COEFFICIENT INEQUALITIES FOR CERTAIN ANALYTIC FUNCTIONS

JUNICHI NISHIWAKI and SHIGEYOSHI OWA

Received 1 March 2001

For real α (α > 1), we introduce subclasses $M(\alpha)$ and $N(\alpha)$ of analytic functions f(z) with f(0) = 0 and f'(0) = 1 in U. The object of the present paper is to consider the coefficient inequalities for functions f(z) to be in the classes $M(\alpha)$ and $N(\alpha)$. Further, the bounds of α for functions f(z) to be starlike in U are considered.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let *A* denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Let $M(\alpha)$ be the subclass of A consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \alpha \quad (z \in U)$$
(1.2)

for some α ($\alpha > 1$). And let $N(\alpha)$ be the subclass of A consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{1 + \frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right\} < \alpha \quad (z \in U)$$
(1.3)

for some α ($\alpha > 1$). Then, we see that $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$. We give examples of functions f(z) in the classes $M(\alpha)$ and $N(\alpha)$.

REMARK 1.1. For $1 < \alpha \le 4/3$, the classes $M(\alpha)$ and $N(\alpha)$ were introduced by Uralegaddi et al. [2].

EXAMPLE 1.2. (i) $f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha)$. (ii) $g(z) = (1/(2\alpha-1))\{1-(1-z)^{2\alpha-1}\} \in N(\alpha)$.

PROOF. Since $f(z) \in M(\alpha)$ if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \alpha, \tag{1.4}$$

we can write

$$\frac{\alpha - zf'(z)/f(z)}{\alpha - 1} = \frac{1 + z}{1 - z},$$
(1.5)

which is equivalent to

$$\frac{f'(z)}{f(z)} - \frac{1}{z} = \frac{2(\alpha - 1)}{1 - z}.$$
(1.6)

Integrating both sides of the above equality, we have

$$f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha).$$
(1.7)

Next, since $g(z) \in N(\alpha)$ if and only if $zg'(z) \in M(\alpha)$,

$$zg'(z) = z(1-z)^{2(\alpha-1)}.$$
 (1.8)

For function $g(z) \in N(\alpha)$, it follows that

$$g(z) = -\frac{1}{2\alpha - 1}(1 - z)^{2\alpha - 1} + \frac{1}{2\alpha - 1} = \frac{1}{2\alpha - 1} \{1 - (1 - z)^{2\alpha - 1}\} \in N(\alpha).$$
(1.9)

2. Coefficient inequalities for the classes $M(\alpha)$ and $N(\alpha)$. We try to derive sufficient conditions for f(z) which are given by using coefficient inequalities.

THEOREM 2.1. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} \left| a_n \right| \le 2(\alpha-1)$$
(2.1)

for some α ($\alpha > 1$), then $f(z) \in M(\alpha)$.

PROOF. Suppose that

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} \left| a_n \right| \le 2(\alpha-1)$$
(2.2)

for $f(z) \in A$.

It suffices to show that

$$\left|\frac{zf'(z)/f(z)-1}{zf'(z)/f(z)-(2\alpha-1)}\right| < 1 \quad (z \in U).$$
(2.3)

We have

$$\left|\frac{zf'(z)/f(z)-1}{zf'(z)/f(z)-(2\alpha-1)}\right| \leq \frac{\sum_{n=2}^{\infty}(n-1)|a_n||z|^{n-1}}{2(\alpha-1)-\sum_{n=2}^{\infty}|n-2\alpha+1||a_n||z|^{n-1}} < \frac{\sum_{n=2}^{\infty}(n-1)|a_n|}{2(\alpha-1)-\sum_{n=2}^{\infty}|n-2\alpha+1||a_n|}.$$
(2.4)

The last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} (n-1) \left| a_n \right| \le 2(\alpha - 1) - \sum_{n=2}^{\infty} \left| n - 2\alpha + 1 \right| \left| a_n \right|$$
(2.5)

which is equivalent to condition (2.1). This completes the proof of the theorem. \Box

By using Theorem 2.1, we have the following corollary.

COROLLARY 2.2. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n\{(n-1) + |n-2\alpha+1|\} |a_n| \le 2(\alpha-1)$$
(2.6)

for some α ($\alpha > 1$), then $f(z) \in N(\alpha)$.

PROOF. From $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$, replacing a_n by na_n in Theorem 2.1 we have the corollary.

In view of Theorem 2.1 and Corollary 2.2, if $1 < \alpha \le 3/2$, then $n - 2\alpha + 1 \ge 0$ for all $n \ge 2$. Thus we have the following corollary.

COROLLARY 2.3. (i) If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} (n-\alpha) \left| a_n \right| \le \alpha - 1 \tag{2.7}$$

for some α (1 < $\alpha \le 3/2$), then $f(z) \in M(\alpha)$. (ii) If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha) \left| a_n \right| \le \alpha - 1 \tag{2.8}$$

for some α (1 < $\alpha \le 3/2$), then $f(z) \in N(\alpha)$.

3. Starlikeness for functions in $M(\alpha)$ and $N(\alpha)$. By Silverman [1], we know that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n \left| a_n \right| \le 1,\tag{3.1}$$

then $f(z) \in S^*$, where S^* denotes the subclass of A consisting of all univalent and starlike functions f(z) in U. Thus we have the following theorem.

THEOREM 3.1. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} (n-\alpha) \left| a_n \right| \le \alpha - 1 \tag{3.2}$$

for some α (1 < $\alpha \le 4/3$), then $f(z) \in S^* \cap M(\alpha)$, therefore, f(z) is starlike in U. Further, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha) \left| a_n \right| \le \alpha - 1 \tag{3.3}$$

for some α (1 < $\alpha \le 3/2$), then $f(z) \in S^* \cap N(\alpha)$, therefore, f(z) is starlike in U.

PROOF. Consider α such that

$$\sum_{n=2}^{\infty} n |a_n| \le \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1} |a_n| \le 1.$$
(3.4)

Then we have $f(z) \in S^* \cap M(\alpha)$ by means of Theorem 2.1. This inequality holds true if

$$n \le \frac{n-\alpha}{\alpha-1}$$
 (n = 2,3,4,...). (3.5)

Therefore, we have

$$1 < \alpha \le 2 - \frac{2}{n+1}$$
 $(n = 2, 3, 4, ...),$ (3.6)

which shows that $1 < \alpha \le 4/3$. Next, considering α such that

$$\sum_{n=2}^{\infty} n \left| a_n \right| \le \sum_{n=2}^{\infty} \frac{n(n-\alpha)}{\alpha-1} \left| a_n \right| \le 1,$$
(3.7)

we have

$$n \le \frac{n(n-\alpha)}{\alpha-1}$$
 $(n=2,3,4,...),$ (3.8)

which is equivalent to

$$1 < \alpha \le \frac{n+1}{2}$$
 $(n = 2, 3, 4, ...).$ (3.9)

This implies that $1 < \alpha \le 3/2$.

Finally, by virtue of the result for convex functions by Silverman [1], we have, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n^2 |a_n| \le 1, \tag{3.10}$$

then $f(z) \in K$, where *K* denotes the subclass of *A* consisting of all univalent and convex functions f(z) in *U*. Using the same method as in the proof of Theorem 3.1, we derive the following theorem.

THEOREM 3.2. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha) \left| a_n \right| \le \alpha - 1 \tag{3.11}$$

for some α (1 < $\alpha \le 4/3$), then $f(z) \in K \cap N(\alpha)$, therefore, f(z) is convex in U.

4. Bounds of α for starlikeness. Note that the sufficient condition for f(z) to be in the class $M(\alpha)$ is given by

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} \left| a_n \right| \le 2(\alpha-1).$$
(4.1)

Since, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n \left| a_n \right| \le 1,\tag{4.2}$$

then $f(z) \in S^*$ (cf. [1]). It is interesting to find the bounds of α for starlikeness of $f(z) \in M(\alpha)$. To do this, we have to consider the following inequality:

$$\sum_{n=2}^{\infty} n \left| a_n \right| \le \frac{1}{2(\alpha - 1)} \sum_{n=2}^{\infty} \left\{ (n - 1) + |n - 2\alpha + 1| \right\} \left| a_n \right| \le 1$$
(4.3)

which is equivalent to

$$\sum_{n=2}^{\infty} \left\{ |n - 2\alpha + 1| + (3 - 2\alpha)n \right\} |a_n| \ge 0.$$
(4.4)

We define

$$F(n) = |n - 2\alpha + 1| + (3 - 2\alpha)n \quad (n \ge 2).$$
(4.5)

Then, if F(n) satisfies

$$\sum_{n=2}^{\infty} F(n) \left| a_n \right| \ge 0, \tag{4.6}$$

then f(z) belongs to S^* .

THEOREM 4.1. Let $f(z) \in A$ satisfy

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} \left| a_n \right| \le 2(\alpha-1)$$
(4.7)

for some $\alpha > 1$. Further, let δ_k be defined by

$$\delta_k = \sum_{n=k}^{\infty} F(n) \left| a_n \right|.$$
(4.8)

Then,

- (i) *if* $1 < \alpha \le 3/2$, *then* $f(z) \in S^*$,
- (ii) if $3/2 \le \alpha \le \min(13/8, (3+\delta_3)/2)$, then $f(z) \in S^*$,
- (iii) if $8/3 \le \alpha \le \min(17/10, (12 \delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48})/12)$, then $f(z) \in S^*$.

PROOF. For $1 < \alpha \le 3/2$, we know that

$$n - 2\alpha + 1 \ge 3 - 2\alpha \ge 0$$
 $(n \ge 2),$ (4.9)

that is, $F(n) \ge 0$ $(n \ge 2)$. Therefore, we have

$$\sum_{n=2}^{\infty} F(n) |a_n| \ge 0.$$
(4.10)

If $3/2 \le \alpha \le 13/8$, then $F(2) = 3 - 2\alpha \le 0$ and

$$F(n) = 2n(2-\alpha) + 1 - 2\alpha \ge 13 - 8\alpha \ge 0$$
(4.11)

for $n \ge 3$. Further, we know that

$$|a_n| \le \frac{2(\alpha - 1)}{(n - 1) + |n - 2\alpha + 1|}$$
 $(n \ge 2),$ (4.12)

then $|a_2| \le 1$. Therefore, we obtain that

$$\sum_{n=2}^{\infty} F(n) \left| a_n \right| = F(2) \left| a_2 \right| + \sum_{n=3}^{\infty} F(n) \left| a_n \right| \ge 3 - 2\alpha + \delta_3 \ge 0$$
(4.13)

for

$$\frac{3}{2} \le \alpha \le \min\left(\frac{13}{8}, \frac{3+\delta_3}{2}\right). \tag{4.14}$$

Furthermore, if $13/8 \le \alpha \le 17/10$, then

$$F(2) = 3 - 2\alpha \le 0,$$

$$F(3) = |4 - 2\alpha| + 3(3 - 2\alpha) = 13 - 8\alpha \le 0,$$

$$F(n) = |n - 2\alpha + 1| + (3 - 2\alpha)n = 4n + 1 - 2(n + 1)\alpha \ge \frac{3(n - 4)}{5} \ge 0$$
(4.15)

for $n \ge 4$. Noting that $|a_2| \le 1$ and $|a_3| \le (\alpha - 1)/(3 - \alpha)$, we conclude that

$$\sum_{n=2}^{\infty} F(n) |a_n| = F(2) |a_2| + F(3) |a_3| + \sum_{n=4}^{\infty} F(n) |a_n|$$

$$\geq (3 - 2\alpha) + (13 - 8\alpha) \frac{\alpha - 1}{3 - \alpha} + \delta_4 \ge 0,$$
(4.16)

for α that satisfies

$$6\alpha^2 - (12 - \delta_4)\alpha + 4 - 3\delta_4 \le 0. \tag{4.17}$$

This shows that

$$\frac{8}{3} \le \alpha \le \min\left(\frac{17}{10}, \frac{12 - \delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48}}{12}\right). \tag{4.18}$$

This completes the proof of Theorem 4.1.

Finally, by virtue of Theorem 4.1, we may suppose that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} |a_n| \le 2(\alpha-1)$$
(4.19)

for some $1 < \alpha < 2$, then $f(z) \in S^*$.

References

- H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
- [2] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225–230.

JUNICHI NISHIWAKI AND SHIGEYOSHI OWA: DEPARTMENT OF MATHEMATICS, KINKI UNIVER-SITY, HIGASHI-OSAKA, OSAKA 577-8502, JAPAN

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

