ON HOPF DEMEYER-KANZAKI GALOIS EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 15 October 2002

Let H be a finite-dimensional Hopf algebra over a field k, B a left H-module algebra, and H^* the dual Hopf algebra of H. For an H^*-Azumaya Galois extension B with center C, it is shown that B is an H^*-DeMeyer-Kanzaki Galois extension if and only if C is a maximal commutative separable subalgebra of the smash product $B\#H$. Moreover, the characterization of a commutative Galois algebra as given by S. Ikehata (1981) is generalized.

2000 Mathematics Subject Classification: 16W30, 16H05.

1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k, B a left H-module algebra, and H^* the dual Hopf algebra of H. In [7], the class of Azumaya Galois extensions of a ring as studied in [1, 2] was generalized to H^*-Azumaya Galois extensions. An H^*-Azumaya Galois extension B was characterized in terms of the smash product $B\#H$ see [7, Theorem 3.4]. Observing that the commutator $V_B(B^H)$ of B^H in B is also an H^*-Azumaya Galois extension (see [7, Lemma 4.1]), in the present paper, we will give a characterization of an H^*-Azumaya Galois extension B in terms of $V_B(B^H)$. Moreover, we will investigate the class of H^*-Azumaya Galois extensions B such that $V_B(B^H) = C$, where C is the center of B. We note that when $H = kG$, where G is a finite automorphism group of B, such a B is precisely a DeMeyer-Kanzaki Galois extension with Galois group G [3, 6, 8, 9]. Several equivalent conditions are then given for an H^*-Azumaya Galois extension being an H^*-DeMeyer-Kanzaki Galois extension, and the characterization of a commutative Galois algebra as given by Ikehata [5, Theorem 2] is generalized to an H^*-DeMeyer-Kanzaki Galois extension.

2. Basic definitions and notation. Throughout, H denotes a finite-dimensional Hopf algebra over a field k with comultiplication Δ and counit ε, H^* the dual Hopf algebra of H, B a left H-module algebra, C the center of B, $B^H = \{b \in B \mid hb = \varepsilon(h)b \text{ for all } h \in H\}$, and $B\#H$ the smash product of B with H, where $B\#H = B \otimes_k H$ such that, for all $b\#h$ and $b'\#h'$ in $B\#H$, $(b\#h)(b'\#h') = \sum b(h_1b')\#h_2h'$, where $\Delta(h) = \sum h_1 \otimes h_2$.

For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. We call B a separable extension of A if there
exist \{a_i, b_i \mid i = 1, 2, \ldots, m\} such that \(\sum a_i b_i = 1 \) and
\(\sum b_i a_i \otimes b_i = \sum a_i \otimes b_i b \) for all \(b \) in \(B \) where \(\otimes \) is over \(A \). An Azumaya algebra is a separable extension of its center. A ring \(B \) is called a Hirata separable extension of \(A \) if \(B \otimes_A B \) is isomorphic to a direct summand of a finite direct sum of \(B \) as a \(B \)-bimodule. A ring \(B \) is called an \(H^* \)-Galois extension of \(B^H \) if \(B \) is a right \(H^* \)-comodule algebra with structure map \(\rho : B \to B \otimes_k H^* \) such that
\[\beta : B \otimes_B H \to B \otimes_k H^* \] is a bijection where \(\beta(a \otimes b) = (a \otimes 1) \rho(b) \). An \(H^* \)-Galois extension \(B \) is called an \(H^* \)-Azumaya Galois extension if \(B \) is separable over \(B^G \) which is an Azumaya algebra over \(C^G \), and an \(H^* \)-DeMeyer-Kanzaki Galois extension if \(B \) is an \(H^* \)-Azumaya Galois extension and \(V_B(B^H) = C \).

Let \(P \) be a finitely generated and projective module over a commutative ring \(R \). Then for a prime ideal \(p \) of \(R \), \(R_p \) (= \(R \otimes_k R_p \)) is a free module over \(R_p \) (= the local ring of \(R \) at \(p \)), and the rank of \(R_p \) over \(R_p \) is the number of copies of \(R_p \) in \(R_p \), that is, \(\text{rank}_{R_p}(R_p) = m \) for some integer \(m \). It is known that the rank\(R_p(P) \) is a continuous function (\(\text{rank}_{R_p}(P) = \text{rank}_{R_p}(P_p) = m \)) from \(\text{Spec}(R) \) to the set of nonnegative integers with the discrete topology (see [4, Corollary 4.11, page 31]). We will use the rank\(R(p) \)-function for a finitely generated and projective module \(P \) over a commutative ring \(R \).

3. \(H^* \)-Azumaya Galois extensions. In this section, keeping all notations as given in Section 2, we will characterize an \(H^* \)-Azumaya Galois extension \(B \) in terms of the commutator \(V_B(B^H) \) of \(B^H \) in \(B \).

Theorem 3.1. If \(B = B^H \cdot V_B(B^H) \), then \((V_B(B^H))^H = C^H\).

Proof. Since \(C \subset V_B(B^H) \), \(C^H \subset (V_B(B^H))^H \). Conversely, since \(V_B(B^H) \subset B \), \((V_B(B^H))^H \subset B^H \). Hence \((V_B(B^H))^H \subset B^H \cap V_B(B^H) \subset \text{center of } V_B(B^H) \). But \(B = B^H \cdot V_B(B^H) \), so the center of \(V_B(B^H) \) is \(C \). Thus, \((V_B(B^H))^H \subset C^H \). \(\square \)

Theorem 3.2. A ring \(B \) is an \(H^* \)-Azumaya Galois extension of \(B^H \) if and only if \(B = B^H \cdot V_B(B^H) \) such that \(V_B(B^H) \) is an \(H^* \)-Azumaya Galois extension of \(C^H \) and \(B^H \) is an Azumaya \(C^H \)-algebra.

Proof. (\(\Rightarrow \)) Since \(B \) is an \(H^* \)-Azumaya Galois extension of \(B^H \), then \(V_B(B^H) \) is an \(H^* \)-Azumaya Galois extension of \((V_B(B^H))^H \) (see [7, Lemma 4.1]) and \(B^H \) is an Azumaya \(C^H \)-algebra (see [7, Theorem 3.4]). Moreover, by the proof of [7, Lemma 4.1], \(B \# H \) is an Azumaya \(C^H \)-algebra such that \(B \# H \cong B^H \otimes_{C^H} (V_B(B^H) \# H) \cong B^H(V_B(B^H) \# H) \), where \(B^H \) and \(V_B(B^H) \# H \) are Azumaya \(C^H \)-algebras. But \(H \) is a finite-dimensional Hopf algebra over a field \(k \), so \(B \cong B^H \otimes_{C^H} V_B(B^H) \) from the isomorphism \(B \# H \cong B^H \otimes_{C^H} (V_B(B^H) \# H) \), and so \(B = B^H \cdot V_B(B^H) \). Hence \((V_B(B^H))^H = C^H \) by Theorem 3.1. Thus \(V_B(B^H) \) is an \(H^* \)-Azumaya Galois \(C^H \)-algebra.

(\(\Leftarrow \)) Since \(V_B(B^H) \) is an \(H^* \)-Azumaya Galois algebra over \(C^H \), \(V_B(B^H) \# H \) is an Azumaya \(C^H \)-algebra [7, Theorem 3.4]. By hypothesis, \(B^H \) is an Azumaya \(C^H \)-algebra, so \(B^H \otimes_{C^H} (V_B(B^H) \# H) \cong B^H V_B(B^H) \# H = B \# H \) which is an Azumaya...
Thus \(B \# H \) is a Hirata separable extension of \(B \) (see [5, Theorem 1]). Moreover, \(V_B(B^H) \) is a separable \(C^H \)-algebra (see [7, Theorem 3.4]) and \(B^H \) is an Azumaya \(C^H \)-algebra by hypothesis, so \(B^H : V_B(B^H) (\equiv B) \) is also a separable \(C^H \)-algebra. Thus \(B \) is an \(H^* \)-Azumaya Galois extension of \(B^H \) [7, Theorem 3.4].

Next we generalize the characterization of a commutative Galois algebra as given by Ikehata (see [5, Theorem 2]) to a commutative \(H^* \)-Galois algebra.

Lemma 3.3. If \(C \) is a commutative \(H^* \)-Galois algebra over \(C^H \), then \(C \) is a maximal commutative subalgebra of \(C \# H \).

Proof. Since \(C \) is a commutative \(H^* \)-Galois algebra over \(C^H \), \(C \# H \equiv \text{Hom}_{C^H}(C, C) \) [6, Theorem 1.7]. Hence it suffices to show that \(V_{\text{Hom}_{C^H}(C, C)}(C_L) = C_L \) where \(C_L = \{c_L, \text{ the left multiplication map induced by } c \in C \}. \) In fact, \(C_L \subset V_{\text{Hom}_{C^H}(C, C)}(C_L) \) is clear. Conversely, let \(f \in V_{\text{Hom}_{C^H}(C, C)}(C_L) \). Then, for each \(c \in C \), \((c f)(x) = (f c)(x) \) for all \(x \in C \). Hence \(c f(x) = f(c x) \), and so \(c f(1) = f(c) \) for all \(c \in C \). Thus \(f(c) = d f(c) \) for all \(c \in C \), where \(d_f = f(1) \in C \), that is, \(f = (d_f)_L \in C_L \).

Theorem 3.4. Let \(C \) be a commutative separable \(C^H \)-algebra containing \(C^H \) as a direct summand as a \(C^H \)-module. Then, \(C \) is a commutative \(H^* \)-Galois algebra over \(C^H \) if and only if \(C \otimes_{C^H} (C \# H) \equiv M_n(C) \), the matrix algebra over \(C \) of order \(n \) where \(n \) is the dimension of \(H \) over \(k \).

Proof. \((\Rightarrow)\) Since \(C \) is an \(H^* \)-Galois algebra over \(C^H \), \(C \# H \equiv \text{Hom}_{C^H}(C, C) \) such that \(C \) is finitely generated and projective over \(C^H \) [6, Theorem 1.7]. Hence \(C \# H \) is an Azumaya \(C^H \)-algebra and \(C \) is a maximal commutative subalgebra of the Azumaya \(C^H \)-algebra \(C \# H \) by **Lemma 3.3**. By hypothesis, \(C \) is also a separable \(C^H \)-algebra, so \(C \) is a splitting ring for the Azumaya \(C^H \)-algebra \(C \# H \) such that \(C \otimes_{C^H} (C \# H) \equiv \text{Hom}_{C}(C \# H, C \# H) \) (see the proof of [4, Theorem 5.5, page 64]). Noting that \(C \# H = C \otimes_k H \) which is a free \(C \)-module of rank \(n \) where \(n = \dim_k(H) \), we have that \(C \otimes_{C^H} (C \# H) \equiv M_n(C) \).

\((\Leftarrow)\) Since \(C \otimes_{C^H} (C \# H) \equiv M_n(C) \), \(C \otimes_{C^H} (C \# H) \) is an Azumaya \(C \)-algebra. By hypothesis, \(C^H \) is a direct summand of \(C \) as a \(C^H \)-module, so \(C \# H \) is an Azumaya \(C^H \)-algebra [4, Corollary 1.10, page 45]. Hence \(C \# H \) is a Hirata separable extension of \(C \). But \(C \) is a separable \(C^H \)-algebra by hypothesis, so \(C \) is an \(H^* \)-Galois algebra over \(C^H \) [7, Theorem 3.4].

We remark that the necessity does not need the hypothesis that \(C^H \) is a direct summand of \(C \).

4. \(H^* \)-DeMeyer-Kanzaki Galois extensions. We recall that \(B \) is an \(H^* \)-DeMeyer-Kanzaki Galois extension of \(B^H \) if \(B \) is an \(H^* \)-Azumaya Galois extension of \(B^H \) and \(V_B(B^H) = C \). In this section, we characterize an \(H^* \)-DeMeyer-Kanzaki Galois extension in terms of the smash product \(V_B(B^H) \# H \) and prove that \(C \) is a splitting ring for the Azumaya \(C^H \)-algebras \(V_B(B^H) \# H \) and \(B \# H \).
Theorem 4.1. Let B be an H^*-Azumaya Galois extension of B^H. Then the following statements are equivalent:

1. B is an H^*-DeMeyer-Kanzaki Galois extension of B^H;
2. $\text{rank}_{CH}(V_B(B^H)) = \text{rank}_{CH}(C)$;
3. C is a maximal commutative separable subalgebra of $V_B(B^H)\#H$.

Proof.

$(1)\Rightarrow(2)$. It is clear.

$(2)\Rightarrow(1)$. Since B is an H^*-Azumaya Galois extension of B^H, $V_B(B^H)$ is an H^*-Azumaya Galois algebra over C^H by Theorem 3.2 such that $V_B(B^H)$ is a separable and finitely generated projective module over C^H (see [7, Theorem 3.4]). Hence the rank function $\text{rank}_{CH}(V_B(B^H))$ is defined and $V_B(B^H)$ is an Azumaya algebra over its center [4, Theorem 3.8, page 55]. But $B = B^H \cdot V_B(B^H)$ by Theorem 3.2, so the center of $V_B(B^H)$ is C. Thus $V_B(B^H)$ is an Azumaya C-algebra; and so C is a direct summand $V_B(B^H)$ as a C-module. This implies that C is a direct summand $V_B(B^H)$ as a C^H-module. Therefore the rank function $\text{rank}_{C^H}(C)$ is also defined. Now by hypothesis, $\text{rank}_{CH}(V_B(B^H)) = \text{rank}_{CH}(C)$, so $V_B(B^H) = C$, that is, B is an H^*-DeMeyer-Kanzaki Galois extension of B^H.

$(1)\Rightarrow(3)$. Since B is an H^*-DeMeyer-Kanzaki Galois extension of B^H, B is an H^*-Azumaya Galois extension such that $V_B(B^H) = C$. Hence $B = B^H \cdot V_B(B^H) \cong B^H \otimes_{C^H} C$ such that C is an H^*-Galois algebra over C^H by Theorem 3.2, and so C is a separable C^H-algebra containing C^H as a direct summand as a C^H-module [7, Theorem 3.4]. Hence C is a maximal commutative separable subalgebra of C^H where $C = V_B(B^H)$ by Lemma 3.3.

$(3)\Rightarrow(2)$. Since B is an H^*-Azumaya Galois extension of B^H, $B = B^H \cdot V_B(B^H) \cong B^H \otimes_{C^H} V_B(B^H)$ such that $V_B(B^H)$ is an H^*-Azumaya Galois algebra over C^H by Theorem 3.2. Hence $V_B(B^H)\#H$ is an Azumaya C^H-algebra and $V_B(B^H)$ is an Azumaya C-algebra [7, Theorem 3.4]. By hypothesis, C is a maximal commutative separable subalgebra of $V_B(B^H)\#H$, so

$$C \otimes_{C^H} (V_B(B^H)\#H) \cong \text{Hom}_C(V_B(B^H)\#H, V_B(B^H)\#H)$$

(4.1)

(see [4, Theorem 5.5, page 64]). On the other hand, $V_B(B^H)\#H \cong \text{Hom}_{C^H}(V_B(B^H), V_B(B^H))$ (see [7, Theorem 3.4]). Thus

$$C \otimes_{C^H} (V_B(B^H)\#H) \cong C \otimes_{C^H} \text{Hom}_{C^H}(V_B(B^H), V_B(B^H))$$

$$\cong \text{Hom}_C(C \otimes_{C^H} V_B(B^H), C \otimes_{C^H} V_B(B^H));$$

(4.2)

and so $\text{Hom}_C(V_B(B^H)\#H, V_B(B^H)\#H) \cong \text{Hom}_C(C \otimes_{C^H} V_B(B^H), C \otimes_{C^H} V_B(B^H))$. This implies that $V_B(B^H)\#H \cong P \otimes_C (C \otimes_{C^H} V_B(B^H))$ for some finitely generated projective C-module P of rank 1, that is, $V_B(B^H)\#H \cong P \otimes_{C^H} V_B(B^H)$. Taking rank$_{C^H}$ () both sides, we have that $n \cdot \text{rank}_{CH}(V_B(B^H)) = (\text{rank}_{CH}(P)) \cdot (\text{rank}_{CH}(V_B(B^H)))$ where $n = \dim_k(H)$. But rank$_{CH}(V_B(B^H))$ is also n, so rank$_{CH}(C) = \text{rank}_{CH}(P) = n = \text{rank}_{CH}(V_B(B^H))$.

\[\square\]
Theorem 4.1 implies that the Azumaya CH-algebras $V_B(B^H)$ and B^H have a nice splitting ring C which is an H^*-Galois algebra over CH and separable over CH such that $C \otimes_{CH} (V_B(B^H))$ and $C \otimes_{CH} (B^H)$ are matrix algebras.

Corollary 4.2. If B is an H^*-Demeyer-Kanzaki Galois extension of B^H, then $C \otimes_{CH} (V_B(B^H)) \cong M_n(C)$, the matrix algebra over C of order n where $n = \dim_k(H)$.

Proof. By hypothesis, B is an H^*-Demeyer-Kanzaki Galois extension of B^H, so $C (= V_B(B^H))$ is an H^*-Galois algebra over CH by Theorem 3.2. Hence C is a separable CH-algebra and C^H is an Azumaya CH^*-algebra [7, Theorem 3.4]. Thus CH is a direct summand of C as a CH-module. Therefore, $C \otimes_{CH} (C^H) \cong M_n(C)$ by Theorem 3.4.

Corollary 4.3. If B is an H^*-Demeyer-Kanzaki Galois extension of B^H, then $C \otimes_{CH} (B^H) \cong M_n(B)$, the matrix algebra over B of order n where $n = \dim_k(H)$.

Proof. By Corollary 4.2, $C \otimes_{CH} (C^H) \cong M_n(C)$, so

$$B^H \otimes_{CH} C \otimes_{CH} (C^H) \cong B^H \otimes_{CH} M_n(C). \quad (4.3)$$

Since $B = B^H \cdot V_B(B^H) \cong B^H \otimes_{CH} V_B(B^H) = B^H \otimes_{CH} C$, we have that $C \otimes_{CH} (B^H) \cong C \otimes_{CH} ((B^H \otimes_{CH} C)^H)$

$$\cong C \otimes_{CH} B^H \otimes_{CH} (C^H) \cong B^H \otimes_{CH} C \otimes_{CH} (C^H) \cong B^H \otimes_{CH} M_n(C) \cong M_n(B^H \otimes_{CH} C)$$

$$\cong M_n(B). \quad (4.4)$$

Acknowledgments. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu