,p)^\beta$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X,p)$, using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell(X,p). \tag{3.20}$$

If $(f_k) \notin \ell_\infty(X',p)$, it follows by Lemma 3.5 that $\sup_k \|f_k\| m_k^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. For each $i \in \mathbb{N}$, choose sequences (m_i) and (k_i) of positive integers with $m_1 < m_2 < \cdots$ and $k_1 < k_2 < \cdots$ such that $m_i > 2^i$ and $\|f_{k_i}\| m_i^{-1/p_{k_i}} > 1$. Choose $x_{k_i} \in X$ with $\|x_{k_i}\| = 1$ such that

$$|f_{k_i}(x_{k_i})| m_i^{-1/p_{k_i}} > 1. \tag{3.21}$$

Let $y = (y_k)$, $y_k = m_i^{-1/p_{k_i}} x_{k_i}$ if $k = k_i$ for some i, and 0 otherwise. Then $\sum_{i=1}^{\infty} \|y_k\|^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1$, so that $(y_k) \in \ell(X,p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i} \left(m_i^{-1/p_{k_i}} x_{k_i} \right)|$$

$$= \sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})|$$

$$= \infty \quad \text{(by (3.21))}, \tag{3.22}$$

and this is contradictory to (3.20), hence $(f_k) \in \ell_\infty(X',p)$.

Conversely, assume that $(f_k) \in \ell_\infty(X',p)$. By Lemma 3.5, there exists $M \in \mathbb{N}$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$, so there is a $K > 0$ such that

$$\|f_k\| \leq KM^{1/p_k} \quad \forall k \in \mathbb{N}. \tag{3.23}$$

Let $x = (x_k) \in \ell(X,p)$. Then there is a $k_0 \in \mathbb{N}$ such that $M^{1/p_k} \|x_k\| \leq 1$ for all $k \geq k_0$. By $p_k \leq 1$ for all $k \in \mathbb{N}$, we have that, for all $k \geq k_0$,

$$M^{1/p_k} \|x_k\| \leq (M^{1/p_k} \|x_k\|)^{p_k} = M \|x_k\|^{p_k}. \tag{3.24}$$
Then
\[
\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{k_0} \||f_k|||x_k|| + \sum_{k=k_0+1}^{\infty} \||f_k|||x_k||
\]
\[
\leq \sum_{k=1}^{k_0} \||f_k|||x_k|| + K \sum_{k=k_0+1}^{\infty} M^{1/p_k}||x_k|| \quad \text{(by (3.23))}
\]
\[
\leq \sum_{k=1}^{k_0} \||f_k|||x_k|| + KM \sum_{k=k_0+1}^{\infty} ||x_k||^{p_k} \quad \text{(by (3.24))}
\]
\[
< \infty.
\]
This implies that \(\sum_{k=1}^{\infty} f_k(x_k)\) converges, hence \((f_k) \in \ell(X,p)^\beta\).

Theorem 3.7. Let \(p = (p_k)\) be a bounded sequence of positive real numbers. Then \(\ell_\infty(X,p)^\beta = M_\infty(X',p)\).

Proof. If \((f_k) \in M_\infty(X',p)\), then \(\sum_{k=1}^{\infty} \||f_k|||x_k|| < \infty\) for all \(m \in \mathbb{N}\), we have that for each \(x = (x_k) \in \ell_\infty(X,p)\), there is \(m_0 \in \mathbb{N}\) such that \(||x_k|| \leq m_0^{1/p_k}\) for all \(k \in \mathbb{N}\), hence \(\sum_{k=1}^{\infty} \||f_k(x_k)|| \leq \sum_{k=1}^{\infty} \||f_k||||x_k|| \leq \sum_{k=1}^{\infty} ||f_k||m_0^{1/p_k} < \infty\), which implies that \(\sum_{k=1}^{\infty} f_k(x_k)\) converges, so that \((f_k) \in \ell_\infty(X,p)^\beta\).

Conversely, assume that \((f_k) \in \ell_\infty(X,p)^\beta\), then \(\sum_{k=1}^{\infty} f_k(x_k)\) converges for all \(x = (x_k) \in \ell_\infty(X,p)\), by using the same proof as in Theorem 3.4, we have
\[
\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell_\infty(X,p).
\]
(3.26)

If \((f_k) \notin M_\infty(X',p)\), then \(\sum_{k=1}^{\infty} ||f_k||M^{1/p_k} = \infty\) for some \(M \in \mathbb{N}\). Then we can choose a sequence \((k_i)\) of positive integers with \(0 = k_0 < k_1 < k_2 < \cdots\) such that
\[
\sum_{k_{i-1} < k \leq k_i} ||f_k||M^{1/p_k} > i \quad \forall i \in \mathbb{N}.
\]
(3.27)

And we choose \(x_k\) in \(X\) with \(||x_k|| = 1\) such that for all \(i \in \mathbb{N}\),
\[
\sum_{k_{i-1} < k \leq k_i} |f_k(x_k)|M^{1/p_k} > i.
\]
(3.28)

Put \(y = (y_k), y_k = M^{1/p_k}x_k\). Clearly, \(y \in \ell_\infty(X,p)\) and
\[
\sum_{k=1}^{\infty} |f_k(y_k)| \geq \sum_{k_{i-1} < k \leq k_i} |f_k(x_k)|M^{1/p_k} > i \quad \forall i \in \mathbb{N}.
\]
(3.29)

Hence \(\sum_{k=1}^{\infty} |f_k(y_k)| = \infty\), which contradicts (3.26). Hence \((f_k) \in M_\infty(X',p)\). The proof is now complete.

Theorem 3.8. Let \(p = (p_k)\) be a bounded sequence of positive real numbers. Then \(c_0(X,p)^\beta = M_0(X',p)\).
Proof. Suppose \((f_k) \in M_0(X', p')\), then \(\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty\) for some \(M \in \mathbb{N}\). Let \(x = (x_k) \in c_0(X, p)\). Then there is a positive integer \(K_0\) such that \(\|x_k\|^{p_k} < 1/M\) for all \(k \geq K_0\), hence \(\|x_k\| < M^{-1/p_k}\) for all \(k \geq K_0\). Then we have

\[
\sum_{k=K_0}^{\infty} |f_k(x_k)| \leq \sum_{k=K_0}^{\infty} \|f_k\||x_k| \leq \sum_{k=K_0}^{\infty} \|f_k\| M^{-1/p_k} < \infty.
\]

(3.30)

It follows that \(\sum_{k=1}^{\infty} f_k(x_k)\) converges, so that \((f_k) \in c_0(X, p)^\beta\).

On the other hand, assume that \((f_k) \in c_0(X, p)^\beta\), then \(\sum_{k=1}^{\infty} f_k(x_k)\) converges for all \(x = (x_k) \in c_0(X, p)\). For each \(x = (x_k) \in c_0(X, p)\), choose scalar sequence \((t_k)\) with \(|t_k| = 1\) such that \(f_k(t_kx_k) = |f_k(x_k)|\) for all \(k \in \mathbb{N}\). Since \((t_kx_k) \in c_0(X, p)\), by our assumption, we have \(\sum_{k=1}^{\infty} f_k(t_kx_k)\) converges, so that

\[
\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x \in c_0(X, p).
\]

(3.31)

Now, suppose that \((f_k) \notin M_0(X', p)\). Then \(\sum_{k=1}^{\infty} \|f_k\| m^{-1/p_k} = \infty\) for all \(m \in \mathbb{N}\). Choose \(m_1, k_1 \in \mathbb{N}\) such that

\[
\sum_{k=k_1}^{\infty} \|f_k\| m_1^{-1/p_k} > 1
\]

(3.32)

and choose \(m_2 > m_1\) and \(k_2 > k_1\) such that

\[
\sum_{k_1 < k < k_2} \|f_k\| m_2^{-1/p_k} > 2.
\]

(3.33)

Proceeding in this way, we can choose \(m_1 < m_2 < \cdots\), and \(0 = k_1 < k_2 < \cdots\) such that

\[
\sum_{k_{i-1} < k \leq k_i} \|f_k\| m_i^{-1/p_k} > 1.
\]

(3.34)

Take \(x_k \in X\) with \(\|x_k\| = 1\) for all \(k, k_{i-1} < k \leq k_i\) such that

\[
\sum_{k_{i-1} < k \leq k_i} |f_k(x_k)| m_i^{-1/p_k} > i\quad \forall i \in \mathbb{N}.
\]

(3.35)

Put \(y = (y_k)\), \(y_k = m_i^{-1/p_k} x_k\) for \(k_{i-1} < k \leq k_i\), then \(y \in c_0(X, p)\) and

\[
\sum_{k=1}^{\infty} |f_k(y_k)| \geq \sum_{k_{i-1} < k \leq k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.
\]

(3.36)

Hence we have \(\sum_{k=1}^{\infty} |f_k(y_k)| = \infty\), which contradicts (3.31), therefore \((f_k) \in M_0(X', p)\). This completes the proof.

Theorem 3.9. Let \(p = (p_k)\) be a bounded sequence of positive real numbers. Then \(c(X, p)^\beta = M_0(X', p) \cap c_0[X']\).

Proof. Since \(c(X, p) = c_0(X, p) + E\), where \(E = \{e(x) : x \in X\}\), it follows by Proposition 3.1(iii) and Theorem 3.8 that \(c(X, p)^\beta = M_0(X', p) \cap E^\beta\). It is obvious by definition that \(E^\beta = \{(f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x)\) converges for all \(x \in X\} = c_0[X']\). Hence we have the theorem.
Acknowledgment. The author would like to thank the Thailand Research Fund for the financial support.

References

Suthep Suantai: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: malsuthe@science.cmu.ac.th

Winate Sanhan: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Submit your manuscripts at
http://www.hindawi.com