GRADED RADICAL W TYPE LIE ALGEBRAS I

KI-BONG NAM

Received 24 August 2001 and in revised form 28 January 2002

We get a new \mathbb{Z}-graded Witt type simple Lie algebra using a generalized polynomial ring which is the radical extension of the polynomial ring $F[x]$ with the exponential function e^x.

2000 Mathematics Subject Classification: 17B20.

1. Introduction. Let F be a field of characteristic zero (not necessarily algebraically closed). Throughout this paper, \mathbb{Z}_+ and \mathbb{Z} denote the nonnegative integers and the integers, respectively. Let $F[x]$ be the polynomial ring in indeterminate x. Let $F(x) = \{ f(x)/g(x) \mid f(x), g(x) \in F[x], g(x) \neq 0 \}$ be the field of rational functions in one variable. We define the F-algebra $V^{\infty}_{m,e}$ spanned by

\[\left\{ e^x f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \mid d, a_1, \ldots, a_m, t \in \mathbb{Z}, f_i \neq x, \right. \]
\[\left. (a_1, b_1) = 1, \ldots, (a_m, b_m) = 1, 1 \leq i \leq m \right\}, \tag{1.1} \]

where b_1, \ldots, b_m are fixed nonnegative integers, and $(a_i, b_i) = 1, 1 \leq i \leq m$, means that a_i and b_i are relatively primes, and f_1, \ldots, f_n are the fixed relatively prime polynomials in $F[x]$. The F-subalgebra $V^+_{m,e}$ of $V^{\infty}_{m,e}$ is spanned by

\[\left\{ e^x f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \mid d, a_1, \ldots, a_m \in \mathbb{Z}, t \in \mathbb{Z}_+, f_i \neq x, \right. \]
\[\left. (a_1, b_1) = 1, \ldots, (a_m, b_m) = 1, 1 \leq i \leq m \right\}. \tag{1.2} \]

Let $W_{\infty_{m,e}}(\partial)$ be the vector space over F with elements $\{ f \partial \mid f \in V^{\infty}_{m,e} \}$ and the standard basis $\{ e^x f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial \mid e^x f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial \in W_{\infty_{m,e}} \}$. Define a Lie bracket on $W_{\infty_{m,e}}(\partial)$ as follows:

\[[f \partial, g \partial] = f(\partial(g)) \partial - g(\partial(f)) \partial, \quad f, g \in V_{\infty_{m,e}}. \tag{1.3} \]

It is easy to check that (1.3) defines a Lie algebra $W_{\infty_{m,e}}(\partial)$ with the underlying vector space $W_{\infty_{m,e}}(\partial)$ (see also [1, 3, 5]). Similarly, we define the Lie subalgebra $W^+_{\infty_{m,e}}(\partial)$ of $W_{\infty_{m,e}}(\partial)$ using the F-algebra $V^+_{m,e}$ instead of $V_{\infty_{m,e}}$.

The Lie algebra $W_{\infty_{m,e}}(\partial)$ has a natural \mathbb{Z}-gradation as follows:

\[W_{\infty_{m,e}}(\partial) = \bigoplus_{d \in \mathbb{Z}} W^d_{\infty_{m,e}}, \tag{1.4} \]

where $W^d_{\infty_{m,e}}$ is the subspace of the Lie algebra $W_{\infty_{m,e}}(\partial)$ generated by elements of the form $e^x f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial \mid f_1, \ldots, f_n \in F[x], a_1, \ldots, a_m, t \in \mathbb{Z}, m \in \mathbb{Z}_+$}. We call the subspace $W^d_{\infty_{m,e}}$ the d-homogeneous component of $W_{\infty_{m,e}}(\partial)$.
We decompose the \(d\)-homogeneous component \(W^d_{\sqrt{m},e}\) as follows:

\[
W^d_{\sqrt{m},e} = \bigoplus_{s_1, \ldots, s_m \in \mathbb{Z}} W_{(d,s_1, \ldots, s_m)},
\]

where \(W_{(d,s_1, \ldots, s_m)}\) is the subspace of \(W^d_{\sqrt{m},e}\) spanned by

\[
\{ e^{dx} f_1^{s_1/b_1} \cdots f_m^{s_m/b_m} x^q \partial \mid q \in \mathbb{Z} \}.
\]

Note that \(W_{(0,0, \ldots, 0)}\) is the Witt algebra \(W(1)\) as defined in [3].

The two radical-homogeneous components \(W_{(d,a_1, \ldots, a_m)}\) and \(W_{(d,r_1, \ldots, r_m)}\) are equivalent if \(a_1 - r_1, \ldots, a_m - r_m \in \mathbb{Z}\). This defines an equivalence relation on \(W^d_{\sqrt{m},e}\). Thus we note that the equivalent class of \(W_{(d,a_1, \ldots, a_m)}\) without ambiguity. It is possible to choose the minimal positive integers \(a_1, \ldots, a_m\) for the radical homogeneous equivalent component \(W_{(d,a_1, \ldots, a_m)}\).

We give the lexicographic order on all the radical homogeneous equivalent components \(W_{(d,a_1, \ldots, a_m)}\) using \(\mathbb{Z} \times \mathbb{Z}^m_+\).

The radical equivalent homogeneous component \(W^d_{\sqrt{m},e}\) can be written as follows:

\[
W^d_{\sqrt{m},e} = \sum_{(d,a_1, \ldots, a_m) \in \mathbb{Z}^m_+} W_{(d,a_1, \ldots, a_m)}.
\]

Thus for any element \(l \in W_{\sqrt{m},e}(\partial)\), \(l\) can be written uniquely as follows:

\[
l = \sum_{(d,a_1, \ldots, a_m) \in \mathbb{Z} \times \mathbb{Z}^m_+} l_{(d,a_1, \ldots, a_m)}.
\]

For any such element \(l \in W_{\sqrt{m},e}(\partial)\), \(H(l)\) is defined as the number of different homogeneous components of \(l\) as in (1.4), and \(L_d(l)\) as the number of nonequivalent radical \(d\)-homogeneous components of \(l\) in (1.8). For each basis element \(e^{dx} f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial\) of \(W_{\sqrt{m},e}(\partial)\) (or \(W^+_{\sqrt{m},e}(\partial)\)), define \(\deg_{Lie}(e^{dx} f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial) = t\). Since every element \(l\) of \(W_{\sqrt{m},e}(\partial)\) is the sum of the standard basis element, we may define \(\deg_{Lie}(l)\) as the highest power of each basis element of \(l\). Note that the Lie algebra \(W_{\sqrt{m},e}(\partial)\) is self-centralized, that is, the centralizer \(C_l(W_{\sqrt{m},e}(\partial))\) of every element \(l\) in \(W_{\sqrt{m},e}(\partial)\) is one dimensional [1]. We find the solution of

\[
1^{1/3} = y
\]

in \(\mathbb{Z}_7\). Equation (1.9) implies that

\[
1 \equiv y^3 \mod 7.
\]

The solutions of (1.10) are 1, 2, or 4. Thus \(1^{1/3} = 1, 2, \) or \(4 \mod 7\). Thus the radical number in \(\mathbb{Z}_p\) is not uniquely determined generally. So we may not consider the Lie algebras in this paper over a field of characteristic \(p\) differently from the Lie algebras in [2, 3, 4]. It is easy to prove that the Lie algebra \(W_{(0, 0, \ldots, 0)}\) is simple [3].
2. Main results. We need several lemmas for Theorem 2.5.

Lemma 2.1. For any element \(l \) in the \((d,a_1,\ldots,a_m)\)-radical-homogeneous component of \(W_{\sqrt{n},e}(\partial) \), and for any element \(l_1 \in W_{(0,0,\ldots,0)} \), \([l,l_1]\) is an element in the \((d,a_1,\ldots,a_m)\)-radical homogeneous equivalent component.

The proof of **Lemma 2.1** is straightforward.

Lemma 2.2. A Lie ideal \(I \) of \(W_{\sqrt{n},e}(\partial) \) which contains \(\partial \) is \(W_{\sqrt{n},e}(\partial) \).

Proof. Let \(I \) be the ideal in the lemma. The Lie subalgebra which has the standard basis \(\{x_i\partial\mid i \in \mathbb{Z}_+\} \) is simple. Let \(I \) be any ideal of \(W_{\sqrt{n},e}(\partial) \) which contains \(\partial \). Then for any \(f\partial \in W_{\sqrt{n},e}(\partial) \),
\[
[x\partial,f\partial] = x\partial(f)\partial - f\partial \in I. \quad (2.1)
\]
On the other hand,
\[
[\partial,xf\partial] = f\partial + x\partial(f)\partial \in I. \quad (2.2)
\]
Thus by subtracting (2.2) from (2.1) we get \(2f\partial \in I \). Therefore, we have proven the lemma, since \(I \cap W_{(0,0,\ldots,0)} \) contains nonzero elements and so \(I \supset W_{(0,0,\ldots,0)} \).

Lemma 2.3. A Lie ideal \(I \) of \(W_{\sqrt{n},e}(\partial) \) which contains a nonzero element in \(W_{(d,a_1,\ldots,a_m)} \) is \(W_{\sqrt{n},e}(\partial) \), for a fixed \((d,a_1,\ldots,a_m) \in \mathbb{Z} \times \mathbb{Z}_+ \).

Proof. Let \(I \) be a Lie ideal of \(W_{\sqrt{n},e}(\partial) \) and \(l \) a nonzero element in the ideal \(I \). Then we take an element \(l_1 = e^{-dx}f_1^{-a_1/b_1} \cdots f_m^{-a_m/b_m}x^p\partial \) with \(p \) a sufficiently large positive integer such that \([l,l_1] \neq 0\). Then \([f\partial,[l,l_1]]\) is a nonzero element in \(W_{(0,0,\ldots,0)} \) by taking an element \(f_{1}^{t_1} \cdots f_{m}^{t_m} \in F[x] \), where \(t_1,\ldots,t_m \) are sufficiently large integers. Thus \(I \cap W_{(0,0,\ldots,0)} \) contains nonzero elements, and hence, \(\partial \in I \cap W_{(0,0,\ldots,0)} \) by simplicity of \(W_{(0,0,\ldots,0)} \). Then the lemma follows from **Lemma 2.2**.

Throughout this paper, \(a \gg b \) means that \(a \) is a number sufficiently larger than \(b \).

Lemma 2.4. Let \(I \) be any nonzero Lie ideal of \(W_{\sqrt{n},e}(\partial) \). For any nonzero element \(l \in I \), there is an element \(x^s\partial, s \gg 0 \), such that \([x^s\partial,l] \) is the sum of elements in \(W_{\sqrt{n},e}(\partial) \) with \(\deg_{\text{Lie}}([x^s\partial,l]) > 0 \).

Proof. It is straightforward by choosing a sufficiently large positive integer \(s \).

Theorem 2.5. The Lie algebra \(W_{\sqrt{n},e}(\partial) \) is simple.

Proof. Let \(I \) be a nonzero Lie ideal of \(W_{\sqrt{n},e}(\partial) \). Let \(l \) be a nonzero element of \(I \). By **Lemma 2.4**, we may assume that \(l \) has polynomial terms with positive powers for each basis element of \(l \). We prove this theorem in several steps.

Step 1. If \(l \) is in the 0-homogeneous component, then the theorem holds. We prove this step, by induction on the number \(L_0(l) \) of nonequivalent radical-homogeneous components of the element \(l \) of \(I \). If \(L_0(l) \) is 1 and \(l \in W_{(0,0,\ldots,0)} \), then the theorem holds by Lemmas 2.2, 2.3, and the fact that \(W_{(0,0,\ldots,0)} \) is simple.
Assume that \(l \in \mathcal{W}^{0,0,...,0}(0) \) with \(a_r \neq 0 \). If we take an element \(f_{1}^{h_{r}/k_{r}} \cdots f_{n}^{h_{n}/k_{n}}x^{h_{n+1}} \partial \) such that \(h_{r} \gg k_{r}, \ldots, h_{n} \gg k_{r} \) and \((h_{r} + k_{r})/k_{r} \in \mathbb{Z}_{+}, \ldots, (h_{m} + k_{m})/k_{m} \in \mathbb{Z}_{+}\), then we have \(l_{1} = [f_{1}^{h_{r}/k_{r}} \cdots f_{n}^{h_{n}/k_{n}}x^{h_{n+1}} \partial, I] \neq 0 \). This implies that \(l_{1} \) is in \(W(0,0,...,0) \). Thus we have proven the theorem by Lemma 2.2.

By induction, we may assume that the theorem holds for \(l \in I \) such that \(L_{0}(l) = k \), for some fixed nonnegative integer \(k \geq 1 \). Assume that \(L_{0}(l) = k + 1 \). If \(l \) has a \(W(0,0,...,0) \) radical-homogeneous equivalent component, we take \(l_{2} \in \mathcal{W}(0,0,...,0) \) such that \([l,l_{2}]\) can be written as follows: \([l,l_{2}] = l_{3} + l_{4} \) where \(l_{3} \) is a sum of nonzero radical-homogeneous components, and \(l_{4} = f \partial \) with \(f \in F[x] \). Thus we have the nonzero element
\[
\partial,[\cdots,[\partial,l] \cdots] = l_{2} \in I
\] (2.3)

which has no terms in the homogeneous equivalent component \(\mathcal{W}(0,0,...,0) \), where we applied Lie brackets until \(l_{2} \) has no terms in the radical homogeneous equivalent component \(\mathcal{W}(0,0,...,0) \). Then \(l_{2} \in I \) such that \(H(l_{2}) \leq k \). Therefore, we have proven the theorem by Lemmas 2.2, 2.3, and induction. If \(l \) has no terms in the radical homogeneous equivalent component \((0,0,...,0) \), then \(l \) has a term in the radical homogeneous equivalent component \(\mathcal{W}(0,a_{1},...,a_{n}) \). Take an element \(l_{3} = f_{1}^{c_{1}/p_{1}} \cdots f_{m}^{c_{m}/p_{m}}x^{c_{m+1}} \partial \) such that \(c_{1}, \ldots, c_{m+1} \) are sufficiently large positive integers such that \(c_{1} + a_{1} \in \mathbb{Z} \cdots c_{m} + a_{m} \in \mathbb{Z} \), and which is in a radical homogeneous equivalent component \(\mathcal{W}(0,a_{1},...,a_{n}) \). Then \([l_{3},l]\) is nonzero and which has a term in the radical homogeneous equivalent component \(\mathcal{W}(0,0,...,0) \). So in this case we have proven the theorem by induction.

Step 2. Assume that \(l \) is in the \(d \)-homogeneous component such that \(0 \neq d \) and \(L_{0}(l) = 1 \), then the theorem holds. By taking \(e^{-dx}x^{t} \partial \), we have \(0 \neq [e^{-dx}x^{t} \partial, l] \in \mathcal{W}(0,0,...,0) \) by taking a sufficiently large positive integer \(t \). Thus we have proven the theorem by Step 1.

Step 3. If \(l \) is the sum of \((k-1) \) nonzero homogeneous components and 0-homogeneous component, then the theorem holds. We prove the theorem by induction on the number of distinct homogeneous components by Steps 1 and 2. Assume that we have proven the theorem when \(l \) has \((k-1) \) radical-homogeneous components. Assume that \(l \) has \(k \) terms in \(\mathcal{W}(0,0,...,0) \). By Step 1, we have an element \(l_{1} \in I \), such that \(l_{1} = l_{2} + f \partial \), where \(l_{2} \) has \((k-1) \) homogeneous components and \(f \in F[x] \). Then
\[0 \neq \partial,[\cdots,[\partial,l_{1}] \cdots] \in I \] has \((k-1) \) homogeneous components, where we applied the Lie bracket until it has no terms in \(\mathcal{W}(0,0,...,0) \). Therefore, we have proven the theorem by induction.

Assume that \(l \) has \(k \) homogeneous equivalent components. We may assume \(l \) has the terms which is in \(0 \neq d \)-homogeneous component. By taking a sufficiently large positive integer \(r \), we have \([e^{-dx}x^{r} \partial, l] \neq 0 \) and it has \(k \) homogeneous components with a term in the radical-homogeneous component \(\mathcal{W}(0,0,...,0) \). Therefore, we have proven the theorem by Step 3. □

Corollary 2.6. The Lie algebra \(\mathcal{W}_{\frac{1}{2},e}^{0} (\partial) \) is simple.

Proof. It is straightforward from Theorem 2.5 without using Lemma 2.4. □

Corollary 2.7. The Lie subalgebra \(\mathcal{W}_{\frac{1}{2},e}^{0} \) of \(\mathcal{W}_{\frac{1}{2},e}^{0} (\partial) \) is simple.
Proof. It is straightforward from Step 1 of Theorem 2.5.

Proposition 2.8. For any nonzero Lie automorphism θ of $W_{\sqrt{m,e}}^+(\partial)$, $\theta(\partial) = \partial$ holds.

Proof. It is straightforward from the relation $\theta([\partial, x\partial]) = \theta(\partial)$ and the fact that $W_{\sqrt{m,e}}^+(\partial)$ is self-centralized and \mathbb{Z}-graded.

Acknowledgments. The author thanks the referee for the valuable suggestions and comments on this paper. The author also thanks Professor Kawamoto for his comments on radical numbers of \mathbb{Z}_p.

References

Ki-Bong Nam: Department of Mathematics and Computer Science, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
E-mail address: namk@uwwvax.uww.edu
Submit your manuscripts at http://www.hindawi.com