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EXTREME POINTS AND ROTUNDITY OF ORLICZ-SOBOLEV SPACES
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It is well known that Sobolev spaces have played essential roles in solving nonlinear par-
tial differential equations. Orlicz-Sobolev spaces are generalized from Sobolev spaces. In
this paper, we present sufficient and necessary conditions of extreme points of Orlicz-
Sobolev spaces. A sufficient and necessary condition of rotundity of Orlicz-Sobolev spaces
is obtained.
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DEFINITION 1. Let A(u) = (‘)”‘ p(t)dt, where p(t) satisfies the following proper-
ties:

(1) p(t) is right-continuous and nondecreasing;

(2) p(t) >0 (t>0);

3) p(0) =0, lim;_. p(t) = 0.
Then A(u) is called an N-function and p(t) is called the right derivative of A(u).

DEFINITION 2. Let A(u) be an N-function, p(t) the right derivative of A(u). Let

q)=supfu=0:pu) <v}=inf{u=0:p(u) =v}. (1)

vl

Then A(v) = o 4a(t)dt is called the complementary function of A(u).

DEFINITION 3. Let A(u) be an N-function, u e R, if v,w e R, v+w =2u, u # v,
implies A((v+w)/2) < (1/2)(A(v)+A(w)). Then u is called a strictly convex point
of A. The set of strictly convex points of A is denoted by Sj4.

DEFINITION 4. Let A(u) be an N-function, Q ¢ R", Orlicz space is defined as fol-
lows:

La(Q) = {u(t) :3A > 0, such that LZA(Au(t))dt < oo}. (2)

DEFINITION 5. Let A(u) be an N-function, and Q be a bounded and connected field
of R™. Orlicz-Sobolev space is defined as follows:

WA= {ueLla(Q):0%ueLs(Q), la| <m}, 3)

where & = (x1,02,...,0&), |&X]| = &1+ 0 + - - - + Xy, 0%u is a distribution of u.
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For u € W,(ﬂl’ 4, 1ts norm is defined as

1/p
nulsn,A—{ 5 <||a“<u>||°>”} Cep<w @

0<|x|<m

Orlicz-Sobolev spaces with the norm defined above are Banach spaces, see [1].

DEFINITION 6. For any x # 0, x € Lo(Q), let

K :inf{K > O:JQA(p(kx(t)))dt > 1},
Kj*:sup{K>0:JﬂA(p(kx(t)))dts175». ®

Then k¥ < kf*. We set K(x) = [k, kE*].

DEFINITION 7. Let X be a Banach space, B(X) the closed unit ball of X, and S(X)
its unit sphere. Let x € S(X). If v,z € B(X), v +z = 2x implies x = y = z, then x
is called an extreme point of B(X). The set of extreme points of B(X) is denoted by
extB(X).If S(X) = extB(X), then X is called a rotund space.

LEMMA 8. Foranyx €LY, [ x|% = (1/k) {1+ [ A(kx(t))dt} if and only ifk € K(x).

THEOREM 9. Let x € S(W), 1). If u{t € Q:kx(t) ¢ Sa} =0, k € K(x), then x €
extB(Wp, 4).

PROOF. Llet y,z € B(W,%’A), and y + z = 2x. By the convexity of f(u) = u”, (1 <
p <)

(1 150,0)” + (12150,0)" _ 5 (lx[”)? + (llo~z][*)”

1=
2 2

O<|x|=m

0%y o4 lloxz|”\"
- (n [l ||)2 o
O<|xl=m

O<|x|=m

0%y +0%z

s D

= 3 () =17 =1

0<|x|<=m

So the equality holds in the above inequalities. Since for any 0 < || < m, we have

0%y +0%z
2

V. o

([%x[")” + (loz[™)” _ ( lloexI® +1a%z[”\"
A e, (1ol

From (6) and (7), we know that the equality holds in (7). In particular, when p > 1,

[0 [” +lo*z]|° = 2[]ax||". 8)
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Take h € K(y),l € K(z), and let k = hl/(h+1). Then

20x1° = 1x1°+1211°

= l(1+J A(hy(t))dt) + 1(1+J A(lz(t))dt)

h+l
- hj A(hy ()dt+~ J A(lz(t))dt

=%[1+j (Amy @)+ Awzw) )t ©)

> %[1 +L)A(%(y(t)+z(t)))dt]

>2- i [1 +JQA(2kx(t))dt]

= 2|1x|°.

So the equality holds in the above inequalities. Hence 2k € K(x) and for a.e. t € Q,
(L/(h+1))AChy(t))+ (h/(h+1))A(lz(t)) = A(2kx(t)). By the known conditions, for
almost all t € Q, hy(t) =1z(t) = 2kx(t). Therefore,

L=zl 0 = 12194 = 7Y 94 = K1Y IS4 = h (10)

This implies x = ¥ = z. S0 x € extB(W}), »). O

THEOREM 10. Let x € S(W), 0). If for any i =1,2,...,n, u{t € Q: k;d;x(t) & Sa} =
0, where K; € K(9;x(t)). Then x € extB(Wy, ).

PROOF. Let y,z € B(W, A) and y + z = 2x. By the proof of Theorem 9, for any
0 < || < m we have

2][%x]|” = [1a%x[|° +[[a*z]|". (1)

In particular, if || = 1, then 2|9;x|° = ||0;||° +10;z]|°. Take h; € K(3;y), l; € K(9;z),
and let k; = hil;/(h; + l;). By the proof of Theorem 9, we have

hio;y(t) =1;0;z(t) = 2k;0;x(t), i=1,2,....,m (12)

and [; = h; = 2k;. Hence 0;y (t) = 0;x(t) = 0;z(t). Thus there exists a constant ¢ such
that y(t) = x(t) +c, z(t) = x(t) — c. Now, we show that ¢ = 0.If not, ¢ + 0. Without loss
of generality, we may assume that ¢ > 0.If |x| < ¢, then y(t) > 0,z(t) < 0.Since 0 € S4,
when a > 0, b <0, for any A € (0,1), we have A(Aa+ (1-A)b) <AA(a)+ (1—-A)A(b).
By (9), |x(t)] < ¢ does not hold. Then for a.e. t € Q, |x(t)]| = c.
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LetE; ={teQ:x(t)=c},E2={t€Q:x(t) <—c}. Then u(E, UE>) = uQ. Since Q
is connected, for any p € E1, q € E», p can continuously move to g in Q by a transform
of finite single-variable. If uF; > 0 and uE> > 0, there exists at leasta p € E1, q € E>
such that the connecting line between p and g over E; U E» is condense. So there
exists a line | = {(t1,t2,...,ti-1,Ati+1,...,tn) A € [a,b]} on that connecting line, such
thatlnE; = @, lNE> = @. But x(t) = c over E; and x(t) < —c over E; whereas E; UE>
is condense of [. This is a contradiction to the fact that 0;x(t) € L4 C L, implies that
x (t) is absolutely continuous with respect to t;. So, either uE; = 0 or uE, = 0. Without
loss of generality, let uE>» = 0. Then for almost all t € Q, x(t) > c. So, y(t) > x(t).
Thus [y |19, 4 > Ix[l9, 4 = 1. This contradicts y € B(Wy, ,). From above, we know that
¢ =0.S0 x(t) =y(t) = z(t). This means x € extB(W, 4). O

THEOREM 11. Letx € S(Wy), 4). Foranyi=1,2,...,n,
u{t € Qikx(t) ¢ SAln{t e Q:k;i0ix(t) ¢ Sa} =0, k;€K(0;x), ke K(x), (13)

then x € extB(Wy, ,).

PROOF. Let y,z€B(W,) ,) and y +z =2x.Let B={t € Q:kx(t) ¢ Sa}, B; = {t €
Q:kioix(t) ¢ Sa},and y(t) = x(t) +6(t).

CASE 1. For almost all t € Q\B, 6(t) = 0 by Theorem 10. Therefore x(t) = y(t) =
z(t).

CASE 2. Foranyi=1,2,...,n, u(BNnB;j) =0, so for almost all t € B, t ¢ B;. Hence
0ix(t) € S4. By the proof of Theorem 10, we know that 0;6(t) = 0, when 6 (t) = c. Sim-
ilarly, x(t) = y(t) = z(t) by Theorem 10. By Cases 1 and 2 we know x € extB(W,?l’A).

O

THEOREM 12. Letx € S(W&A). If there exists an affine interval (ax,by) and € > 0
such that

int ) {teQ:a"‘k,Xx(t)e (aa+e,ba—e)}¢®, (14)

O<|x|=sm

then x ¢ extB(W), 4).

PROOF. Let G = p<jqjem il € Q:1ko0%x(t) € (ax+€,by—€)} and intG = &. Take
t',t"” eintG, r > 0 such that B(t',») =B; Cc G, B(t",r) = B, C G, and B; nBy = &. For
any t* € Q satisfying B(t*,r) C Q. Define

e—l/(‘r‘Z* ?:1(&4?)2), teB(t*,T),
Jex (t) = )

0, t e Q\B(t*,7r).

Then J;+(t) is an infinitely differentiable function on Q and for any 0 < |x| < m,
0%J=(t) =0 on Q\B(t*,r). Let

c =€ min { 1 } (16)

O<|al<m ( MaAXteQ ’a“]t* (t) |
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Then ¢ > 0 and for all t € Q, c0%*J;« (t) < €. Define
y(t) =x(t)+cJy (t)—cly, z(t) =x(t)—cJpy (t) +cpr. (17)

Then y,z € WYOH‘A, and y+z=2x,y +z.Let A(u) =hqu+byon (ax+€,by—¢€). For
any ky € K(0%x),

0%y | = - ’1+J A(k{xa"‘y(t))dt]
L Q

. +J A(kad®x (1)) dt +J A(kad®x () + kad®(cJv (1)) dt
L Q\(B1UB2) By

+J A(kad®x(t) —kad™(cJr (t)))dt]
By

_ _71+J Alkad®x () dt
L Q\(B1UB2)
+J (hakaa“x(t)+ba)dt+J hakad®(cJy (t))dt
By By
+J (hakaaax(t)+ha)dt—J hukaao‘(cjt”(t))dt]
By By

_ kia[l +JQA(kaa“x(t))dt]

= [[a*x]|".
(18)
Hence for any 0 < || < m, we have [[0%y]|° = [|0%x]|°.
Likewise, for any 0 < || < m, we have [|[0%z|° = [|0%x||°. Then
1194 = 12194 = lIx1194 = 1. (19)
Therefore v,z € S(W)), 4). We know that x ¢ extB(W,), ,) since y # z. O

THEOREM 13. We show that W,?L 4 Is rotund if and only if A is strictly convex.

PROOF

SUFFICIENCY. It is immediately obtained from Theorem 9.

NECESSITY. Suppose A is not strictly convex. Then there exists 0 < a < b such that
A(u) is an affine function on (a,b). Since Q is bounded, we can take t’ € O, t”" € Q
such that

n n
Dti= inf >, >t'=  sup Dt (20)

i=1 (tt2pntn) €Q T i (L1 82t EQ ]

(1) When [, A(p((a+b)/2))dt < 1, we set g(c)=[y A(p(((a+Db)/2)ecZiz1 ity dt.
Then by the continuity of A and the right continuity of p, g(c) is right continuous
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with respect to ¢ and g(0) = [ A(p((a+b)/2))dt < 1, lim,_.g(c) = c. Take ¢y =
inf{c >0:g(c) = 1}, then the following two statements hold:

(@ g(co)=1,s0co>0;

(b) forany L€ (0,1), [yA(p(((a+Db)/2)le0Zim1ti"t)))dt < 1.
Indeed, take ¢, N ¢ such that g(c,) = 1. Then g(co) =limy, -« g(cn) = 1 since g(c) is
right continuous. So (a) holds.

Let A = Sup (g, y...tn) 2ie1 (Li—t7). Then for any t € Q, A = X1, (t; — t;) > 0. For any

0<l<1,sincelnl <0,

0 < la;becoz{;l(ti—t;) _ “;belnucoz{;lui—t;) < ‘1;be<c0+1nl/mz{':1(ti—t;)_ 1)

By the definition of cy,

JQA(p(laTweCOZ?zl“i’tf)»dtsg<c0+l%l> <1. (22)

Let x(t) = ((a+b)/2)e®Zi-1ti~t) By the above discussion, 1 € K(x). Then || x]||° =
1+ [o A(x())dt. Let xo(t) = x(t)/l|x1%, 4. Then xo(t) € S(W), 4) and

o_ lxI° 1
el - Ix19a  Nxl9 4 <1+JQA(X(t))dt>
! 0 (23)
- ||X||9n‘A(1+LZA(HXHm,AXO(t))dt)_

Therefore [x|9, 4 € K(xo(t)). Set 1/bg = ||x[9, 4. Since (t1,tz,...,t0) € Q, x(t) —
(a+Db)/2 as t; — t;, we can choose a ball B ¢ Q such that x(B) C (a,b). It means that

{teQ:x(t) ¢ Sa} D B. (24)

Therefore,

1
{tEQ.b—OXQ(t)f.S‘A}DB. (25)

On the other hand, as 1 < || < m,

(o4
x () _ ey
X094 1xN9,4

0%xp(t) = X (t) = bax (1), (26)

where by = c(‘)“‘/llxll,On’A. By Lemma 8, 1/by € K(8%x(t)). So

{tEQIbLaaXO(t)QSA}DB. (27)
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Then,
int ) {teg:bia“xo(t)a:SA}qt@. (28)
24

O<lx|=m
By Theorem 12, we know x ¢ eXtB(W,Om 4). This is a contradiction.

(2) When [ A(p((a+b)/2))dt > 1.

Set g(c) = [oA(p(((a+b)/2)ecZi=1ti~tD))dt. Then g(c) is left-continuous with
respect to ¢. For any (t1,t2,...,tn) € Q, 2 (ti—t]) <0, and g(0) = [ A(p((a+
b)/2))dt > 1,lim._. g(c) = 0. Take cp = sup{c > 0:g(c) < 1}. Asin (1), we can prove
g(co) <1 and foranyl > 1,

JoA (et

Let x(t) = ((a+D)/2)e %=1 xo(t) = x(t)/l1x]1%, - Then xo € S(WY, ). Like-
wise, we can show x, ¢ extB(W,?l, 4)- This is also a contradiction.
By (1) and (2) we know that A is strictly convex. |

beCOZ?:1(fi—t§')>)dt > 1. (29)
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