ON AN INFINITE SERIES FOR \((1 + 1/x)^x\) AND ITS APPLICATION

HONGWEI CHEN

Received 20 May 2001

An infinite series for \((1 + 1/x)^x\) is deduced. As an application, a refinement of Carleman’s inequality is achieved.

2000 Mathematics Subject Classification: 26D15.

The well-known Carleman’s inequality states that if \(a_n \geq 0, \) \(n = 1, 2, \ldots\), and \(0 < \sum_{n=1}^{\infty} a_n < \infty\), then

\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} a_n.
\] (1)

Recently, Yang and Debnath [4] improved (1) to

\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left(1 - \frac{1}{2(n+1)}\right) a_n.
\] (2)

In [3], a further refinement of (2) is presented as follows:

\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left(1 + \frac{1}{n+1/5}\right)^{-1/2} a_n.
\] (3)

The key step in the establishment of inequalities (2) and (3) is aimed at estimates of \((1 + 1/x)^x\). In this note, we derive an equality for \((1 + 1/x)^x\) in terms of an infinite series. As an application, we further strengthen inequality (3). The main results of this note are presented as follows.

Theorem 1. For any \(x > 0\),

\[
\left(1 + \frac{1}{x}\right)^x = e \left(1 - \sum_{n=1}^{\infty} \frac{b_n}{(1 + x)^n}\right),
\] (4)

where \(b_n > 0\) and satisfies the recurrence relation

\[
b_1 = \frac{1}{2}, \quad b_{n+1} = \frac{1}{(n+1)(n+2)} - \frac{1}{n+1} \sum_{i=1}^{n} \frac{b_i}{n - i + 2}.
\] (5)

Carleman’s inequality (1) is correspondingly refined as follows.
THEOREM 2. If $a_n \geq 0$, $n = 1, 2, \ldots$, and $0 < \sum_{n=1}^{\infty} a_n < \infty$, then
\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left(1 - \sum_{k=1}^{m} \frac{b_k}{(1+n)^k} \right) a_n,
\] (6)

where m is any positive integer and $b_k > 0$ is given by (5).

To prove Theorem 1, we now introduce three lemmas.

LEMMA 3. For $x > 0$, $t = 1/(1+x)$,
\[
\left(1 + \frac{1}{x} \right)^x = e \exp \left(- \sum_{n=1}^{\infty} \frac{t^n}{n(n+1)} \right).
\] (7)

PROOF. For $x > 0$, $0 < t = 1/(1+x) < 1$, we have
\[
\left(1 + \frac{1}{x} \right)^x = \left(\frac{1}{1-t} \right)^{(1-t)/t} = \exp \left(- \frac{1-t}{t} \ln(1-t) \right).
\] (8)

Using the power series
\[
\ln(1-t) = - \sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1},
\] (9)

which converges for $0 < t < 1$, we have
\[
\left(1 + \frac{1}{x} \right)^x = \exp \left((1-t) \sum_{n=0}^{\infty} \frac{t^n}{n+1} \right)
= \exp \left(1 - \sum_{n=1}^{\infty} \frac{t^n}{n(n+1)} \right)
= e \exp \left(- \sum_{n=1}^{\infty} \frac{t^n}{n(n+1)} \right).
\] (10)

This proves (7) as desired. \qed

LEMMA 4. For $0 < t < 1$,
\[
\exp \left(- \sum_{n=1}^{\infty} \frac{t^n}{n(n+1)} \right) = 1 - \sum_{n=1}^{\infty} b_n t^n,
\] (11)

where b_n satisfies the recurrence relation (5).

PROOF. Set
\[
p(t) = - \sum_{n=1}^{\infty} \frac{t^n}{n(n+1)},
\]

\[
f(t) = \exp \left(- \sum_{n=1}^{\infty} \frac{t^n}{n(n+1)} \right) = \exp (p(t)).
\] (12)
ON AN INFINITE SERIES FOR \((1 + 1/x)^x\) AND ITS APPLICATION

It is clear that the power series of \(p(t)\) converges uniformly for \(0 < t < 1\) and \(f(0) = \exp(p(0)) = 1\). Therefore, we can expand \(f(t)\) as a power series in the form of (11).

To show that the recurrence relation (5) holds, by the chain rule, we have

\[
b_1 = -f'(0) = -f(0)p'(0) = \frac{1}{2},
\]

(13)

Next we have, using the Leibniz rule,

\[
f^{(k+1)}(x) = (f(x)p'(x))^k = \sum_{i=0}^{k} \binom{k}{i} f^{(i)}(x)p^{(k-i+1)}(x),
\]

(14)

where \(f^{(i)}\) indicates the \(i\)th derivative of \(f(x)\) for \(i \geq 1\) and \(f^{(0)} = f\). By virtue of the facts

\[
b_{k+1} = -\frac{f^{(k+1)}(0)}{(k+1)!}, \quad p^{(i)}(0) = -\frac{i!}{i(i+1)}, \quad \binom{k}{i} = \frac{k!}{i!(k-i)!},
\]

(15)

separating the first term in (14) from the summation, we get

\[
b_{k+1} = \frac{1}{(k+1)(k+2)} - \frac{1}{k+1} \sum_{i=1}^{k} \frac{b_i}{k-i+2},
\]

(16)

from which the recurrence relation (5) follows. This proves Lemma 4.

To find \(b_n\) in (11), starting with \(b_1 = 1/2\), and applying the recurrence relation (5) repeatedly, we obtain

\[
b_2 = \frac{1}{6} - \frac{1}{4} b_1 = \frac{1}{24},
\]

\[
b_3 = \frac{1}{12} - \frac{1}{9} b_1 - \frac{1}{6} b_2 = \frac{1}{48},
\]

\[
b_4 = \frac{1}{20} - \frac{1}{16} b_1 - \frac{1}{12} b_1 - \frac{1}{8} b_3 = \frac{73}{5760}.
\]

(17)

For \(n \geq 5\), the computation of \(b_n\) is considerably longer and complicated. Implementing the recurrence relation (5) with Maple, we easily find the next six coefficients as follows:

\[
b_5 = \frac{11}{1280}, \quad b_6 = \frac{3625}{580608}, \quad b_7 = \frac{5525}{1161216},
\]

\[
b_8 = \frac{5233001}{1393459200}, \quad b_9 = \frac{1212281}{398131200}, \quad b_{10} = \frac{927777937}{367873228800}.
\]

(18)

Those calculations suggest the following lemma.

Lemma 5. If \(b_n\) satisfies the recurrence relation (5), then \(b_n > 0\) for all \(n \geq 1\).
Proof. In view of the recurrence relation (5), we see that $b_{n+1} > 0$ is equivalent to

$$
\sum_{i=1}^{n} \frac{b_i}{n-i+2} < \frac{1}{n+2}.
$$

We make the inductive hypothesis that (19) is true for all positive integers n. This hypothesis is true for $n = 1$ as $b_1 = 1/2$ and

$$
\frac{b_1}{2} = \frac{1}{4} < \frac{1}{3}.
$$

Now, by the recurrence relation (5), we have

$$
\frac{1}{k+3} - \sum_{i=1}^{k} \frac{b_i}{k-i+3} = \frac{1}{k+3} - \sum_{i=1}^{k} \frac{b_i}{k-i+3} - \frac{b_{k+1}}{2}
$$

$$
= \frac{1}{k+3} - \sum_{i=1}^{k} \frac{b_i}{k-i+3} - \frac{1}{2(k+1)} \left(\frac{1}{k+2} - \sum_{i=1}^{k} \frac{b_i}{k-i+2} \right)
$$

$$
= \frac{2(k+1)(k+2) - (k+3)}{2(k+1)(k+2)(k+3)} - \sum_{i=1}^{k} \frac{2(k+1)(k-i+2) - (k-i+3)}{2(k+1)(k-i+3)} \frac{b_i}{k-i+2}
$$

$$
= \frac{2k^2 + 5k + 1}{2(k+1)(k+3)} \left\{ \frac{1}{k+2} - \sum_{i=1}^{k} \frac{b_i}{k-i+2} \right\}
$$

$$
= \frac{2k^2 + 5k + 1}{2(k+1)(k+3)} \left\{ \frac{1}{k+2} - \sum_{i=1}^{k} \frac{b_i}{k-i+2} \right\}
$$

$$
> 0,
$$

from which (19) holds for $n = k + 1$. Here we have used the fact

$$
\frac{2(k+1)(k-i+2) - (k-i+3)}{2(k+1)(k-i+3)} \frac{b_i}{k-i+2} < 1, \quad \text{for } 1 \leq i \leq k
$$

and the inductive hypothesis for $n = k$. Therefore, the lemma now follows by the principle of mathematical induction. \qed

Now, we turn to the proof of Theorem 1.

Proof of Theorem 1. By virtue of (7) and (11), taking $t = 1/(1+x)$, we have

$$
\left(1 + \frac{1}{x}\right)^x = e \left(1 - \sum_{n=1}^{\infty} \frac{b_n}{(1+x)^n}\right).
$$

(23)
By Lemmas 4 and 5, we have that \(b_n > 0 \) and satisfies the recurrence relation (5). This proves Theorem 1.

Remark 6. As an added bonus, taking \(x = n \) in (23), we have

\[
(1 + \frac{1}{n})^n = e \left(1 - \sum_{k=1}^{\infty} \frac{b_k}{(1+n)^k} \right). \tag{24}
\]

Thus, for any positive integer \(m \geq 1 \), we obtain

\[
(1 + \frac{1}{n})^n < e \left(1 - \sum_{k=1}^{m} \frac{b_k}{(1+n)^k} \right). \tag{25}
\]

On the other hand, noticing that \(b_k \leq 1/k(k+1) \) from (5), we have

\[
(1 + \frac{1}{n})^n > e \left(1 - \sum_{k=1}^{\infty} \frac{1}{k(k+1)(1+n)^k} \right). \tag{26}
\]

Combining inequalities (24) and (26), we deduce that

\[
e \left(1 - \sum_{k=1}^{\infty} \frac{1}{k(k+1)(1+n)^k} \right) < (1 + \frac{1}{n})^n < e \left(1 - \sum_{k=1}^{m} \frac{b_k}{(1+n)^k} \right). \tag{27}
\]

This improves Kloosterman’s inequality [2, pages 324–325] and [4, inequality (2.7)].

Next, we prove Theorem 2 by modifying the approach used to prove Hardy’s inequality [1].

Proof of Theorem 2. For any positive sequence \(\{c_n\} \), using the arithmetic-geometric average inequality, we have

\[
\left(\prod_{k=1}^{n} c_k a_k \right)^{1/n} \leq \frac{1}{n} \sum_{k=1}^{n} c_k a_k. \tag{28}
\]

So that

\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} = \sum_{n=1}^{\infty} \left(\prod_{k=1}^{n} c_k a_k \right)^{1/n} \leq \sum_{n=1}^{\infty} \left(\prod_{k=1}^{n} c_k \right)^{-1/n} \left(\frac{1}{n} \sum_{k=1}^{n} c_k a_k \right). \tag{29}
\]

Exchanging the order of the summation in the last inequality, we have

\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} \leq \sum_{k=1}^{\infty} c_k a_k \sum_{n=k}^{\infty} \frac{1}{n} \left(\prod_{k=1}^{n} c_k \right)^{-1/n}. \tag{30}
\]
Set
\[c_k = \left(1 + \frac{1}{k}\right)^k, \quad k = 1, 2, \ldots, \] \hfill (31)
we have
\[\prod_{k=1}^{n} c_k = (1 + n)^n, \] \hfill (32)
and hence
\[\sum_{n=1}^{\infty} \frac{1}{n} \left(\prod_{k=1}^{n} c_k\right)^{-1/n} = \sum_{n=1}^{\infty} \frac{1}{n(n + 1)} = \frac{1}{n}. \] \hfill (33)
Thus, by virtue of (30), we deduce that
\[\sum_{n=1}^{\infty} \left(a_1 a_2 \cdots a_n \right)^{1/n} \leq \sum_{k=1}^{\infty} \frac{1}{k} c_k a_k = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n a_n. \] \hfill (34)
Taking \(x = n \) in Theorem 1, we have refined Carleman’s inequality (1) as
\[\sum_{n=1}^{\infty} \left(a_1 a_2 \cdots a_n \right)^{1/n} \leq e \sum_{n=1}^{\infty} \left(1 - \sum_{k=1}^{\infty} \frac{b_k}{(1+n)^k}\right) a_n < e \sum_{n=1}^{\infty} \left(1 - \sum_{k=1}^{m} \frac{b_k}{(1+n)^k}\right) a_n, \] \hfill (35)
where \(m \) is any positive integer. This proves Theorem 2 as required.

Remark 7. It is clear that (2) is the special case of (35) at \(m = 1 \). Furthermore, by the binomial series, we have
\[\left(1 + \frac{1}{n + 1/5}\right)^{-1/2} > 1 - \frac{1}{2(n + 1)} - \frac{1}{24(n + 1)^2}, \quad \text{for} \ n = 1, 2, \ldots. \] \hfill (36)
Therefore, when \(m = 2 \), (35) strengthens (3).

References

Hongwei Chen: Department of Mathematics, Christopher Newport University, Newport News, VA 23606, USA

E-mail address: hchen@pcs.cnu.edu
Submit your manuscripts at
http://www.hindawi.com