ON INCLUSION RELATIONS FOR ABSOLUTE SUMMABILITY

B. E. RHOADES and EKREM SAVAŞ

Received 15 March 2001 and in revised form 15 November 2001

We obtain necessary and (different) sufficient conditions for a series summable \(|\tilde{N}, p_n|_k \), \(1 < k \leq s < \infty \), to imply that the series is summable \(|T|_s \), where \((\tilde{N}, p_n)\) is a weighted mean matrix and \(T \) is a lower triangular matrix. As corollaries of this result, we obtain several inclusion theorems.

2000 Mathematics Subject Classification: 40F05, 40D25, 40G99.

Let \(\sum a_n \) be a given series with partial sums \(s_n \), \((C, \alpha) \) the Césaro matrix of order \(\alpha \). If \(\sigma_n^\alpha \) denotes the \(n \)th term of the \((C, \alpha) \)-transform of \(\{s_n\} \) then, from Flett [4], \(\sum a_n \) is said to be summable \(|C, \alpha|_k \), \(k \geq 1 \) if

\[
\sum_{n=1}^\infty n^{k-1} |\sigma_n^\alpha - \sigma_{n-1}^\alpha|^k < \infty, \tag{1}
\]

For any sequence \(\{u_n\} \), the forward difference operator \(\Delta \) is defined by \(\Delta u_n = u_n - u_{n-1} \).

An appropriate extension of (1) to arbitrary lower triangular matrices \(T \) is

\[
\sum_{n=1}^\infty n^{k-1} |\Delta t_{n-1}|^k < \infty, \tag{2}
\]

where

\[
t_n := \sum_{k=0}^n t_{nk}s_k. \tag{3}
\]

Such an extension is used, for example, in Bor [2]. But Sarigöl, Sulaiman, and Bor and Thorpe [3] make the following extension of (1).

They define a series \(\sum a_n \) to be summable \(|\tilde{N}, p_n|_k \), \(k \geq 1 \) if

\[
\sum_{n=1}^\infty \left(\frac{p_n}{p_{n+1}} \right)^{k-1} |\Delta Z_{n-1}|^k < \infty, \tag{4}
\]

where \(Z_n \) denotes the \(n \)th term of the weighted mean transform of \(\{s_n\} \); that is,

\[
Z_n = \frac{1}{p_n} \sum_{k=0}^n p_k s_k. \tag{5}
\]

Apparently they have interpreted the \(n \) in (1) to represent the reciprocal of the \(n \)th diagonal term of the matrix \((\tilde{N}, p_n)\). (See, e.g., Sarigöl [6], where this is explicitly the case.)
Unfortunately, this interpretation cannot be correct. For if it were, then, since the nth diagonal entry of (C, α) is $O(n^{-\alpha})$, (1) would take the form

$$\sum_{n=1}^{\infty} (n^\alpha)^{(k-1)} |\sigma_n^\alpha - \sigma_{n-1}^\alpha| < \infty.$$ \hfill (6)

However, Flett stays with (1). Thus (2) is an appropriate extension of (1) to lower triangular matrices.

Given any lower triangular matrix T, we can associate the matrices \bar{T} and \hat{T} with entries defined by

$$\bar{t}_{nk} = \sum_{i=k}^{n} t_{ni}, \quad \hat{t}_{nk} = \bar{t}_{nk} - \bar{t}_{n-1,k},$$ \hfill (7)

respectively.

Thus, from (3),

$$t_n = \sum_{k=0}^{n} t_{nk}s_k = \sum_{k=0}^{n} t_{nk} \sum_{i=0}^{k} a_i = \sum_{i=0}^{n} a_i \sum_{k=i}^{n} \bar{t}_{nk}a_i,$$

$$Y_n := t_n - t_{n-1} = \sum_{i=0}^{n} \bar{t}_{ni}a_i - \sum_{i=0}^{n-1} \bar{t}_{n-1,i}a_i = \sum_{i=0}^{n} \hat{t}_{ni}a_i, \quad \text{since} \: \bar{t}_{n-1,n} = 0.$$ \hfill (8)

For a weighted mean matrix $A = (\tilde{N}, p_n)$,

$$\tilde{a}_{nk} = \sum_{i=k}^{n} \frac{p_k}{p_n} = \frac{1}{p_n} (p_n - P_{k-1}) = 1 - \frac{P_{k-1}}{p_n}.$$ \hfill (9)

Thus

$$\tilde{a}_{nk} = \tilde{a}_{n,k} - \tilde{a}_{n-1,k} = 1 - \frac{P_{k-1}}{p_n} - 1 + \frac{P_{k-1}}{p_{n-1}} = \frac{p_nP_{k-1}}{p_nP_{n-1}},$$ \hfill (10)

so that, from (5),

$$X_n := \Delta Z_{n-1} = \frac{p_n}{P_{n-1}} \sum_{k=0}^{n-1} P_{k-1}a_k = \frac{p_n}{P_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu-1}a_{\nu},$$ \hfill (11)

since $P_{-1} = 0$.

We will always assume that $\{p_n\}$ is a positive sequence with $P_n \rightarrow \infty$. Also, $\Delta_{\nu} \hat{t}_{n\nu} := \hat{t}_{n\nu} - \hat{t}_{n_{\nu+1}}$.

Theorem 1. Let $1 < k \leq s < \infty$, $\{p_n\}$ satisfying

$$\sum_{n=s+1}^{\infty} n^{k-1} \left(\frac{p_n}{p_nP_{n-1}} \right)^k = O \left(\frac{1}{p_v^k} \right).$$ \hfill (12)

Let T be a lower triangular matrix. Then, the necessary conditions for $\sum a_n$ summable $|\tilde{N}, p_n|$ to imply $\sum a_n$ is summable $|T|_s$ are

(i) $P_{\nu} |t_{\nu\nu}| / p_{\nu} = O(\nu^{1/s-1/k})$;
(ii) $\sum_{n=\nu+1}^{\infty} n^{s-1} |\Delta_{\nu} \hat{t}_{n\nu}|^s = O(\nu^{s-s/k}(p_{\nu}/p_{\nu})^s)$;
(iii) $\sum_{n=\nu+1}^{\infty} n^{s-1} |\hat{t}_{n_{\nu+1}}|^s = O(1)$.

PROOF. We are given that
\[\sum_{n=1}^{\infty} n^{s-1} |Y_n|^s < \infty, \quad (13) \]
whenever
\[\sum_{n=1}^{\infty} n^{k-1} |X_n|^k < \infty. \quad (14) \]

Now, the space of sequences \(\{a_n\} \) satisfying (14) is a Banach space if normed by
\[\|X\| = \left(|X_0|^k + \sum_{n=1}^{\infty} n^{k-1} |X_n|^k \right)^{1/k}. \quad (15) \]

We also consider the space of those sequences \(\{Y_n\} \) that satisfy (13). This is also a BK-space with respect to the norm
\[\|Y\| = \left(|Y_0|^s + \sum_{n=1}^{\infty} n^{s-1} |Y_n|^s \right)^{1/s}. \quad (16) \]

Observe that (8) transforms the space of sequences satisfying (14) into the space of sequences satisfying (13). Applying the Banach-Steinhaus theorem, there exists a constant \(K > 0 \) such that
\[\|Y\| \leq K \|X\|. \quad (17) \]

Applying (11) and (8) to \(a_\nu = e_\nu - e_{\nu+1} \), where \(e_\nu \) is the \(\nu \)th coordinate vector, we have, respectively,
\[X_n = \begin{cases} 0, & \text{if } n < \nu, \\ \frac{p_\nu}{P_\nu}, & \text{if } n = \nu, \\ \frac{-p_\nu p_n}{P_n P_{n-1}}, & \text{if } n > \nu, \end{cases} \quad (18) \]
\[Y_n = \begin{cases} 0, & \text{if } n < \nu, \\ \hat{t}_{n\nu}, & \text{if } n = \nu, \\ \Delta_\nu \hat{t}_{n\nu}, & \text{if } n > \nu. \end{cases} \]

By (15) and (16), it follows that
\[\|X\| = \left\{ v^{k-1} \left(\frac{p_\nu}{P_\nu} \right)^k + \sum_{n=1}^{\infty} n^{k-1} \left(\frac{p_\nu p_n}{P_n P_{n-1}} \right)^k \right\}^{1/k}, \quad (19) \]
\[\|Y\| = \left\{ v^{s-1} |t_{\nu\nu}|^s + \sum_{n=1}^{\infty} n^{s-1} |\Delta_\nu \hat{t}_{n\nu}|^s \right\}^{1/s}, \quad (20) \]
recalling that \(\hat{t}_{\nu\nu} = \bar{t}_{\nu\nu} = t_{\nu\nu} \).
Using (19) and (20) in (17), along with (12), it follows that

\[
\nu^{s-1} |t_{\nu\nu}|^s + \sum_{n=\nu+1}^{\infty} n^{s-1} |\Delta \hat{t}_{n\nu}|^s \leq K^s \left(\nu^{k-1} \left(\frac{p_\nu}{P_\nu} \right)^k + \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_\nu p_n}{P_\nu P_{n-1}} \right)^{k/s} \right)
\]

\[
\leq K^s \left(\nu^{k-1} \left(\frac{p_\nu}{P_\nu} \right)^k + O(1) \left(\frac{p_\nu}{P_\nu} \right)^{k/s} \right)
\]

\[
= O \left(\left(\frac{p_\nu}{P_\nu} \right)^k \nu^{k-1} \right)^{s/k}.
\]

(21)

The above inequality will be true if and only if each term on the left-hand side is \(O((p_\nu/P_\nu)^k \nu^{k-1})^{s/k} \).

Taking the first term,

\[
\nu^{s-1} |t_{\nu\nu}|^s = O \left(\frac{p_\nu}{P_\nu} \right)^k \nu^{k-1},
\]

\[
|t_{\nu\nu}|^s = O \left(\frac{p_\nu}{P_\nu} \right)^s \nu^{1-s/k},
\]

\[
|t_{\nu\nu}| = O \left(\frac{p_\nu}{P_\nu} \right)^s \nu^{1-s/k}^{1/s},
\]

\[
= O \left(\frac{p_\nu}{P_\nu} \right)^s \nu^{1/2-s/k},
\]

(22)

which verifies that (i) is necessary.

Using the second term, we have

\[
\sum_{n=\nu+1}^{\infty} n^{s-1} |\Delta \hat{t}_{n\nu}|^s = O \left(\frac{p_\nu}{P_\nu} \right)^k \nu^{k-1} \left(\nu^{s-s/k} \right) = O \left(\frac{p_\nu}{P_\nu} \right)^s \nu^{s-s/k}.
\]

(23)

which is condition (ii).

If we now apply (11) and (8) to \(a_\nu = e^{\nu+1} \), we have, respectively,

\[
X_n = \begin{cases}
0, & \text{if } n \leq \nu, \\
\frac{p_\nu p_n}{P_\nu P_{n-1}}, & \text{if } n > \nu,
\end{cases}
\]

\[
Y_n = \begin{cases}
0, & \text{if } n \leq \nu, \\
\hat{t}_{n,\nu+1}, & \text{if } n > \nu.
\end{cases}
\]

(24)
The corresponding norms are
\[
\|X\| = \left\{ \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{P_{\nu}P_n}{P_nP_{\nu-1}} \right)^k \right\}^{1/k},
\]
\[
\|Y\| = \left\{ \sum_{n=\nu+1}^{\infty} n^{s-1} |\hat{t}_{n,\nu+1}|^s \right\}^{1/s},
\]
(25)

Applying (17) and (12),
\[
\sum_{n=\nu+1}^{\infty} n^{s-1} |\hat{t}_{n,\nu+1}|^s \leq K^s \left\{ \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{P_{\nu}P_n}{P_nP_{\nu-1}} \right)^k \right\}^{s/k},
\]
(26)
which is condition (iii).

COROLLARY 2. Let \(T\) be a lower triangular matrix, \(\{p_n\}\) satisfying (12). Then the necessary conditions for \(\sum a_n\) summable \(|\tilde{N},p_n|_k\) to imply \(\sum a_n\) summable \(|T|_k\) are
(i) \(P_{\nu}/p_{\nu} = O(1)\);
(ii) \(\sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{t}_{n,\nu}|^k = O(\nu^{k-1}(p_{\nu}/P_{\nu})^k)\);
(iii) \(\sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{t}_{n,\nu+1}|^k = O(1)\).

To prove Corollary 2, simply set \(s = k\) in Theorem 1.

THEOREM 3. Let \(1 < k \leq s < \infty\). Let \(T\) be a triangle with bounded entries such that \(T\) and \(\{p_n\}\) satisfy the following:
(i) \(t_{\nu\nu} = O((p_{\nu}/P_{\nu})^{1/s-1/k})\);
(ii) \(n|X_{\nu}|)^{s-k} = O(1)\);
(iii) \(\sum_{n=\nu+1}^{\infty} |\hat{t}_{n,\nu}| = O(|t_{\nu\nu}|)\);
(iv) \(\sum_{n=\nu+1}^{\infty} (n|t_{\nu\nu}|)^{s-1} |\hat{t}_{n,\nu}| = O(\nu^{s-1}|t_{\nu\nu}|^s)\);
(v) \(\sum_{n=\nu+1}^{\infty} |t_{\nu\nu}| = O(|t_{\nu\nu}|)\);
(vi) \(\sum_{n=\nu+1}^{\infty} (n|t_{\nu\nu}|)^{s-1} |\hat{t}_{n,\nu+1}| = O(\nu|t_{\nu\nu}|)^{s-1}\).

Then \(\sum a_n\) is \(\tilde{N},p_n|_k\).

PROOF. Solving (11) for \(\{a_n\}\) and substituting into (8) give
\[
Y_n = \sum_{\nu=1}^{n} \hat{t}_{\nu\nu} \left(X_{\nu}p_{\nu} - \frac{X_{\nu-1}p_{\nu-2}}{p_{\nu-1}} \right)
\]
\[
= \sum_{\nu=1}^{n} \hat{t}_{\nu\nu} X_{\nu}p_{\nu} - \sum_{\nu=1}^{n} \hat{t}_{\nu\nu} \frac{X_{\nu-1}p_{\nu-2}}{p_{\nu-1}}
\]
\[
= \sum_{\nu=1}^{n} \hat{t}_{\nu\nu} X_{\nu}p_{\nu} - \sum_{\nu=1}^{n} \hat{t}_{\nu,\nu+1} X_{\nu}p_{\nu-1}
\]
\[
= \hat{t}_{\nu\nu} X_{\nu}p_{\nu} + \sum_{\nu=1}^{n} (-\hat{t}_{\nu\nu}p_{\nu} + \hat{t}_{\nu,\nu+1}p_{\nu-1}) X_{\nu}p_{\nu}
\]
\[
\begin{align*}
&= t_{nn} p_n X_n + \sum_{v=1}^{n-1} \left[P_v (\hat{t}_{nv} - \hat{t}_{n,v+1}) + \hat{t}_{n,v+1} (P_v - P_{v-1}) \right] \frac{X_v}{p_v} \\
&= \frac{p_n t_{nn} X_n}{p_n} + \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v} \Delta_v \hat{t}_{nv} + \hat{t}_{n,v+1} \right) X_v \\
&= T_{n1} + T_{n2} + T_{n3}.
\end{align*}
\] (27)

From Minkowski's inequality, it is sufficient to show that
\[
\sum_{n=1}^{\infty} n^{s-1} |T_{ni}|^s < \infty, \quad i = 1, 2, 3.
\] (28)

Using condition (i) of Theorem 3,
\[
J_1 := \sum_{n=1}^{\infty} n^{s-1} |T_{n1}|^s = \sum_{n=1}^{\infty} n^{s-1} \left| \frac{t_{nn} p_n X_n}{p_n} \right|^s
\]
\[
= O(1) \sum_{n=1}^{\infty} n^{s-1} (n^{1/s-1/k})^s |X_n|^s
\]
\[
= O(1) \sum_{n=1}^{\infty} n^{k-1} |X_n|^k \left(n^{s-1/k-k+1} |X_n|^{s-k} \right).
\] (29)

But
\[
n^{s-1/k-k+1} |X_n|^{s-k} = (n^{1/k} |X_n|)^{s-k} = O \left((n |X_n|)^{s-k} \right) = O(1),
\] (30)

from (ii) of Theorem 3.

Since \(\sum a_n \) is summable, \(|\tilde{N}, p_n| k \), \(J_1 = O(1) \).

Using Hölder's inequality and conditions (i), (ii), (iii), and (iv) of Theorem 3.

\[
J_2 := \sum_{n=1}^{\infty} n^{s-1} |T_{n2}|^s = \sum_{n=1}^{\infty} n^{s-1} \left| \sum_{v=1}^{n-1} \left(\frac{P_v}{P_v} \right) (\Delta_v \hat{t}_{nv}) X_v \right|^s
\]
\[
= O(1) \sum_{n=1}^{\infty} n^{s-1} \left(\sum_{v=1}^{n-1} \nu^{1/s-1/k} |t_{v,v}|^{-1} |\Delta_v \hat{t}_{nv}| |X_v| \right)^s
\]
\[
= O(1) \sum_{n=1}^{\infty} n^{s-1} \left(\sum_{v=1}^{n-1} \nu^{1-s/k} |t_{v,v}|^{-s} |\Delta_v \hat{t}_{nv}| |X_v| \right)^s \times \left(\sum_{v=1}^{n-1} |\Delta_v \hat{t}_{nv}| \right)^{s-1}
\]
\[
= O(1) \sum_{n=1}^{\infty} (n |t_{nn}|)^{s-1} \sum_{v=1}^{n-1} \nu^{1-s/k} |t_{v,v}|^{-s} |\Delta_v \hat{t}_{nv}| |X_v|^s
\]
\[
= O(1) \sum_{v=1}^{\infty} \nu^{1-s/k} |t_{vv}|^{-s} |X_v|^s \sum_{n=v+1}^{\infty} (n |t_{nn}|)^{s-1} |\Delta_v \hat{t}_{nv}|
\]
ON INCLUSION RELATIONS FOR ABSOLUTE SUMMABILITY 135

\[\sum_{\nu=1}^{\infty} v^{1-s/k} \left| t_{\nu \nu} \right|^{-s} \left| X_{\nu} \right|^s v^{s-1} \left| t_{\nu \nu} \right|^s = O(1) \]

\[\sum_{\nu=1}^{\infty} v^{s-s/k} \left| X_{\nu} \right|^s = O(1) \]

\[\sum_{\nu=1}^{\infty} v^{k-1} \left| X_{\nu} \right|^k \left(v^{s-s/k-1} \left| X_{\nu} \right|^{s-k} \right) = O(1) \]

\[\sum_{\nu=1}^{\infty} v^{k-1} \left| X_{\nu} \right|^k = O(1). \]

(31)

By Hölder’s inequality and conditions (v), (vi), and (iii) of Theorem 3, we have

\[J_3 := \sum_{n=1}^{\infty} n^{s-1} \left| T_{n3} \right|^s = \sum_{n=1}^{\infty} \sum_{\nu=1}^{n-1} \left| t_{n,\nu+1} X_{\nu} \right|^s \]

\[\leq \sum_{n=1}^{\infty} n^{s-1} \left(\sum_{\nu=1}^{n-1} \left| t_{n,\nu+1} X_{\nu} \right|^s \right) \]

\[\leq \sum_{n=1}^{\infty} n^{s-1} \left(\sum_{\nu=1}^{n-1} \left| t_{\nu \nu} \right|^{1-s} \left| \hat{t}_{n,\nu+1} X_{\nu} \right|^s \right) \]

\[\times \left(\sum_{\nu=1}^{n-1} \left| t_{\nu \nu} \right| \left| \hat{t}_{n,\nu+1} X_{\nu} \right|^s \right)^{-1} \]

\[= O(1) \sum_{n=1}^{\infty} \left(n \left| t_{nn} \right| \right)^{s-1} \sum_{\nu=1}^{n-1} \left| t_{\nu \nu} \right|^{1-s} \left| \hat{t}_{n,\nu+1} X_{\nu} \right|^s \]

(32)

\[= O(1) \sum_{\nu=1}^{\infty} \left| t_{\nu \nu} \right|^{1-s} \left| X_{\nu} \right|^s \sum_{n=\nu+1}^{\infty} \left(n \left| t_{nn} \right| \right)^{s-1} \left| \hat{t}_{n,\nu+1} \right| \]

\[= O(1) \sum_{\nu=1}^{\infty} \left| t_{\nu \nu} \right|^{1-s} \left| X_{\nu} \right|^s \left(v \left| t_{\nu \nu} \right| \right)^{s-1} \]

\[= O(1) \sum_{\nu=1}^{\infty} v^{s-1} \left| X_{\nu} \right|^s \]

\[= O(1) \sum_{\nu=1}^{\infty} v^{k-1} \left| X_{\nu} \right|^k \left(v \left| X_{\nu} \right| \right)^{s-k} \]

\[= O(1) \sum_{\nu=1}^{\infty} v^{k-1} \left| X_{\nu} \right|^k = O(1). \]

\[\boxed{ \sum_{\nu=1}^{\infty} \left(\left| t_{\nu \nu} \right| \left| X_{\nu} \right| \right)^s = O(1) } \]

Corollary 4 (see [5]). Let T be a nonnegative lower triangular matrix, $\{p_n\}$ a positive sequence satisfying

(i) $t_{ni} \geq t_{n+1,i}$, $n \geq i$, $i = 0, 1, 2, \ldots$;

(ii) $P_n t_{nn} = O(p_n)$;

(iii) $\hat{t}_{n0} = \hat{t}_{n-1,0}$, $n = 1, 2, \ldots$;
setting each λ_n known. The following result comes from Theorem 2.1 of Rhoades and Savaş [5] by and condition (iii) of Theorem 3 is satisfied. Therefore, using conditions (i) and (iii) of Corollary 4, we should not expect to obtain a set of necessary and sufficient conditions when an arbitrary triangle is involved.

Finally, we state necessary and sufficient conditions when $k \geq 1$, (12) is automatically satisfied. Therefore, the necessity of the conditions follows from Theorem 1.

To prove the conditions sufficient, use [5, Corollary 4.1] by setting each $\lambda_n = 1$.

Corollary 9. $\sum a_n$ summable $|N, q_n|_k$ implies $\sum a_n$ summable $|T|, k \geq 1$.

Proof. Since $s = k$ and T is nonnegative, condition (ii) of Theorem 3 is automatically satisfied, and conditions (ii), (iv), (v), and (vi) of Corollary 4 are equivalent to conditions (i), (v), (iv), and (vi) of Theorem 3, respectively

$$\Delta_v \hat{t}_{nv} = \hat{t}_{nv} - \hat{t}_{n,v+1} = \hat{t}_{nv} - \hat{t}_{n-1,v} + \hat{t}_{n-1,v+1} = t_{nv} - t_{n-1,v}. \tag{33}$$

Therefore, using conditions (i) and (iii) of Corollary 4,

$$\sum_{v=1}^{n-1} |\Delta_v \hat{t}_{nv}| = \sum_{v=1}^{n-1} (t_{n-1,v} - t_{nv}) = 1 - t_{n-1,0} - 1 + t_{nn} + t_{nn} \leq t_{nn}, \tag{34}$$

and condition (iii) of Theorem 3 is satisfied.

Remark 5. For $1 < k \leq s < \infty$, necessary and sufficient conditions for a triangle $A : \ell^k \to \ell^s$ are known only for factorable matrices (see Bennett [1]), which include weighted mean matrices. Therefore, we should not expect to obtain a set of necessary and sufficient conditions when an arbitrary triangle is involved.

However, necessary and sufficient conditions for a matrix $A : \ell \to \ell^s$, $1 \leq s < \infty$ are known. The following result comes from Theorem 2.1 of Rhoades and Savaş [5] by setting each $\lambda_n = 1$.

Theorem 6. Let T be a lower triangular matrix. Then $\sum a_n$ summable $|N, p_n|_k$ implies $\sum a_n$ summable $|T|, s \geq 1$ if and only if

1. $P_v |t_{vv}| / p_v = O(v^{1/s-1})$,
2. $\sum_{n=v+1}^{\infty} n^{s-1} |\Delta_v \hat{t}_{nv}|^s = O((p_v / P_v)^s)$,
3. $\sum_{n=v+1}^{\infty} n^{s-1} |\hat{t}_{n,v+1}|^s = O(1)$.

Remark 7. In [5], it is assumed that T has nonnegative entries and row sums one, but these restrictions are not used in the proofs.

Finally, we state necessary and sufficient conditions when $k = s = 1$.

Theorem 8. The series $\sum a_n$ summable $|N, p_n|$ implies $\sum a_n$ summable T if and only if

1. $P_v |t_{vv}| / p_v = O(1)$;
2. $\sum_{n=v+1}^{\infty} n^{s-1} |\Delta_v \hat{t}_{nv}| = O(p_v / P_v)$;
3. $\sum_{n=v+1}^{\infty} |\hat{t}_{n,v+1}| = O(1)$.

Proof. Note that, with $k = 1$, (12) is automatically satisfied. Therefore, the necessity of the conditions follows from Theorem 1.
Proof. With each $p_n = 1$, $T = (N, q_n)$, condition (i) of Theorem 8 reduces to condition (i) of Corollary 9.

Using (33),

\[
\sum_{n=\nu+1}^{\infty} |\Delta \hat{t}_{\nu,v} | = \sum_{n=\nu+1}^{\infty} |t_{\nu,v} - t_{\nu-1,v} | = \sum_{n=\nu+1}^{\infty} \left| \frac{p_v}{p_n} - \frac{p_v}{p_{n-1}} \right| = p_v \sum_{n=\nu+1}^{\infty} \frac{p_n}{p_n p_{n-1}} = \frac{p_v}{p_v},
\]

and condition (ii) of Theorem 8 is satisfied. Since (N, p_n) has row sums one,

\[
\hat{t}_{n,v+1} = \hat{t}_{n,v+1} - \hat{t}_{n-1,v+1} = \sum_{i=\nu+1}^{n} t_{ni} - \sum_{i=\nu+1}^{n} t_{n-1,i}
\]

\[
= 1 - \sum_{i=0}^{\nu} t_{ni} - 1 + \sum_{i=0}^{\nu} t_{n-1,i}
\]

\[
= \sum_{i=0}^{\nu} (t_{n-1,i} - t_{ni}) = \sum_{i=0}^{\nu} \left(\frac{p_i}{p_{n-1}} - \frac{p_i}{p_n} \right)
\]

\[
= \frac{p_n}{p_n p_{n-1}} \sum_{i=0}^{\nu} p_i = \frac{p_n p_{\nu}}{p_n p_{n-1}}.
\]

Therefore

\[
\sum_{n=\nu+1}^{\infty} |\hat{t}_{n,v+1} | = p_v \sum_{n=\nu+1}^{\infty} \frac{p_n}{p_n p_{n-1}} = 1,
\]

and condition (iii) of Theorem 8 is satisfied.

Corollary 10. The series $\sum a_n$ summable $|N, p_n|_k$ implies $\sum a_n$ summable $|C, 1|_k$ if and only if

(i) $p_n/(np_n) = O(1)$.

Proof. Using $T = (C, 1)$ in Theorem 8, condition (i) of Theorem 8 reduces to condition (i) of Corollary 10.

From (33) and (i) of Corollary 10,

\[
\sum_{n=\nu+1}^{\infty} \left| \Delta \hat{t}_{\nu,v} \right| = \sum_{n=\nu+1}^{\infty} \left| t_{\nu-1,v} - t_{\nu,v} \right| = \sum_{n=\nu+1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)
\]

\[
= \frac{1}{\nu+1} = \frac{p_v}{\nu p_v} \left(\frac{\nu}{\nu+1} \right) \left(\frac{p_v}{p_v} \right) = O\left(\frac{p_v}{p_v} \right),
\]

and condition (ii) of Theorem 8 is satisfied.
Using (36),
\[
\sum_{n=\nu+1}^{\infty} |\hat{t}_{n,\nu+1}| = \sum_{n=\nu+1}^{\infty} \left| \sum_{i=0}^{\nu} (t_{n-1,i} - t_{ni}) \right| \\
= \sum_{n=\nu+1}^{\infty} \left| \sum_{i=0}^{\nu} \left(\frac{1}{n} - \frac{1}{n+1} \right) \right| \\
= \sum_{n=\nu+1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)(\nu + 1) = (\nu + 1)\left(\frac{1}{\nu + 1} \right) = 1,
\]
and condition (iii) of Theorem 8 is satisfied.

Combining Corollaries 9 and 10, we have the following corollary.

Corollary 11. \(|\hat{N}, p_n|\) and \(|C, 1|\) are equivalent if and only if

(i) \(np_n/P_n = O(1)\);

(ii) \(P_n/(np_n) = O(1)\).

Acknowledgment. The first author received partial support from the Scientific and Technical Research Council of Turkey during the preparation of this paper.

References

B. E. RHoades: DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405-7106, USA

E-mail address: rhoades@indiana.edu

Ekrem Savaş: DEPARTMENT OF MATHEMATICS, YÜZÜÇÜ YIL UNIVERSITY, VAN, TURKEY

E-mail address: ekremsavas@yahoo.com
Submit your manuscripts at http://www.hindawi.com