Let Ω be a relatively compact subdomain of a complex manifold, exhaustible by Stein open sets. We give a necessary and sufficient condition for Ω to be Stein, in terms of L^2-estimates for the $\bar{\partial}$-operator, equivalent to the condition of Markoe (1977) and Silva (1978).

2000 Mathematics Subject Classification: 32E10, 32C35, 35N15.

1. Introduction. As indicated in [7], from the beginning of the theory of Stein spaces, the following question has held great interest: is a complex space, which is exhaustible by a sequence $X_1 \subset X_2 \subset \cdots$ of Stein subspaces, itself Stein?

In [1], the following is proved: every domain in \mathbb{C}^m which is exhaustible by a sequence of Stein domains $B_1 \subset B_2 \subset \cdots$ is itself Stein, and this is shown to hold more generally for unramified Riemann domain \mathcal{R} over \mathbb{C}^m in [6]. In [11], the following is proved: let X be a reduced complex space and $X_1 \subset X_2 \subset \cdots$ be an exhaustion of X by Stein domains, if every pair (X_j, X_{j+1}) is Runge then $X = UX_j$ is Stein. Recently, Markoe [9] and Silva [10] proved the following: let X be reduced and $X_1 \subset X_2 \subset \cdots$ be an exhaustion of X by Stein domains. Then X is Stein if and only if $H^1(X, \mathcal{O}) = 0$ (\mathcal{O} being the structure sheaf of X).

More recently the following has been proved in [12]: let $\Omega_1 \subset \Omega_2 \subset \cdots$ be a sequence of open Stein subsets of a Stein space X, $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$, and $\dim H^1(\Omega, \mathcal{O}) < \infty$. Then Ω is Stein.

Fornæss [4] produced an example to show that if $X_1 \subset X_2 \subset \cdots$ is a sequence of Stein manifolds, the limit manifold $X = \bigcup X_j$, in which each X_j is an open submanifold, need not be Stein. But it is known that if the limit manifold is itself an open submanifold of a Stein manifold then the limit manifold is necessarily Stein.

This led Fornæss and Narasimhan to pose the following problem [5]: let X be a Stein space and $\Omega_1 \subset \Omega_2 \subset \cdots$ an increasing sequence of Stein open sets in X. Is $\bigcup \Omega_j$ Stein? As indicated above this is the case when X is a Stein manifold, but this question remains open in the general case.

In this paper, we consider the case where X is a general complex manifold and $\Omega_1 \subset \Omega_2 \subset \cdots$ an increasing sequence of open Stein manifolds in X such that $\Omega = \bigcup \Omega_j$ is relatively compact in X. We give a condition for Ω to be Stein, equivalent to Markoe’s and Silva’s condition and involving L^2-estimates for the $\bar{\partial}$ operator.

2. Preliminaries. Let X be an n-dimensional complex manifold with a C^∞ Hermitian metric. The space $L^2_{(p,q)}(X)$ of square integrable differential forms of type (p, q) on X
is a Hilbert space under the scalar product,

\[(f, g) = \int_X f^\ast \, \bar{\partial} g, \]

where \(*\) is the Hodge \(*\)-operator associated with the metric and orientation of \(X\).

Let \(\Omega_1 \Subset \Omega_2 \Subset \cdots\) be an increasing sequence of Stein open sets in \(X\) such that their union \(\Omega = \bigcup_{j=1}^\infty \Omega_j\) is relatively compact in \(X\).

The following theorem is our main result.

Theorem 2.1. The union \(\Omega\) is Stein if and only if given an \(f \in L^2_{(p,q)}(\Omega)\), which is \(\delta\)-closed in the sense of distributions, there is a \(u \in L^2_{(p,q-1)}(\Omega)\) such that \(\delta u = f\) in the sense of distributions and

\[\|u\|_{L^2_{(p,q-1)}(\Omega)} \leq K \|f\|_{L^2_{(p,q)}(\Omega)}, \quad q > 0, \]

where \(K\) depends on \(\Omega\).

Let \(U\) be a bounded open set in \(\mathbb{C}^n\), and \(\mathcal{O}\) the structure sheaf of \(\mathbb{C}^n\). A section \(f = (f_1, \ldots, f_p) \in \Gamma(U, \mathcal{O}^p)\), where \(p > 0\) is an integer, is \(L^2\)-bounded if

\[\|f\|_{L^2(U)} = \|f_1\|_{L^2(U)} + \cdots + \|f_p\|_{L^2(U)} < \infty. \]

We then denote all sections of \(\mathcal{O}^p\) over \(U\) that are \(L^2\)-bounded by \(\Gamma_2(U, \mathcal{O}^p)\).

For the definition of \(L^2\)-bounded sections of coherent analytic sheaves, we require the coherent analytic sheaf \(\mathcal{F}\) to be defined on a simply connected polycylinder neighborhood \(V\) of the closure of \(U\). Then by [8, Theorem 5, Section F, Chapter VI], there is an \(\mathcal{O}\)-homomorphic in another simply connected polycylinder neighborhood \(\hat{V}'\) of the closure of \(U\),

\[\mathcal{O}^p \xrightarrow{\lambda} \mathcal{F} \rightarrow 0, \]

where \(p > 0\) is some integer; and \(f \in \Gamma(U, \mathcal{F})\) is \(L^2\)-bounded if \(f \in \Gamma_2(U, \mathcal{F}) := \lambda(\Gamma_2(U, \mathcal{O}^p))\). It can be shown that \(\Gamma_2(U, \mathcal{F})\) is independent of \(\lambda\) and \(p\), so that \(\Gamma_2(U, \mathcal{F})\) is well defined.

Now let \(\Omega\) be a relatively compact subdomain of an \(n\)-dimensional complex manifold \(X\). An open subset \(Y\) of \(\Omega\) is said to be admissible for the coherent analytic sheaf \(\mathcal{F}\) defined in the neighborhood of the closure of \(\Omega\) in \(X\), if \(Y\) is Stein. There is a coordinate neighborhood \(V\) in \(X\) of the closure, \(\hat{Y}\) of \(Y\) such that \(V\) is biholomorphic to a simply connected polycylinder \(\hat{V}'\) in \(\mathbb{C}^n\), and \(\hat{Y}\) is contained in the neighborhood of \(\hat{\Omega}\) where \(\hat{\mathcal{F}}\) is defined as \(f \in \Gamma(Y, \hat{\mathcal{F}})\) which is \(L^2\)-bounded if

\[f \in \Gamma_2(Y, \mathcal{F}) := \{g \in \Gamma(Y, \hat{\mathcal{F}}) : \eta^* (g) \in \Gamma_2(\eta(Y), \eta^* (\hat{\mathcal{F}}))\}, \]

where \(\eta\) is the restriction of the biholomorphic map \(V \rightarrow V'\) to \(Y\), and \(\eta^* (\mathcal{F})\) is the zero direct image of \(\mathcal{F}\) on \(Y\).

Let \(\Omega\) be as in Theorem 2.1 (then clearly \(\Omega\) is locally Stein). Let \(\mathcal{F}\) be a coherent analytic sheaf in a neighborhood of the closure of \(\Omega\). Then it is clear that \(\Omega\) is a finite union, \(\Omega = \bigcup_{j=1}^m U_j\), where each \(U_j\) is admissible for \(\mathcal{F}\). If \(\mathcal{V} = \{U_j\}_{j \in I}, I = \{1, \ldots, m\},\)
where the U_j’s are as above, we say that \mathcal{V} is a finite admissible cover of Ω for \mathcal{F} and we define the L^2 (alternate) q-cochains of \mathcal{V} with values in \mathcal{F} as those cochains,

$$c = (c_\alpha) \in C^q(\mathcal{V}, \mathcal{F}) = \prod_{\alpha \in I^q + 1} \Gamma(U_\alpha, \mathcal{F}),$$

$$U_\alpha = U_{i_0} \cap \cdots \cap U_{i_q}, \quad \alpha = (i_0, \ldots, i_q),$$

which are alternate and satisfy $c_\alpha \in \Gamma^2(U_\alpha, \mathcal{F})$ for all $\alpha \in I^q + 1$. We denote by $C^q_2(\mathcal{V}, \mathcal{F})$ the space of L^2-bounded cochains.

The coboundary operator,

$$\delta : C^q(\mathcal{V}, \mathcal{F}) \rightarrow C^{q+1}(\mathcal{V}, \mathcal{F}),$$

maps $C^q_2(\mathcal{V}, \mathcal{F})$ into $C^{q+1}_2(\mathcal{V}, \mathcal{F})$. If $Z^q_2(\mathcal{V}, \mathcal{F}) = \{ c \in C^q_2(\mathcal{V}, \mathcal{F}) : \delta c = 0 \}$ and $B^q_2(\mathcal{V}, \mathcal{F}) = \delta C^{q-1}_2(\mathcal{V}, \mathcal{F})$, then as usual $B^q_2(\mathcal{V}, \mathcal{F}) \subseteq Z^q_2(\mathcal{V}, \mathcal{F})$ and we define $H^q_2(\mathcal{V}, \mathcal{F}) := Z^q_2(\mathcal{V}, \mathcal{F}) / B^q_2(\mathcal{V}, \mathcal{F})$ and call it the L^2-bounded cohomology of \mathcal{V} with values in \mathcal{F}. We then have the following theorem.

Theorem 2.2. For any $q > 0$, the natural map

$$H^q_2(\mathcal{V}, \mathcal{F}) \rightarrow H^q(\Omega, \mathcal{F})$$

(2.8)

is an isomorphism.

We use Theorem 2.2 as a pivot to prove Theorem 2.1, but the proof of Theorem 2.2 is not given here, since it is similar to that of [2, Theorem].

3. A triangle of isomorphisms. Let Ω be as in Theorem 2.1. By the end of the section Theorem 2.1 will be proved. If $U \neq \emptyset$ is an open set in $\tilde{\Omega}$, then $\mathcal{B}^p_\Omega(U)$ is the Hilbert space of holomorphic p-forms h on $\Omega \cap U$ such that

$$\|h\|_{L^2_2(p,0)(\Omega \cap U)} < \infty.$$

(3.1)

If V is open in $\tilde{\Omega}$ with $\emptyset \neq V \subset U$, the restriction map $\gamma^V_U : \mathcal{B}^p_\Omega(U) \rightarrow \mathcal{B}^p_\Omega(V)$ is defined. Then $\mathcal{B}^p_\Omega = \{ \mathcal{B}^p_\Omega(U), \gamma^V_U \}$ is the canonical presheaf of L^2-holomorphic p-forms on $\tilde{\Omega}$. The associated sheaf \mathcal{B}^p_Ω is the sheaf of germs of L^2-holomorphic p-forms on $\tilde{\Omega}$. We then have the following lemma.

Lemma 3.1. Let \mathcal{D}^p be the sheaf of germs of holomorphic p-forms on X, and \mathcal{V} a finite admissible cover of Ω for \mathcal{D}^p. Then the following diagram is an isomorphism triangle of cohomology groups:

$$
\begin{array}{ccc}
H^q_2(\mathcal{V}, \mathcal{D}^p) & \longrightarrow & H^q(\Omega, \mathcal{D}^p) \\
& \searrow & \downarrow \\
& & H^q(\tilde{\Omega}, \mathcal{D}^p)
\end{array}
$$

(3.2)

for $q \geq 1$ and $p \geq 0$.

Proof. From Theorem 2.2 and the fact that any finite cover of $\tilde{\Omega}$ has a refinement $\mathcal{U} = \{V_j\}_{j \in J}$ such that $\mathcal{R}_\mathcal{U} = \{V_j \cap \Omega\}_{j \in J}$ is a finite admissible cover of Ω for \mathcal{D}^p, the lemma follows.

Now, using Hörmander’s L^2-estimates locally we get the following lemma.

Lemma 3.2. The cohomology group $H^q(\tilde{\Omega}, \mathcal{R}^p_\mathcal{U})$ is isomorphic to the quotient space

$$\{g : g \in L^2_{(p,q)}(\Omega) \text{ and } \partial g = 0\} / \{\partial h : h \in L^2_{p,q-1}(\Omega) \text{ and } \partial h \in L^2_{(p,q)}(\Omega)\},$$

where Ω as in Theorem 2.1.

Also the following lemma is proved in [3].

Lemma 3.3. If $\Omega \Subset X$ is Stein, where X is a complex manifold, then given $f \in L^2_{(p,q)}(\Omega)$ with $\partial f = 0$, there is $u \in L^2_{(p,q-1)}(\Omega)$ such that

$$\partial u = f, \quad \|u\|_{L^2_{(p,q-1)}(\Omega)} \leq K \|f\|_{L^2_{(p,q)}(\Omega)},$$

where K depends on Ω.

To finish with the proof of Theorem 2.1 we remark that $\mathcal{D}^0 = \mathcal{C}$ is the structure sheaf of X (as in Theorem 2.1), therefore Theorem 2.1 follows from Lemmas 3.1, 3.2, and 3.3, and from Markoe’s and Silva’s condition.

References

Patrick W. Darko: Department of Mathematics and Computer Science, Lincoln University, Lincoln University, PA 19352, USA

E-mail address: pdarko@lu.lincoln.edu
Submit your manuscripts at
http://www.hindawi.com