COEFFICIENT INEQUALITIES FOR CERTAIN ANALYTIC FUNCTIONS

JUNICHI NISHIWAKI and SHIGEYOSHI OWA

Received 1 March 2001

For real $\alpha(\alpha>1)$, we introduce subclasses $M(\alpha)$ and $N(\alpha)$ of analytic functions $f(z)$ with $f(0)=0$ and $f^{\prime}(0)=1$ in U. The object of the present paper is to consider the coefficient inequalities for functions $f(z)$ to be in the classes $M(\alpha)$ and $N(\alpha)$. Further, the bounds of α for functions $f(z)$ to be starlike in U are considered.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$. Let $M(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\alpha(\alpha>1)$. And let $N(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\alpha \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\alpha(\alpha>1)$. Then, we see that $f(z) \in N(\alpha)$ if and only if $z f^{\prime}(z) \in M(\alpha)$. We give examples of functions $f(z)$ in the classes $M(\alpha)$ and $N(\alpha)$.

REMARK 1.1. For $1<\alpha \leq 4 / 3$, the classes $M(\alpha)$ and $N(\alpha)$ were introduced by Uralegaddi et al. [2].

EXAMPLE 1.2. (i) $f(z)=z(1-z)^{2(\alpha-1)} \in M(\alpha)$.
(ii) $g(z)=(1 /(2 \alpha-1))\left\{1-(1-z)^{2 \alpha-1}\right\} \in N(\alpha)$.

Proof. Since $f(z) \in M(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\alpha \tag{1.4}
\end{equation*}
$$

we can write

$$
\begin{equation*}
\frac{\alpha-z f^{\prime}(z) / f(z)}{\alpha-1}=\frac{1+z}{1-z} \tag{1.5}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}=\frac{2(\alpha-1)}{1-z} \tag{1.6}
\end{equation*}
$$

Integrating both sides of the above equality, we have

$$
\begin{equation*}
f(z)=z(1-z)^{2(\alpha-1)} \in M(\alpha) \tag{1.7}
\end{equation*}
$$

Next, since $g(z) \in N(\alpha)$ if and only if $z g^{\prime}(z) \in M(\alpha)$,

$$
\begin{equation*}
z g^{\prime}(z)=z(1-z)^{2(\alpha-1)} \tag{1.8}
\end{equation*}
$$

For function $g(z) \in N(\alpha)$, it follows that

$$
\begin{equation*}
g(z)=-\frac{1}{2 \alpha-1}(1-z)^{2 \alpha-1}+\frac{1}{2 \alpha-1}=\frac{1}{2 \alpha-1}\left\{1-(1-z)^{2 \alpha-1}\right\} \in N(\alpha) \tag{1.9}
\end{equation*}
$$

2. Coefficient inequalities for the classes $M(\alpha)$ and $N(\alpha)$. We try to derive sufficient conditions for $f(z)$ which are given by using coefficient inequalities.

THEOREM 2.1. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1) \tag{2.1}
\end{equation*}
$$

for some $\alpha(\alpha>1)$, then $f(z) \in M(\alpha)$.
Proof. Suppose that

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1) \tag{2.2}
\end{equation*}
$$

for $f(z) \in A$.
It suffices to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z) / f(z)-1}{z f^{\prime}(z) / f(z)-(2 \alpha-1)}\right|<1 \quad(z \in U) \tag{2.3}
\end{equation*}
$$

We have

$$
\begin{align*}
\left|\frac{z f^{\prime}(z) / f(z)-1}{z f^{\prime}(z) / f(z)-(2 \alpha-1)}\right| & \leq \frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right||z|^{n-1}}{2(\alpha-1)-\sum_{n=2}^{\infty}|n-2 \alpha+1|\left|a_{n}\right||z|^{n-1}} \tag{2.4}\\
& <\frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|}{2(\alpha-1)-\sum_{n=2}^{\infty}|n-2 \alpha+1|\left|a_{n}\right|}
\end{align*}
$$

The last expression is bounded above by 1 if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right| \leq 2(\alpha-1)-\sum_{n=2}^{\infty}|n-2 \alpha+1|\left|a_{n}\right| \tag{2.5}
\end{equation*}
$$

which is equivalent to condition (2.1). This completes the proof of the theorem.

By using Theorem 2.1, we have the following corollary.
Corollary 2.2. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1) \tag{2.6}
\end{equation*}
$$

for some $\alpha(\alpha>1)$, then $f(z) \in N(\alpha)$.
Proof. From $f(z) \in N(\alpha)$ if and only if $z f^{\prime}(z) \in M(\alpha)$, replacing a_{n} by $n a_{n}$ in Theorem 2.1 we have the corollary.

In view of Theorem 2.1 and Corollary 2.2, if $1<\alpha \leq 3 / 2$, then $n-2 \alpha+1 \geq 0$ for all $n \geq 2$. Thus we have the following corollary.

Corollary 2.3. (i) If $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leq \alpha-1 \tag{2.7}
\end{equation*}
$$

for some $\alpha(1<\alpha \leq 3 / 2)$, then $f(z) \in M(\alpha)$.
(ii) If $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq \alpha-1 \tag{2.8}
\end{equation*}
$$

for some $\alpha(1<\alpha \leq 3 / 2)$, then $f(z) \in N(\alpha)$.
3. Starlikeness for functions in $M(\alpha)$ and $N(\alpha)$. By Silverman [1], we know that if $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1 \tag{3.1}
\end{equation*}
$$

then $f(z) \in S^{*}$, where S^{*} denotes the subclass of A consisting of all univalent and starlike functions $f(z)$ in U. Thus we have the following theorem.

Theorem 3.1. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leq \alpha-1 \tag{3.2}
\end{equation*}
$$

for some $\alpha(1<\alpha \leq 4 / 3)$, then $f(z) \in S^{*} \cap M(\alpha)$, therefore, $f(z)$ is starlike in U. Further, if $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq \alpha-1 \tag{3.3}
\end{equation*}
$$

for some $\alpha(1<\alpha \leq 3 / 2)$, then $f(z) \in S^{*} \cap N(\alpha)$, therefore, $f(z)$ is starlike in U.

Proof. Consider α such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1}\left|a_{n}\right| \leq 1 . \tag{3.4}
\end{equation*}
$$

Then we have $f(z) \in S^{*} \cap M(\alpha)$ by means of Theorem 2.1. This inequality holds true if

$$
\begin{equation*}
n \leq \frac{n-\alpha}{\alpha-1} \quad(n=2,3,4, \ldots) \tag{3.5}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
1<\alpha \leq 2-\frac{2}{n+1} \quad(n=2,3,4, \ldots), \tag{3.6}
\end{equation*}
$$

which shows that $1<\alpha \leq 4 / 3$. Next, considering α such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \frac{n(n-\alpha)}{\alpha-1}\left|a_{n}\right| \leq 1, \tag{3.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
n \leq \frac{n(n-\alpha)}{\alpha-1} \quad(n=2,3,4, \ldots), \tag{3.8}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
1<\alpha \leq \frac{n+1}{2} \quad(n=2,3,4, \ldots) . \tag{3.9}
\end{equation*}
$$

This implies that $1<\alpha \leq 3 / 2$.
Finally, by virtue of the result for convex functions by Silverman [1], we have, if $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leq 1, \tag{3.10}
\end{equation*}
$$

then $f(z) \in K$, where K denotes the subclass of A consisting of all univalent and convex functions $f(z)$ in U. Using the same method as in the proof of Theorem 3.1, we derive the following theorem.

Theorem 3.2. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq \alpha-1 \tag{3.11}
\end{equation*}
$$

for some $\alpha(1<\alpha \leq 4 / 3)$, then $f(z) \in K \cap N(\alpha)$, therefore, $f(z)$ is convex in U.
4. Bounds of α for starlikeness. Note that the sufficient condition for $f(z)$ to be in the class $M(\alpha)$ is given by

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1) . \tag{4.1}
\end{equation*}
$$

Since, if $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1 \tag{4.2}
\end{equation*}
$$

then $f(z) \in S^{*}$ (cf. [1]). It is interesting to find the bounds of α for starlikeness of $f(z) \in M(\alpha)$. To do this, we have to consider the following inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \frac{1}{2(\alpha-1)} \sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 1 \tag{4.3}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{|n-2 \alpha+1|+(3-2 \alpha) n\}\left|a_{n}\right| \geq 0 \tag{4.4}
\end{equation*}
$$

We define

$$
\begin{equation*}
F(n)=|n-2 \alpha+1|+(3-2 \alpha) n \quad(n \geq 2) . \tag{4.5}
\end{equation*}
$$

Then, if $F(n)$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| \geq 0 \tag{4.6}
\end{equation*}
$$

then $f(z)$ belongs to S^{*}.
Theorem 4.1. Let $f(z) \in A$ satisfy

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1) \tag{4.7}
\end{equation*}
$$

for some $\alpha>1$. Further, let δ_{k} be defined by

$$
\begin{equation*}
\delta_{k}=\sum_{n=k}^{\infty} F(n)\left|a_{n}\right| . \tag{4.8}
\end{equation*}
$$

Then,
(i) if $1<\alpha \leq 3 / 2$, then $f(z) \in S^{*}$,
(ii) if $3 / 2 \leq \alpha \leq \min \left(13 / 8,\left(3+\delta_{3}\right) / 2\right)$, then $f(z) \in S^{*}$,
(iii) if $8 / 3 \leq \alpha \leq \min \left(17 / 10,\left(12-\delta_{4}+\sqrt{\delta_{4}^{2}+48 \delta_{4}+48}\right) / 12\right)$, then $f(z) \in S^{*}$.

Proof. For $1<\alpha \leq 3 / 2$, we know that

$$
\begin{equation*}
n-2 \alpha+1 \geq 3-2 \alpha \geq 0 \quad(n \geq 2) \tag{4.9}
\end{equation*}
$$

that is, $F(n) \geq 0(n \geq 2)$. Therefore, we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| \geq 0 \tag{4.10}
\end{equation*}
$$

If $3 / 2 \leq \alpha \leq 13 / 8$, then $F(2)=3-2 \alpha \leq 0$ and

$$
\begin{equation*}
F(n)=2 n(2-\alpha)+1-2 \alpha \geq 13-8 \alpha \geq 0 \tag{4.11}
\end{equation*}
$$

for $n \geq 3$. Further, we know that

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2(\alpha-1)}{(n-1)+|n-2 \alpha+1|} \quad(n \geq 2) \tag{4.12}
\end{equation*}
$$

then $\left|a_{2}\right| \leq 1$. Therefore, we obtain that

$$
\begin{equation*}
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right|=F(2)\left|a_{2}\right|+\sum_{n=3}^{\infty} F(n)\left|a_{n}\right| \geq 3-2 \alpha+\delta_{3} \geq 0 \tag{4.13}
\end{equation*}
$$

for

$$
\begin{equation*}
\frac{3}{2} \leq \alpha \leq \min \left(\frac{13}{8}, \frac{3+\delta_{3}}{2}\right) . \tag{4.14}
\end{equation*}
$$

Furthermore, if $13 / 8 \leq \alpha \leq 17 / 10$, then

$$
\begin{align*}
& F(2)=3-2 \alpha \leq 0, \\
& F(3)=|4-2 \alpha|+3(3-2 \alpha)=13-8 \alpha \leq 0, \tag{4.15}\\
& F(n)=|n-2 \alpha+1|+(3-2 \alpha) n=4 n+1-2(n+1) \alpha \geq \frac{3(n-4)}{5} \geq 0
\end{align*}
$$

for $n \geq 4$. Noting that $\left|a_{2}\right| \leq 1$ and $\left|a_{3}\right| \leq(\alpha-1) /(3-\alpha)$, we conclude that

$$
\begin{align*}
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| & =F(2)\left|a_{2}\right|+F(3)\left|a_{3}\right|+\sum_{n=4}^{\infty} F(n)\left|a_{n}\right| \tag{4.16}\\
& \geq(3-2 \alpha)+(13-8 \alpha) \frac{\alpha-1}{3-\alpha}+\delta_{4} \geq 0
\end{align*}
$$

for α that satisfies

$$
\begin{equation*}
6 \alpha^{2}-\left(12-\delta_{4}\right) \alpha+4-3 \delta_{4} \leq 0 \tag{4.17}
\end{equation*}
$$

This shows that

$$
\begin{equation*}
\frac{8}{3} \leq \alpha \leq \min \left(\frac{17}{10}, \frac{12-\delta_{4}+\sqrt{\delta_{4}^{2}+48 \delta_{4}+48}}{12}\right) . \tag{4.18}
\end{equation*}
$$

This completes the proof of Theorem 4.1.
Finally, by virtue of Theorem 4.1, we may suppose that if $f(z) \in A$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1) \tag{4.19}
\end{equation*}
$$

for some $1<\alpha<2$, then $f(z) \in S^{*}$.

References

[1] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[2] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225-230.

Junichi Nishiwaki and Shigeyoshi Owa: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

