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Forreal (& > 1), we introduce subclasses M () and N () of analytic functions f(z) with
f(0)=0and f'(0) =1 in U. The object of the present paper is to consider the coefficient
inequalities for functions f(z) to be in the classes M («) and N (). Further, the bounds
of « for functions f(z) to be starlike in U are considered.
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1. Introduction. Let A denote the class of functions f(z) of the form

f(2)=z+> apz" 1.1)

n=2

which are analytic in the open unit disk U = {z € C: |z| < 1}. Let M («x) be the subclass
of A consisting of functions f(z) which satisfy

zf'(z)
Re{ ) }<o< (zeU) (1.2)

for some o (x> 1). And let N(x) be the subclass of A consisting of functions f(z)
which satisfy

Zf//(z)
f(z)

for some « (x> 1). Then, we see that f(z) € N(«) if and only if zf'(z) € M(«x). We
give examples of functions f(z) in the classes M (x) and N ().

Re{1+ }<o( (zeU) (1.3)

REMARK 1.1. For 1 < & < 4/3, the classes M(x) and N(x) were introduced by
Uralegaddi et al. [2].

EXAMPLE 1.2. (i) f(z) = z(1-2)2-D e M(x).
(i) g(z) = (1/QRa-1){1-(1-2)**1} € N(x).

PROOF. Since f(z) € M(«x) if and only if

Re{ZJ{;S)} < (1.4)

we can write

a—zf'(2)/f(z) 1+z
x—1 1=z

(1.5)
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which is equivalent to

f(2) 1 _2-1)

)z 1-z (1.6)

Integrating both sides of the above equality, we have
f(z)=z(1-2)%D e M(). 1.7)

Next, since g(z) € N(«) if and only if zg'(z) € M(x),
zg' (z) = z(1 —z)?(&= D, (1.8)

For function g(z) € N(«x), it follows that

g(z) = —20(171 (1-z)% 1+ ﬁ = 20(171 {1-(1-2)**"} e N(). (1.9)
O

2. Coefficient inequalities for the classes M () and N(x). We try to derive suffi-
cient conditions for f(z) which are given by using coefficient inequalities.

THEOREM 2.1. If f(z) € A satisfies

3

{m-1)+n-2a+1l}|an| <2(x-1) (2.1)
2

n

for some x (x> 1), then f(z) € M(«x).

PROOF. Suppose that
S{m-D+In-20+1l}|an| <2(ax-1) (2.2)
n=2

for f(z) € A.
It suffices to show that

zf (2)/f(z2) -1
‘zf’(z)/f(z)—(ztx—l) <1l (zel). (2.3)
We have
' zf'(2)/f(z2) -1 - Shom=1)|an|lz|"!
zf'(2)/f(2) - Ra=1) | 7 2(a=1) =33 p In—2a+1]|an|z["! o4
3 Shea(n=1)|an] '
20— =>n oIm—2x+1|an|’
The last expression is bounded above by 1 if
dDn-1D]an| =2(x=1)- > In-2a+1||ax| (2.5)

n=2 n=2

which is equivalent to condition (2.1). This completes the proof of the theorem. O
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By using Theorem 2.1, we have the following corollary.

COROLLARY 2.2. If f(z) € A satisfies

[

Snim-D+n-20+1l}|an| <2(ax—1) (2.6)

n=2
for some x (x> 1), then f(z) € N(x).

PROOF. From f(z) € N(&) if and only if zf'(z) € M(«), replacing a,, by na, in
Theorem 2.1 we have the corollary. |

In view of Theorem 2.1 and Corollary 2.2, if 1 < x <3/2,then n—2x+1 = 0 for all
n > 2. Thus we have the following corollary.

COROLLARY 2.3. (i) If f(z) € A satisfies

[Me

m—o)|an| <ax-1 (2.7)

n=2

for some x (1 < x <3/2), then f(z) € M(x).
(ii) If f(z) € A satisfies

M

nm-o)lan| <a-1 (2.8)

n=2

for some x (1 < x <3/2), then f(z) € N(x).
3. Starlikeness for functions in M (x) and N(«x). By Silverman [1], we know that if
f(z) € A satisfies

00

zn|an\ <1, (3.1)

n=2

then f(z) € S*, where S* denotes the subclass of A consisting of all univalent and
starlike functions f(z) in U. Thus we have the following theorem.

THEOREM 3.1. If f(z) € A satisfies
dn-)lan| =a-1 (3.2)
n=2

for some « (1 < @x < 4/3), then f(z) € S* nM(«x), therefore, f(z) is starlike in U.
Further, if f(z) € A satisfies

M

nm-o)|an| <x-1 (3.3)

n=2

for some x (1 < x <3/2), then f(z) € S* "N (x), therefore, f(z) is starlike in U.
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PROOF. Consider « such that

Snlan] =Y 2% a| < 1. (3.4)

Then we have f(z) € S* "M () by means of Theorem 2.1. This inequality holds true if

n—-«

n<
x—1

(n=2,3,4,...). (3.5)
Therefore, we have
1<o<<2—i (n=2,3,4,...) (3.6)
< oo =2,3,4,...), .

which shows that 1 < « < 4/3. Next, considering « such that

> S nn-«
S nlan] = S MY g <, (3.7)
— — x—1
n=2 n=2
we have
L) R AR (3.8)
x—1

which is equivalent to

1<0<anrl

(n=2,3,4,...). (3.9)

This implies that 1 < «x < 3/2. O

Finally, by virtue of the result for convex functions by Silverman [1], we have, if
f(z) € A satisfies

> n?lan| <1, (3.10)
n=2

then f(z) € K, where K denotes the subclass of A consisting of all univalent and
convex functions f(z) in U. Using the same method as in the proof of Theorem 3.1,
we derive the following theorem.

THEOREM 3.2. If f(z) € A satisfies

[

dnn-o)|an| = a-1 (3.11)

n=2

for some x (1 < x <4/3), then f(z) € KNnN(«), therefore, f(z) is convex in U.

4. Bounds of « for starlikeness. Note that the sufficient condition for f(z) to be
in the class M («) is given by

{m-1)+Imn-2a+1l}|an| <2(x-1). (4.1)

[Me

n=2
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Since, if f(z) € A satisfies

00

Zn|an\ <1, (4.2)

n=2
then f(z) € $* (cf. [1]). It is interesting to find the bounds of « for starlikeness of
f(z) e M(x). To do this, we have to consider the following inequality:

)

1 (o)
Zn|an|smgz{(nfl)+ln72a+l\}|an|sl (4.3)

n=2

which is equivalent to

> {In-2x+1l+(B-2x)n}|an| = 0. (4.4)
n=2
We define
Fn)=n-2c+1+3B3-20)n (n=2). (4.5)

Then, if F(n) satisfies
> F(n)|anl| =0, (4.6)
n=2

then f(z) belongs to S*.

THEOREM 4.1. Let f(z) € A satisfy
S {m-D+n-20+1l}|an| =2(x-1) 4.7)
n=2
for some & > 1. Further, let 5y be defined by

Sk=> F(n)|an|. (4.8)

n=k

Then,
(i) if1 <x<3/2,then f(z) € S*,
(ii) if3/2 < x <min(13/8,(3+03)/2), then f(z) € S*,

(iii) if8/3 < x<=min(17/10,(12— 054 +1/6§+4864+48)/12), then f(z) € S*.

PROOF. For 1 < & < 3/2, we know that
n-20+1=>3-20=>0 (n=2), 4.9)

that is, F(n) > 0 (n = 2). Therefore, we have
> F(n)|an| = 0. (4.10)
n=2

If 3/2<x<13/8,then F(2) =3-2x <0 and

Fn)=2n22-o0)+1-20=13-8x=0 (4.11)



290 J. NISHIWAKI AND S. OWA

for n > 3. Further, we know that

2(x—1)

lan| < =D+ n—2ar1] (n=2), (4.12)
then |a,| < 1. Therefore, we obtain that
i Fn)|an| =FQ2)|ax]| + iF(n)|an| >3-2x+63=0 (4.13)
n=2 n=3
for
gscxsmin<%,3+263>. (4.14)
Furthermore, if 13/8 < ¢ <17/10, then
F(2)=3-2x<0,
F(3)=14-2x|+3(3-2x) =13-8x <0, (4.15)
F(n)=n-20+1l+B3-2c)n=4n+1-2n+1)x = 3m-4) >0

for n > 4. Noting that |a»| <1 and |asz| < (¢x—1)/(3 — &), we conclude that

00

> F(n)|an| =F2)|az| +F(3)|as| + > F(n)|ay|
n=2 n=4 (4.16)

> (3-200+(13-80) %L 45,50,
3-«x
for « that satisfies
60> —(12—04)x+4—-364 <0. (4.17)

This shows that

8 (17 12-84++/65+485,+48
gsasmln(l—o, 12 . (4.18)
This completes the proof of Theorem 4.1. O

Finally, by virtue of Theorem 4.1, we may suppose that if f(z) € A satisfies

Me

{m-1)+n-2a+1l}|an| <2(x-1) (4.19)

n=2

for some 1 < @ < 2, then f(z) € $*.
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