Let R be a commutative ring with nonzero identity. Our objective is to investigate representable modules and to examine in particular when submodules of such modules are representable. Moreover, we establish a connection between the secondary modules and the pure-injective, the Σ-pure-injective, and the prime modules.

2000 Mathematics Subject Classification: 13F05.

1. Introduction. In this paper, all rings are commutative rings with identity and all modules are unital. The notion of associated prime ideals and the related one of primary decomposition are classical. In a dual way, we define the attached prime ideals and the secondary representation. This theory is developed in the appendix to Section 6 in Matsumura [6] and in Macdonald [5]. Now we define the concepts that we will need.

Let R be a ring and let $0 \neq M$ be an R-module. Then M is called a secondary module (second module) provided that for every element r of R the homothety $M \xrightarrow{r} M$ is either surjective or nilpotent (either surjective or zero). This implies that $\text{nilrad}(M) = P$ $(\text{Ann}(M) = P')$ is a prime ideal of R, and M is said to be P-secondary (P'-second), so every second module is secondary (the concept of second module is introduced by Yassemi [14]). A secondary representation for an R-module M is an expression for M as a finite sum of secondary modules (see [5]). If such a representation exists, we will say that M is representable.

If R is a ring and N is a submodule of an R-module M, the ideal $\{ r \in R : rM \subseteq N \}$ will be denoted by $(N : M)$. Then $(0 : M)$ is the annihilator of M, $\text{Ann}(M)$. A proper submodule N of a module M over a ring R is said to be prime submodule (primary submodule) if for each $r \in R$ the homothety $M/N \xrightarrow{r} M/N$ is either injective or nilpotent (either injective or zero), so $(0 : M/N) = P$ $(\text{nilrad}(M/N) = P')$ is a prime ideal of R, and N is said to be P-prime submodule (P'-primary submodule). So N is prime in M if and only if whenever $rm \in N$, for some $r \in R$, $m \in M$, then $m \in N$ or $rM \subseteq N$. We say that M is a prime module (primary module) if zero submodule of M is prime (primary) submodule of M, so N is a prime submodule of M if and only if M/N is a prime module. Moreover, every prime module is primary.

Let R be a ring, and let N be an R-submodule of M. Then N is pure in M if for any finite system of equations over N which is solvable in M, the system is also solvable in N. A module is said to be absolutely pure if every embedding of it into any other modules is pure embedding. A submodule N of an R-module M is called relatively divisible (or an RD-submodule) if $rN = N \cap rM$ for all $r \in R$. Every RD-submodule of a P-secondary module over a commutative ring R is P-secondary (see [2, Lemma 2.1]).
A module M is pure-injective if and only if any system of equations in M which is finitely solvable in M, has a global solution in M [7, Theorem 2.8]. The module N is a pure-essential extension of M if M is pure in N and for all nonzero submodules L of N, if $M \cap L = 0$, then $(M \oplus L)/L$ is not pure in N/L. A pure-injective hull $H(M)$ of a module M is a pure essential extension of M which is pure-injective. Every module M has a pure-injective hull which is unique to isomorphism over M [12].

Given an R-module M and index set I, the direct sum of the family $\{M_i : i \in I\}$ where $M_i = M$ for each $i \in I$ will be denoted by $M^{(I)}$. Given a module property \mathcal{P}, we will say that a module M is $\sum_{i \in I} \mathcal{P}$ if $M^{(I)}$ satisfies \mathcal{P} for every index set I.

Let R be a commutative ring. An element $a \in R$ is said to be regular if there exists $b \in R$ such that $a = a^2b$, and R is said to be regular if each of its elements is regular. An important property of regular rings is that every module is absolutely pure (see [13, Theorem 37.6]).

Let R be a ring and M an R-module. A prime ideal P of R is called an associated prime ideal of M if P is the annihilator $\text{Ann}(x)$ of some $x \in M$. The set of associated primes of M is written $\text{Ass}(M)$. For undefined terms, we refer to [6, 7].

2. Secondary submodules

In general, a nonzero submodule of a representable (even secondary) R-module is not representable (secondary), but we have the following results.

Lemma 2.1. Let R be a commutative ring and let $0 \neq N$ be an RD-submodule of R-module M. Then M is P-secondary if and only if N and M/N are P-secondary.

Proof. If M is P-secondary, then N and M/N are P-secondary by [2, Lemma 2.1] and [5, Theorem 2.4], respectively. Conversely, suppose that $r \in R$. If $r \in P$, then $r^n(M/N) = 0$ and $r^nN = 0$ for some n, hence $r^nM \subseteq N$ and $0 = r^nN = r^nM \cap N = r^nM$. If $r \notin P$, then $rM + N = M$, $rN = N$, and $N = rN = rM \cap N$, so we have $rM = M$, as required.

Corollary 2.2. Let R be a commutative regular ring, and let $0 \neq N$ be a submodule of R-module M. Then M is P-secondary if and only if N and M/N are P-secondary.

Proof. This follows from Lemma 2.1.

Theorem 2.3. Let R be a commutative regular ring. Then every nonzero submodule of a representable R-module is representable.

Proof. Let M be a representable R-module and let $M = \sum_{i=1}^n M_i$ be a minimal secondary representation with $\text{nilrad}(M_i) = P_i$. There is an element $r_1 \in P_1$ such that $r_1 \notin \cup_{i=2}^n P_i$. Otherwise $P_1 \subseteq \cup_{i=2}^n P_i$, so by [10, Theorem 3.61], $P_1 \subseteq P_j$ for some j, and hence $P_1 = P_j$, a contradiction. Thus there exists a positive integer m_1 such that $r_1^{m_1} \in \text{Ann}(M_1)$ and the module $r_1^{m_1}M = \sum_{i=2}^n r_1^{m_1}M_i$ is representable. By using this process for the ideals P_2, \ldots, P_{n-1}, there are integers m_2, \ldots, m_{n-1} and elements $r_2 \in P_2, \ldots, r_{n-1} \in P_{n-1}$ such that $s_nM = M_n$, where $0 \neq s_n = r_1^{m_1}r_2^{m_2} \cdots r_{n-1}^{m_{n-1}}$, $s_n \in \cap_{i=1}^{n-1} P_i$ and $s_n \notin P_n$. Therefore by a similar argument, there are elements s_1, \ldots, s_{n-1}
such that $M = \sum_{i=1}^{n}s_iM$, where for each i, where $i = 1, \ldots, n$, $s_i \notin P_i$, $s_iM = M_i$, and $s_i \in \cap_{i=1}^{n} \operatorname{Ann}(M_i)$.

Let N be a nonzero submodule of M and $0 \neq a \in N$. Then $a = s_1b_1 + \cdots + s_nb_n$ for some $b_i \in M$, $i = 1, \ldots, n$. By assumption, there exists $t_1, \ldots, t_n \in R$ such that for each i, $s_i = s_i^2t_i$. As $0 \neq a$, $s_i^2b_i \neq 0$ for some i and $s_it_ia = s_i^2t_ib_i = s_is_ib_i$, so $s_iN \neq 0$. We can assume that $s_1N \neq 0, \ldots, s_nN \neq 0$, where $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$. By a similar argument as above, if $a \in N$, then $a = \sum_{j=1}^{k}s_jtija \in \sum_{j=1}^{k}s_jN$, and hence $N = \sum_{j=1}^{k}s_jN$. Since for each j, where $j = 1, \ldots, k$, s_jN is pure in the P_{ij}-secondary module M_{ij}, it is P_{ij}-secondary by [2, Lemma 2.1], as required.

Theorem 2.4. Let R be a commutative ring and let N be a prime submodule of secondary R-module of M. Then N is $(N : M)$-secondary.

Proof. Suppose that M is a P-secondary module over R. Let $r \in R$. If $r \notin P$, then $r^nN \subseteq r^nM = 0$ for some n. If $r \notin P$, then $rM = M$. Suppose that $n \in N$, so there is an element $m \in M$ such that $n = rm$. As N is a prime submodule of M and $N \neq rM = M$, $m \in N$, so $rN = N$, hence N is P-secondary.

By [4, Lemma 1], the ideal $P' = (N : M) = \{r \in R : rM \subseteq N\}$ is prime. Clearly, $P' \subseteq P$. Let $s \in P$. Then $s^nN = s^nM = 0$ for some n. There is an element $m \in M$ such that $m \notin N$ and $s^nm = 0 \in N$, so $s^n \in P'$, hence $s \in P'$. Thus $P = P'$, as required.

Proposition 2.5. Let R be a commutative ring and let N be a prime submodule of P-second R-module of M. Then N is an RD-submodule of M.

Proof. Let $r \in R$. If $r \notin P$, then $rN \subseteq rM = 0$, so $rN = N \cap rM = 0$. If $r \notin P$, then $rM = M$, so the homothety $M/N \cong M/N$ is not zero since N is prime. It follows that the above homothety is injective. If $a \in N \cap rM$, then there is $b \in M$ such that $a = rb$. Since $r(b + N) = 0$, so $b \in N$, hence $rN = N \cap rM$, as required.

Theorem 2.6. Let M be a P-second module over a commutative ring R, and let N be a prime submodule of M. Then every submodule of M properly containing N is an RD-submodule. In particular, it is P-second.

Proof. Let K be a submodule of M properly containing N. Then K/N is a prime submodule of prime and P-second module M/N, so by Proposition 2.5, K/N is an RD-submodule of M/N. Now the assertion follows from [3, Consequences 18-2.2(c)] and Proposition 2.5.

Lemma 2.7. Let M be a nonzero module over a commutative domain R. Then M is (0)-second if and only if M is (0)-secondary.

Proof. The proof is completely straightforward.

By [3, Proposition 11-3.11] and [11, Proposition 12, page 506] (see also [14]), and the definitions of secondary and primary modules, we obtain the following corollary.

Corollary 2.8. Let R be a commutative ring.

(i) Every Artinian primary module over R is secondary.

(ii) Every Noetherian primary module over R is primary.

(iii) Every finitely generated secondary module is primary.
Lemma 2.9. Let R be a commutative ring. Let K and N be submodules of an R-module M such that N is prime and K is P-secondary. Then $N \cap K$ is P-secondary.

Proof. Let $r \in R$. If $r \notin P$, then $r^n(N \cap K) \subseteq r^nK = 0$ for some n. Suppose $r \notin P$ and $t \in N \cap K$. Then $t = rs$ for some $s \in K$ since K is P-secondary. As N is prime, we have $s \notin N$, and hence $t \in r(N \cap K)$. This gives, $N \cap K = r(N \cap K)$. \hfill \Box

Theorem 2.10. Let M be a representable module over a commutative ring R, and let N be a prime submodule of M with $(N : M) = P$. Then the following hold:

(i) N is representable;

(ii) M/N is P-secondary.

Proof. (i) Let M be a representable R-module and let $M = \sum_{i=1}^m M_i$ be a minimal secondary representation with $\text{nilrad}(M_i) = P_i$. For each i, $i = 1, 2, \ldots, m$, let $m_i \in M_i$ and $r_i \in P_i$. Then $r_i^{n_i}m_i = 0$ for some n_i, and we have $(r_i^{n_i} + P)(m_i + M_i) = 0$ and hence either $P_i \subseteq P$ or $M_i \subseteq N$ ($i = 1, 2, \ldots, m$). It follows that $M_i \not\subseteq N$ for some i (otherwise $M = N$). If $M_i \not\subseteq N$ and $M_j \not\subseteq N$ for $i \neq j$, then $P = P_i = P_j$, a contradiction (for if $t \in P - P_i$ then $M_i = tM_i \subseteq tM \subseteq N$). Therefore, without loss of generality, we can assume that $M_1 \not\subseteq N$ and $M_i \subseteq N$, so $P_1 = P$ and $P_i \not\subseteq P$ ($i = 2, 3, \ldots, m$). Then\[N = N \cap M = N \cap (M_1 + \cdots + M_m) = M_2 + \cdots + M_m + (N \cap M_1). \tag{2.1}\]

Now the assertion follows from Lemma 2.9.

(ii) Since $M = M_1 + N$, we have $M/N = (M_1 + N)/N \cong M_1/(M_1 \cap N)$, as required. \hfill \Box

Proposition 2.11. Let R be a Dedekind domain, and let M be a $0 \neq P$-secondary R-module. Then M is a P-primary module.

Proof. Let $r \in R$. If $r \in P$, then the homothety $M \overset{r}{\rightarrow} M$ is nilpotent since M is secondary. Suppose that $r \notin P$. If $ra = 0$ for some $0 \neq a \in M$, then by [6, Theorem 6.1], there exists $0 \neq b \in M$ and $Q \in \text{Ass}(M)$ such that $r \in Q$ and $Q = (0 :_R b)$. As $(0 : M) \subseteq (0 : b) = Q$, we have $P = Q$, a contradiction. So the homothety $M \overset{r}{\rightarrow} M$ is injective, as required. \hfill \Box

Remarks. (i) Let R be a domain which is not a field. Then R is a prime R-module (since R is torsion-free) but it is not secondary (even if it is not pure-injective).

(ii) Let R be a local Dedekind domain with maximal ideal $P = Rp$. We show that the module $E(R/P)$ is not prime (but it is (0)-secondary). Set $E = E(R/P)$ and $A_n = (0 :_E P^n)$ $(n \geq 1)$. Then by [2, Lemma 2.6], $Pa_{n+1} = A_n$, $A_n \subseteq E$ is a cyclic R-module with $A_n = Ra_n$ such that $pa_{n+1} = a_n$, every nonzero proper submodule L of E is of the form $L = A_m$ for some m and E is Artinian module with a strictly increasing sequence of submodules\[A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots \tag{2.2}\]

We claim that $(A_n :_R E) = 0$ for every n. Suppose that $r \in (A_n :_R E)$ with $r \neq 0$. Then $rE \subseteq A_n$ and for all $a \in M$, we have $a = rb$ for some $b \in M$ since E is injective (= divisible). Thus $a = rb \in A_n$, so $E = A_n$, a contradiction. Therefore $(A_n :_R E) = 0$ for
Let \(R \) be a Dedekind domain, and let \(M \) be an \(R \)-module. Then \(M \) is 0 \(\neq P \)-second if and only if \(M \) is \(P \)-prime.

Proof. By Proposition 2.11, it is enough to show that if \(M \) is \(P \)-prime, then \(M \) is 0 \(\neq P \)-second. Since \((0: M) = P\) is a maximal ideal in \(R \), so \(M \) is a vector space over \(R/P \), hence \(M \) is \(P \)-second.

Proposition 2.13. Let \(R \) be a Dedekind domain. Then any \(0 \neq P \)-prime \(R \)-module is a direct sum of copies of \(R/P \).

Proof. By the proof of Proposition 2.11, every element of \(R-P \) acts invertibly on \(M \), so the \(R \)-module structure of \(M \) extends naturally to a structure of \(M \) as a module over the localisation \(R_P \) of \(R \) at \(P \). Therefore, we can assume that \(R \) is a commutative local Dedekind domain with maximal ideal \(P = R_P \).

Let \(M \) denote the indecomposable summand of \(M \), so \(M \) is \(P \)-prime. Let \(m_j \) be a nonzero element of \(M \), hence \((0 : m_j) = (0 : M) = P\). Then \(Rm_j \cong R/P \) is pure in \(M \) since \(m_j \) is not divisible by \(p \) in \(M \), but by [1, Proposition 1.3], the module \(R/P \) is itself pure-injective, so \(Rm_j \) is a direct summand of \(M \), and hence \(M \cong Rm_j \), as required.

3. Pure-injective modules

Proposition 3.1. Let \(M \) be a \(P \)-secondary module over a commutative ring \(R \). Then \(H = H(M) \), the pure-injective hull, is \(P \)-secondary.

Proof. Let \(r \in R \). If \(r \notin P \), then \(rM = M \), so \(M \) satisfies the sentence for all \(x \) there exists \(y \ (x = ry) \), and hence so does \(H \) (because any module and its pure-injective hull satisfy the same sentences [7, Chapter 4]). If \(r \in R \), then \(r^n M = 0 \), so \(M \) satisfies the sentence for all \(x \ (r^n x = 0) \), hence so does in \(H \), as required.

Theorem 3.2. The following conditions are equivalent for a Prufer domain \(R

(i) the ring \(R \) is a Dedekind domain;

(ii) every secondary \(R \)-module is pure-injective.

Proof. Let \(R \) be a Dedekind domain and \(M \) a secondary \(R \)-module. If \(\text{Ann}(M) = 0 \), then \(M \) is divisible, hence injective. If \(\text{Ann}(M) \neq 0 \), then \(M \) is a torsion \(R \)-module of bounded order, so that \(M \) is \(\Sigma \)-pure-injective (see [15]). In both cases, \(M \) is \(\Sigma \)-pure-injective (so pure-injective).

Conversely, let \(R \) be a Prufer domain with the property that every secondary module is pure-injective. In order to prove that \(R \) is Dedekind domain, it suffices to show that every divisible \(R \)-module is injective. Let \(M \) be a divisible \(R \)-module. Then \(M \) is secondary, Hence pure-injective. Since \(R \) is Prufer, pure-injective modules are RD-injective (see [7]). The embedding of \(M \) in its injective envelope \(E(M) \) is an RD-pure monomorphism, because for every nonzero \(r \in R \) we have that \(M = rM \), so that \(rE(M) \cap M \subseteq M \subseteq rM \). Since \(M \) is the RD-injective, \(M \) is a direct summand of \(E(M) \). Thus \(M \) is injective. This shows that \(R \) is a Dedekind domain.
Remarks. (i) There is a module over a commutative regular ring which is injective but not secondary (see [9, Theorem 2.3]). The commutative regular ring \(R = F \times F \), \(F \) a field, is an Artinian Gorenstein, that is, \(R \) is injective (so pure-injective) as an \(R \)-module. But \(R \) is not secondary, because multiplication by \((1,0)\) is neither nilpotent nor surjective.

(ii) The above consideration thus leads us to the following question: are secondary modules pure-injective? The answer is yes because of the following reason. Every non-Noetherian Prufer domain has secondary modules that are not pure-injective. For instance, every non-Noetherian valuation domain has secondary modules that are not pure-injective.

Proposition 3.3. Let \(M \) be an \(R \)-module.

(i) \(M \) is \(\Sigma \)-secondary if and only if \(M \) is secondary.

(ii) Let \(M \) be a direct sum of modules \(M_i \) (\(i \in I \)) where for each \(i, M_i \) is secondary and \(\text{Ann}(M_i) = \text{Ann}(M_j) \) for all \(i,j \in I \). Then \(M \) is secondary.

Proof. (i) The necessity is immediate by the definition. Conversely, suppose that \(M \) is \(P \)-secondary. Given an index set \(J \), and let \(r \in R \). If \(r \in P \), then \(r^n M = 0 \) for some \(n \), so \(r^n M(J) = 0 \). If \(r \notin P \) then \(rM = M \), so \(rM(J) = M(J) \), as required.

(ii) Since the annihilators of all direct summands coincide, we can assume that \(M_i \) is \(P \)-secondary (say) for all \(i \in I \). Now the proof of (ii) is similar to that (i) and we omit it.

Corollary 3.4. Let \(M \) be an indecomposable \(\Sigma \)-pure-injective module over a commutative Prufer ring \(R \). Then \(M \) is secondary.

Proof. Set \(P = \{ r \in R : \text{Ann}_M r \neq 0 \} \) and \(P' = \cap_{n} P^n \). Then \(P \) and \(P' \) are prime ideals in \(R \) by [8, Fact 3.1 and Lemma 2.1]. By [8, Fact 3.2], \(M \) is either \(P \)-secondary or \(P' \)-secondary, as required.

Corollary 3.5. Every \(\Sigma \)-pure-injective module over a Prufer ring is representable.

Proof. Suppose \(M \) is a \(\Sigma \)-pure-injective module over a commutative Prufer ring \(R \). By [8, page 967], we can write \(M = M_1 \oplus \cdots \oplus M_m \) where \(M_i \) is secondary for all \(i \) by Proposition 3.3 and Corollary 3.4, as required.

Acknowledgment. The author thanks the referee for useful comments.

References

SHAHABADDIN EBRAHIMI ATANI: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GUilan,
P.O. BOX 1914, RASHT, IRAN

E-mail address: ebrahimi@cd.gu.ac.ir
Submit your manuscripts at
http://www.hindawi.com