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For real α (α > 1), we introduce subclassesM(α) andN(α) of analytic functions f(z)with
f(0)= 0 and f ′(0)= 1 in U . The object of the present paper is to consider the coefficient
inequalities for functions f(z) to be in the classes M(α) and N(α). Further, the bounds
of α for functions f(z) to be starlike in U are considered.
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1. Introduction. Let A denote the class of functions f(z) of the form

f(z)= z+
∞∑
n=2

anzn (1.1)

which are analytic in the open unit disk U = {z ∈C : |z|< 1}. LetM(α) be the subclass

of A consisting of functions f(z) which satisfy

Re
{
zf ′(z)
f(z)

}
<α (z ∈U) (1.2)

for some α (α > 1). And let N(α) be the subclass of A consisting of functions f(z)
which satisfy

Re
{

1+ zf
′′(z)

f ′(z)

}
<α (z ∈U) (1.3)

for some α (α > 1). Then, we see that f(z) ∈N(α) if and only if zf ′(z) ∈M(α). We

give examples of functions f(z) in the classes M(α) and N(α).

Remark 1.1. For 1 < α ≤ 4/3, the classes M(α) and N(α) were introduced by

Uralegaddi et al. [2].

Example 1.2. (i) f(z)= z(1−z)2(α−1) ∈M(α).
(ii) g(z)= (1/(2α−1)){1−(1−z)2α−1} ∈N(α).

Proof. Since f(z)∈M(α) if and only if

Re
{
zf ′(z)
f(z)

}
<α, (1.4)

we can write

α−zf ′(z)/f(z)
α−1

= 1+z
1−z , (1.5)
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which is equivalent to

f ′(z)
f(z)

− 1
z
= 2(α−1)

1−z . (1.6)

Integrating both sides of the above equality, we have

f(z)= z(1−z)2(α−1) ∈M(α). (1.7)

Next, since g(z)∈N(α) if and only if zg′(z)∈M(α),

zg′(z)= z(1−z)2(α−1). (1.8)

For function g(z)∈N(α), it follows that

g(z)=− 1
2α−1

(1−z)2α−1+ 1
2α−1

= 1
2α−1

{
1−(1−z)2α−1}∈N(α). (1.9)

2. Coefficient inequalities for the classes M(α) and N(α). We try to derive suffi-

cient conditions for f(z) which are given by using coefficient inequalities.

Theorem 2.1. If f(z)∈A satisfies

∞∑
n=2

{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 2(α−1) (2.1)

for some α (α > 1), then f(z)∈M(α).
Proof. Suppose that

∞∑
n=2

{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 2(α−1) (2.2)

for f(z)∈A.

It suffices to show that
∣∣∣∣ zf ′(z)/f(z)−1
zf ′(z)/f(z)−(2α−1)

∣∣∣∣< 1 (z ∈U). (2.3)

We have
∣∣∣∣ zf ′(z)/f(z)−1
zf ′(z)/f(z)−(2α−1)

∣∣∣∣≤
∑∞
n=2(n−1)

∣∣an∣∣|z|n−1

2(α−1)−∑∞
n=2 |n−2α+1|∣∣an∣∣|z|n−1

<
∑∞
n=2(n−1)

∣∣an∣∣
2(α−1)−∑∞

n=2 |n−2α+1|∣∣an∣∣ .
(2.4)

The last expression is bounded above by 1 if

∞∑
n=2

(n−1)
∣∣an∣∣≤ 2(α−1)−

∞∑
n=2

|n−2α+1|∣∣an∣∣ (2.5)

which is equivalent to condition (2.1). This completes the proof of the theorem.
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By using Theorem 2.1, we have the following corollary.

Corollary 2.2. If f(z)∈A satisfies

∞∑
n=2

n
{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 2(α−1) (2.6)

for some α (α > 1), then f(z)∈N(α).
Proof. From f(z) ∈ N(α) if and only if zf ′(z) ∈ M(α), replacing an by nan in

Theorem 2.1 we have the corollary.

In view of Theorem 2.1 and Corollary 2.2, if 1<α≤ 3/2, then n−2α+1≥ 0 for all

n≥ 2. Thus we have the following corollary.

Corollary 2.3. (i) If f(z)∈A satisfies

∞∑
n=2

(n−α)∣∣an∣∣≤α−1 (2.7)

for some α (1<α≤ 3/2), then f(z)∈M(α).
(ii) If f(z)∈A satisfies

∞∑
n=2

n(n−α)∣∣an∣∣≤α−1 (2.8)

for some α (1<α≤ 3/2), then f(z)∈N(α).

3. Starlikeness for functions in M(α) and N(α). By Silverman [1], we know that if

f(z)∈A satisfies

∞∑
n=2

n
∣∣an∣∣≤ 1, (3.1)

then f(z) ∈ S∗, where S∗ denotes the subclass of A consisting of all univalent and

starlike functions f(z) in U . Thus we have the following theorem.

Theorem 3.1. If f(z)∈A satisfies

∞∑
n=2

(n−α)∣∣an∣∣≤α−1 (3.2)

for some α (1 < α ≤ 4/3), then f(z) ∈ S∗ ∩M(α), therefore, f(z) is starlike in U .

Further, if f(z)∈A satisfies

∞∑
n=2

n(n−α)∣∣an∣∣≤α−1 (3.3)

for some α (1<α≤ 3/2), then f(z)∈ S∗∩N(α), therefore, f(z) is starlike in U .
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Proof. Consider α such that

∞∑
n=2

n
∣∣an∣∣≤

∞∑
n=2

n−α
α−1

∣∣an∣∣≤ 1. (3.4)

Then we have f(z)∈ S∗∩M(α) by means of Theorem 2.1. This inequality holds true if

n≤ n−α
α−1

(n= 2,3,4, . . .). (3.5)

Therefore, we have

1<α≤ 2− 2
n+1

(n= 2,3,4, . . .), (3.6)

which shows that 1<α≤ 4/3. Next, considering α such that

∞∑
n=2

n
∣∣an∣∣≤

∞∑
n=2

n(n−α)
α−1

∣∣an∣∣≤ 1, (3.7)

we have

n≤ n(n−α)
α−1

(n= 2,3,4, . . .), (3.8)

which is equivalent to

1<α≤ n+1
2

(n= 2,3,4, . . .). (3.9)

This implies that 1<α≤ 3/2.

Finally, by virtue of the result for convex functions by Silverman [1], we have, if

f(z)∈A satisfies

∞∑
n=2

n2
∣∣an∣∣≤ 1, (3.10)

then f(z) ∈ K, where K denotes the subclass of A consisting of all univalent and

convex functions f(z) in U . Using the same method as in the proof of Theorem 3.1,

we derive the following theorem.

Theorem 3.2. If f(z)∈A satisfies

∞∑
n=2

n(n−α)∣∣an∣∣≤α−1 (3.11)

for some α (1<α≤ 4/3), then f(z)∈K∩N(α), therefore, f(z) is convex in U .

4. Bounds of α for starlikeness. Note that the sufficient condition for f(z) to be

in the class M(α) is given by

∞∑
n=2

{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 2(α−1). (4.1)
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Since, if f(z)∈A satisfies
∞∑
n=2

n
∣∣an∣∣≤ 1, (4.2)

then f(z) ∈ S∗ (cf. [1]). It is interesting to find the bounds of α for starlikeness of

f(z)∈M(α). To do this, we have to consider the following inequality:

∞∑
n=2

n
∣∣an∣∣≤ 1

2(α−1)

∞∑
n=2

{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 1 (4.3)

which is equivalent to

∞∑
n=2

{|n−2α+1|+(3−2α)n
}∣∣an∣∣≥ 0. (4.4)

We define

F(n)= |n−2α+1|+(3−2α)n (n≥ 2). (4.5)

Then, if F(n) satisfies
∞∑
n=2

F(n)
∣∣an∣∣≥ 0, (4.6)

then f(z) belongs to S∗.

Theorem 4.1. Let f(z)∈A satisfy

∞∑
n=2

{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 2(α−1) (4.7)

for some α> 1. Further, let δk be defined by

δk =
∞∑
n=k

F(n)
∣∣an∣∣. (4.8)

Then,

(i) if 1<α≤ 3/2, then f(z)∈ S∗,

(ii) if 3/2≤α≤min(13/8,(3+δ3)/2), then f(z)∈ S∗,

(iii) if 8/3≤α≤min(17/10,(12−δ4+
√
δ2

4+48δ4+48)/12), then f(z)∈ S∗.

Proof. For 1<α≤ 3/2, we know that

n−2α+1≥ 3−2α≥ 0 (n≥ 2), (4.9)

that is, F(n)≥ 0 (n≥ 2). Therefore, we have

∞∑
n=2

F(n)
∣∣an∣∣≥ 0. (4.10)

If 3/2≤α≤ 13/8, then F(2)= 3−2α≤ 0 and

F(n)= 2n(2−α)+1−2α≥ 13−8α≥ 0 (4.11)
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for n≥ 3. Further, we know that

∣∣an∣∣≤ 2(α−1)
(n−1)+|n−2α+1| (n≥ 2), (4.12)

then |a2| ≤ 1. Therefore, we obtain that

∞∑
n=2

F(n)
∣∣an∣∣= F(2)∣∣a2

∣∣+
∞∑
n=3

F(n)
∣∣an∣∣≥ 3−2α+δ3 ≥ 0 (4.13)

for

3
2
≤α≤min

(
13
8
,
3+δ3

2

)
. (4.14)

Furthermore, if 13/8≤α≤ 17/10, then

F(2)= 3−2α≤ 0,

F(3)= |4−2α|+3(3−2α)= 13−8α≤ 0,

F(n)= |n−2α+1|+(3−2α)n= 4n+1−2(n+1)α≥ 3(n−4)
5

≥ 0

(4.15)

for n≥ 4. Noting that |a2| ≤ 1 and |a3| ≤ (α−1)/(3−α), we conclude that

∞∑
n=2

F(n)
∣∣an∣∣= F(2)∣∣a2

∣∣+F(3)∣∣a3

∣∣+
∞∑
n=4

F(n)
∣∣an∣∣

≥ (3−2α)+(13−8α)
α−1
3−α +δ4 ≥ 0,

(4.16)

for α that satisfies

6α2−(12−δ4
)
α+4−3δ4 ≤ 0. (4.17)

This shows that

8
3
≤α≤min


17

10
,
12−δ4+

√
δ2

4+48δ4+48

12


. (4.18)

This completes the proof of Theorem 4.1.

Finally, by virtue of Theorem 4.1, we may suppose that if f(z)∈A satisfies

∞∑
n=2

{
(n−1)+|n−2α+1|}∣∣an∣∣≤ 2(α−1) (4.19)

for some 1<α< 2, then f(z)∈ S∗.

References

[1] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51
(1975), 109–116.

[2] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coeffi-
cients, Tamkang J. Math. 25 (1994), no. 3, 225–230.

Junichi Nishiwaki and Shigeyoshi Owa: Department of Mathematics, Kinki Univer-
sity, Higashi-Osaka, Osaka 577-8502, Japan



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


