ON DEDEKIND’S CRITERION AND MONOGENICITY OVER DEDEKIND RINGS

M. E. CHARKANI and O. LAHLOU

Received 29 November 2002

We give a practical criterion characterizing the monogenicity of the integral closure of a Dedekind ring \(R \), based on results on the resultant \(\text{Res}(P, P_i) \) of the minimal polynomial \(P \) of a primitive integral element and of its irreducible factors \(P_i \) modulo prime ideals of \(R \). We obtain a generalization and an improvement of the Dedekind criterion (Cohen, 1996) and we give some applications in the case where \(R \) is a discrete valuation ring or the ring of integers of a number field, generalizing some well-known classical results.

Mathematics Subject Classification: 11Y40, 13A18, 13F30.

1. Introduction. Let \(K \) be an algebraic number field and let \(O_K \) be its ring of integers. If \(O_K = \mathbb{Z}[\theta] \) for some number \(\theta \) in \(O_K \), we say that \(O_K \) has a power basis or \(O_K \) is monogenic. The question of the existence of a power basis was originally examined by Dedekind [5]. Several number theorists were interested in and attracted by this problem (see [7, 8, 9]) and noticed the advantages of working with monogenic number fields. Indeed, for a monogenic number field \(K \), in addition to the ease of discriminant computations, the factorization of a prime \(p \) in \(K/\mathbb{Q} \) can be found most easily (see [4, Theorem 4.8.13, page 199]). The main result of this paper is Theorem 2.5 which characterizes the monogenicity of the integral closure of a Dedekind ring. More precisely, let \(R \) be a Dedekind domain, \(K \) its quotient field, \(L \) a finite separable extension of degree \(n \) of \(K \), \(\alpha \) a primitive element of \(L \) integral over \(R \), \(P(X) = \text{Irrd}(\alpha, K) \), \(m \) a maximal ideal of \(R \), and \(O_L \) the integral closure of \(R \) in \(L \). Assume that \(\tilde{P}(X) = \prod_{i=1}^{r} \tilde{P}_i^{e_i}(X) \) in \((R/m)[X] \) with \(e_i \geq 2 \), and let \(P_i(X) \in R[X] \) be a monic lifting of \(\tilde{P}_i(X) \) for \(1 \leq i \leq r \). Then we prove that \(O_L = R[\alpha] \) if and only if, for every maximal ideal \(m \) of \(R \) and \(i \in \{1, \ldots, r\} \), \(v_m(\text{Res}(P_i, P)) = \deg(P_i) \), where \(v_m \) is the \(m \)-adic discrete valuation associated to \(m \). This leads to a necessary and sufficient condition for a simple extension \(R[\alpha] \) of a Dedekind ring \(R \) to be Dedekind. At the end, we give two illustrations of this criterion. In the second example, we give the converse which was not known yet.

2. Monogenicity over a Dedekind ring. Throughout this paper \(R \) is an integral domain, \(K \) its quotient field, \(L \) is a finite separable extension of degree \(n \) of \(K \), \(\alpha \) is a primitive element of \(L \) integral over \(R \), \(P(X) = \text{Irrd}(\alpha, K) \), \(m \) is
a maximal ideal of R, and O_L is the integral closure of R in L. Let f and g be two polynomials over R; the resultant of f and g will be denoted by $\text{Res}(f, g)$ (see [11]).

Definition 2.1. If $O_L = R[\theta]$ for some number $\theta \in O_L$, then O_L has a power basis or O_L is monogenic.

Proposition 2.2. Let R be an integrally closed ring and let α be an integral element over R. Then $(R[\alpha])_p = R_p[\alpha]$ for every prime ideal p of R. In particular, $O_L = R[\alpha]$ if and only if $R_p[\alpha]$ is integrally closed for every prime ideal p of R if and only if $R[\alpha]$ is integrally closed.

Proof. We obtain the result from the isomorphism $R[\alpha] \cong R[\alpha] / \langle \bar{P}(X) \rangle$, the properties of an integrally closed ring and its integral closure, and the properties of a multiplicative closed subset of a ring R, notably, $S^{-1}(R[X]) = (S^{-1}R)[X]$ (see [1]).

Definition 2.3. Let R be a discrete valuation ring (DVR), $p = \pi R$ its maximal ideal, and α an integral element over R. Let P be the minimal polynomial of α, and $\bar{P}(X) = \prod_{i=1}^{r} \bar{P}_i(X)$ the decomposition of P into irreducible factors in $(R/p)[X]$. Set

$$
\begin{align*}
 f(X) &= \prod_{i=1}^{r} P_i(X) \in R[X], \\
 h(X) &= \prod_{i=1}^{r} P_i^{e_i-1}(X) \in R[X], \\
 T(X) &= \frac{P(X) - \prod_{i=1}^{r} P_i^{e_i}(X)}{\pi} \in R[X],
\end{align*}
$$

where $P_i(X) \in R[X]$ is a monic lifting of $\bar{P}_i(X)$, for $1 \leq i \leq r$. We will say that $R[\alpha]$ is p-maximal if $(\bar{f}, \bar{T}, \bar{h}) = 1$ in $(R/p)[X]$ (where (\cdot, \cdot) denotes the greatest common divisor (gcd)). If R is a Dedekind ring and p is a prime ideal of R, then we say that $R[\alpha]$ is p-maximal if $R_p[\alpha]$ is pR_p-maximal.

Remarks 2.4. (1) If π is unramified in $R[\alpha]$, that is, $e_i = 1$ for all i, then $\bar{h} = 1$ and therefore $R[\alpha]$ is p-maximal.

(2) Let π be ramified in $R[\alpha]$, that is, there is at least one i such that $e_i \geq 2$. Let $S = \{i \in \{1, \ldots, r\} \mid e_i \geq 2\}$ and $f_i(X) = \prod_{i \in S} P_i(X) \in R[X]$. Then $(\bar{f}, \bar{T}, \bar{h}) = 1$ in $(R/p)[X]$ since $f_1 = (\bar{f}, \bar{h})$. In particular, if every $e_i \geq 2$, then $(\bar{f}, \bar{T}) = (\bar{T}, \bar{f}, \bar{h})$, because \bar{f} divides \bar{h} in this case.

(3) Definition 2.3 is independent of the choice of the monic lifting of the \bar{P}_i. More precisely, let

$$
P(X) = \prod_{i=1}^{r} \bar{P}_i^{e_i}(X) = \prod_{i=1}^{r} \bar{Q}_i^{e_i}(X) \quad \text{with} \quad \bar{P}_i(X) = \bar{Q}_i(X) \quad \text{for} \quad 1 \leq i \leq r \quad \text{in} \quad (R/p)[X].
$$

(2.2)
Set
\[g(X) = \prod_{i=1}^{r} Q_i(X) \in R[X], \quad k(X) = \prod_{i=1}^{r} Q_i^{e_i-1}(X) \in R[X] \]
\[U(X) = \pi^{-1} \left(P(X) - \prod_{i=1}^{r} Q_i(X) \right) \in R[X]. \]

Then \((\tilde{f}, \tilde{T}, \tilde{h}) = 1 \) in \((R/p)[X]\) if and only if \((g, \bar{U}, \bar{k}) = 1 \) in \((R/p)[X]\). Indeed, we may assume that \(R\) is a DVR and \(p = \pi R\). Let \(V_1 = (g - f)/\pi\) and \(V_2 = (k - h)/\pi\). Then \(\pi T = \pi U + gk - fh\). Replacing \(g\) by \(\pi V_1 + f\) and \(k\) by \(\pi V_2 + h\), we find that \(\tilde{T} = \bar{U} + \bar{V}_1 \bar{h} + \bar{V}_2 \tilde{f}\) and therefore \((\tilde{T}, \tilde{f}, \tilde{h}) = (\bar{U}, \tilde{f}, \tilde{h}) = (\bar{U}, \bar{g}, \bar{k})\) since \(\tilde{f} = \bar{g}\) and \(\bar{h} = \bar{k}\).

Theorem 2.5. Let \(R\) be a Dedekind ring. Let \(P\) be the minimal polynomial of \(\alpha\), and assume that for every prime ideal \(p\) of \(R\), the decomposition of \(P\) into irreducible factors in \((R/p)[X]\) verifies:
\[\bar{P}(X) = \prod_{i=1}^{r} \bar{P}_i^{e_i}(X) \in (R/p)[X] \] (2.4)
with \(e_i \geq 2\) for \(i = 1, \ldots, r\) and \(P_i(X) \in R[X]\) be a monic lifting of the irreducible factor \(\bar{P}_i\) for \(i = 1, \ldots, r\). Then \(O_L = R[\alpha]\) if only if \(v_p(\text{Res}(P, P)) = \deg(P_i)\) for every prime ideal \(p\) of \(R\) and for every \(i = 1, \ldots, r\), where \(v_p\) is the \(p\)-adic discrete valuation associated to \(p\).

For the proof we need the following two lemmas.

Lemma 2.6. Let \(p = uR + vR\) be a maximal ideal of a commutative ring \(R\). Then \(pR_p = vR_p\) if and only if there exist \(a, b \in R\) such that \(u = au^2 + bv\).

Proof. If \(pR_p = vR_p\), then there exist \(s \in R\) and \(t \in R - p\) such that \(tu = vs\). Since \(p\) is maximal in \(R\), so there exists \(t' \in R\) such that \(tt' - 1 \in p\). Hence \(u - utt' = u - vst' \in p^2\) and there exist \(a, b \in R\) such that \(u = au^2 + bv\). Conversely, \(u^2R + vR \subseteq vR + p^2 \subseteq p\). If there exist \(a, b \in R\) such that \(u = au^2 + bv\), then \(p = u^2R + vR\) and therefore \(vR + p^2 = p\). Localizing at \(p\) and applying Nakayama’s lemma, we find that \(pR_p = vR_p\). \(\square\)

Lemma 2.7. Let \(R\) be a commutative integral domain, let \(K\) be its quotient field, and consider \(P, g, h, T \in R[X]\). If \(g\) is monic and \(P = gh + \pi T\), then \(\text{Res}(g, P) = \pi^{\deg(g)} \text{Res}(g, T)\). In particular, if \(m = \pi R\) is a maximal ideal of \(R\) and if \(\bar{P}(X) = \prod_{i=1}^{r} \bar{P}_i^{e_i}(X)\) is the decomposition of \(\bar{P}\) into irreducible factors in \((R/m)[X]\), with \(\bar{P}_i(X) \in R[X]\) a monic lifting of \(\bar{P}_i(X)\) for \(1 \leq i \leq r\), and \(T(X) = \pi^{-1}(P(X) - \prod_{i=1}^{r} \bar{P}_i^{e_i}(X)) \in R[X]\), then
\[\text{Res}(P, P) = \pi^{\deg(P)} \text{Res}(P, T) \] (2.5)
and \((\bar{P}_i, \bar{T})=1\) in \((R/m)[X]\) if and only if
\[
\Res(P_i, T) = \frac{\Res(P_i, P)}{\pi^{\deg(P_i)}} \in R - m. \tag{2.6}
\]

Proof. Let \(x_1, \ldots, x_m\) be the roots of \(g\) in the algebraic closure \(\bar{K}\) of \(K\). It is then easy to see (see [11]) that \(\Res(g, P) = \prod_{i=1}^{m} P(x_i) = \pi^{\deg(g)} \Res(g, T)\) because \(P(x_i) = \pi T(x_i)\). The second result follows from \(\Res(\bar{P}_i, P) = \Res(\bar{P}_i, P)\) and [2, Corollary 2, page 73]. \(\square\)

Proof of Theorem 2.5. By Proposition 2.2, we may assume that \(R\) is a DVR. Let \(p\) be a prime ideal of \(R\) and \((O_L)_{(p)}\) the integral closure of \(R_p\) in \(L\). Let \(\bar{P}(X) = \prod_{i=1}^{r} P_i^{e_i}(X)\) in \((R_p/pR_p)[X]\) with \(e_i \geq 2\) and \(P_i(X) \in R_p[X]\) a monic lifting of \(\bar{P}_i(X)\) for \(1 \leq i \leq r\). Let
\[
T(X) = \frac{P(X) - \prod_{i=1}^{r} P_i^{e_i}(X)}{\pi} \in R_p[X]\tag{2.7}
\]
with \(\pi R_p = pR_p\).

(a) We prove that if \((\bar{P}_i, \bar{T}) = 1\) in \((R_p/pR_p)[X]\) for every \(i = 1, \ldots, r\), then \((O_L)_{(p)} = R_p[\alpha] = A\). Indeed, \(\bar{P}(X) = \prod_{i=1}^{r} P_i^{e_i}(X)\) in \((R_p/pR_p)[X]\) and \(R_p\) is a local ring, so by [14, Lemma 4, page 29] (see also [3]) the ideals \(\mathcal{B}_i = \pi A + P_i(\alpha)A\) \((i = 1, \ldots, r)\) are the only maximal ideals of \(A\), so \(A\) is integrally closed if and only if \(\mathcal{A}_{\mathcal{B}_i}\) is integrally closed for every \(i = 1, \ldots, r\). More generally, we prove that every \(\mathcal{A}_{\mathcal{B}_i}\) is a DVR. Since \(R_p\) is Noetherian, so \(R_p[\alpha] \cong R_p[X]/(P(X))\) is Noetherian, hence \(\mathcal{A}_{\mathcal{B}_i}\) is Noetherian since \(\mathcal{A}_{\mathcal{B}_i}\) is a local integral domain with maximal ideal \(\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i}\). It remains to show that \(\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i}\) is principal. Indeed, \((\bar{P}_i, \bar{T}) = 1\) in \((R_p/pR_p)[X]\), hence there exist polynomials \(U_1, U_2, U_3 \in R_p[X]\) such that \(1 = U_1(X)P_i(X) + U_2(X)T(X) + \pi U_3(X)\). Now \(P(\alpha) = 0 = \prod_{j=1}^{r} \bar{P}_j^{e_j}(\alpha) + \pi T(\alpha)\), hence \(\prod_{j=1}^{r} \bar{P}_j^{e_j}(\alpha) = -\pi T(\alpha)\), so
\[
\pi = \pi U_1(\alpha)P_i(\alpha) + \pi^2 U_3(\alpha) - \prod_{j=1}^{r} \bar{P}_j^{e_j}(\alpha) U_2(\alpha) \\
= \pi U_3(\alpha) + P_i(\alpha)U_4(\alpha) \tag{2.8}
\]
with \(U_4 = \pi U_1 - P_i^{e_i-1}(\prod_{j=1, j \neq i}^{r} \bar{P}_j^{e_j})U_2 \in R_p[X]\). It follows from Lemma 2.6 that \(\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i} = P_i(\alpha)\mathcal{A}_{\mathcal{B}_i}\), in other words, \(\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i}\) is principal. We conclude that \(\mathcal{A}_{\mathcal{B}_i}\) is a DVR and therefore an integrally closed ring, and \((O_L)_{(p)} = R_p[\alpha]\).

(b) We will now prove that \((\bar{P}_i, \bar{T}) = 1\) in \((R_p/pR_p)[X]\) for every \(i = 1, \ldots, r\) if \((O_L)_{(p)} = R_p[\alpha]\). We first show that the ring \(\mathcal{A}_{\mathcal{B}_i}\) is a DVR, for every \(i\). Indeed, \(R_p\) is a Dedekind ring and \(L\) is a finite extension of \(K\), and it follows from [10, Theorem 6.1, page 23] that \((O_L)_{(p)} = R_p[\alpha] = A\) is a Dedekind ring, so \(\mathcal{A}_{\mathcal{B}_i}\) is a DVR. Let us show next that \(T(\alpha)\) is a unit in every \(\mathcal{A}_{\mathcal{B}_i}\). Indeed, \(\mathcal{A}_{\mathcal{B}_i}\) is a DVR and so its maximal ideal \(\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i} = \pi \mathcal{A}_{\mathcal{B}_i} + P_i(\alpha)\mathcal{A}_{\mathcal{B}_i}\) is principal. Let \(\lambda \in \mathcal{A}_{\mathcal{B}_i}\) be a generator of \(\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i}\). Then there exist \(u, v \in \mathcal{A}_{\mathcal{B}_i}\) such that \(\lambda = \pi u + P_i(\alpha)v \in \mathcal{B}_i\mathcal{A}_{\mathcal{B}_i} - (\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i})^2\). Now \(R_p\) is a DVR, \(P = \text{Irrd}(\alpha, R_p)\), \(\bar{P} = \prod_{j=1}^{r} \bar{P}_j^{e_j}\)
in \((R_p/\pi R_p)[X]\), \(\pi R_p \in \text{Spec} R_p\), and \((O_L)_{(p)} = R_p[\alpha] = A\) is the integral closure of \(R_p\) in \(L = K(\alpha)\) with \(K = \text{Fr}(R_p)\), and we find that \(\pi A = \prod_{j=1}^r \overline{\pi}^{s_j}\). Hence \(\pi \in \mathfrak{B}_i^2\) because \(e_i \geq 2\). Now \(\lambda \notin (\mathfrak{B}_i;\mathfrak{A}_i)^2\), hence \(P_i(\alpha) \notin (\mathfrak{B}_i;\mathfrak{A}_i)^2\), because
\(\lambda = u\pi + P_i(\alpha) v\). It then follows that \(P_i(\alpha)\) is a generator of \(\mathfrak{B}_i;\mathfrak{A}_i = P_i(\alpha)\mathfrak{A}_i\)

since \(\mathfrak{A}_i\mathfrak{A}_i = (\mathfrak{B}_i;\mathfrak{A}_i)^{e_i} = \overline{P}_i^{s_i}(\alpha)\mathfrak{A}_i\), and \(\pi = \overline{P}_i^{e_i}(\alpha)\epsilon_1\) with \(e_1 \in U(A)\).

We now show that \(P_j(\alpha) \in U(A)\) for every \(j \neq i\). Indeed, if \(P_j(\alpha) \in \mathfrak{B}_i;\mathfrak{A}_i\), then there exists \(a_i \in \mathfrak{B}_i\) and \(b_i \in A - \mathfrak{B}_i\) such that \(P_j(\alpha) = a_i/b_i\). Then \(a_i = P_j(\alpha) b_i \in \mathfrak{B}_i\). Now, \(\mathfrak{B}_i\) is a prime ideal of \(A\), hence \(P_j(\alpha) \in \mathfrak{B}_i\). As \(\mathfrak{B}_j = \pi A + P_j(\alpha) A\), so \(\mathfrak{B}_j \subseteq \mathfrak{B}_i\). This is impossible because the \(\mathfrak{B}_i\) are distinct, and it follows that \(P_j(\alpha) \in U(A)\) for every \(j \neq i\). Thus there exists \(\epsilon_2 \in U(A)\) such that \(\prod_{j=1}^r P_j^{e_j}(\alpha) = \epsilon_2\).

Since \(\prod_{j=1}^r P_j^{e_j}(\alpha) = -\pi T(\alpha), \pi = P_i^{e_i}(\alpha)\epsilon_1\), and \(\prod_{j=1}^r P_j^{e_j}(\alpha) = \epsilon_2\), then \(T(\alpha) = -\epsilon_2\epsilon_1^{-1} \in U(A)\). So \(T(\alpha) \in U(A)\) for every \(i\), and \(T(\alpha) \in U(A)\); otherwise, Krull’s theorem implies the existence of a maximal ideal \(\mathfrak{B}_i\) of \(A\) such that \(T(\alpha) \in \mathfrak{B}_i\), and \(T(\alpha) \in \mathfrak{B}_i;\mathfrak{A}_i = \mathfrak{A}_i - U(A)\), which is impossible.

We conclude that \(T(\alpha)\) is a unit in \(R_p[\alpha]\), and, by [2, Corollary 1, page 73], there exist \(U_1, V_1 \in R_p[X]\) such that

\[1 = U_1(X) P(X) + V_1(X) T(X)\]

Consequently \(\overline{1} = U_1(X) \overline{P}(X) + V_1(X) \overline{T}(X)\) in \((R_p/\pi R_p)[X]\), which is principal. Hence \((\overline{P}, \overline{T}) = 1\) in \((R_p/\pi R_p)[X]\) since \(\overline{P} = \prod_{i=1}^r \overline{P_i}^{e_i}\) in \((R_p/\pi R_p)[X]\) then \((\overline{P}, \overline{T}) = 1\) in \((R_p/\pi R_p)[X]\) for every \(i\). Our result now follows from Proposition 2.2 and Lemma 2.7.

REMARKS 2.8. (1) Let \(\pi\) be ramified in \(R[\alpha], S = \{i \in \{1,\ldots, r\} \mid e_i \geq 2\}\), and \(f_1(X) = \prod_{i \in S} P_i(X) \in R[X]\). It follows from Lemma 2.7 that the following statements are equivalent:

(i) \((\overline{f}_1, \overline{T}) = 1\) in \((R/p)[X]\);

(ii) \(v_p(\text{Res}(f_1, P)) = \deg(f_1)\);

(iii) for every \(i \in S\), we have \(v_p(\text{Res}(P_i, P)) = \deg(P_i)\), where \(v_p\) is the \(p\)-adic discrete valuation associated to \(p\).

(2) It follows from the above equivalence and Remark 2.4(2) and (3) that the condition in Theorem 2.5 is independent of the choice of the monic lifting of \(\overline{P_i}\). More precisely, if \(e_i \geq 2\) for every \(i\), and if we take another monic lifting \(Q_i\) of \(\overline{P_i}\), then \(v_p(\text{Res}(P_i, P)) = \deg(P_i)\) for all \(i = 1,\ldots, r\) if and only if \(v_p(\text{Res}(Q_i, P)) = \deg(Q_i)\) for all \(i = 1,\ldots, r\).

(3) Theorem 2.5 states that, under the assumption that \(e_i \geq 2\) for every \(i\), \(O_L = R[\alpha]\) if and only if \(R[\alpha] = p\)-maximal for every prime ideal \(p\) of \(R\).

COROLLARY 2.9. Under the assumptions of Theorem 2.5, if \(O_L = R[\alpha]\), then, for every prime ideal \(p\) of \(R, R_p[\alpha]\) is principal and \(\mathfrak{B}_i = P_i(\alpha) R_p[\alpha]\) for every \(i\).

PROOF. Indeed, a Dedekind ring having only a finite number of prime ideals is principal. To prove the second statement, take \(x \in A\) such that \(\mathfrak{B}_i = xA\). Then \(\mathfrak{B}_i;\mathfrak{A}_i = x\mathfrak{A}_i = P_i(\alpha)\mathfrak{A}_i\), hence \(P_i(\alpha) = x\varepsilon\) with \(\varepsilon \in U(\mathfrak{A}_i)\). Then \(\varepsilon \in U(A)\), so \(\mathfrak{B}_i = P_i(\alpha) A\).
\textbf{Definition 2.10.} Let R be a DVR with maximal ideal $m = \pi R$, with $f, g \in R[X]$ monic polynomials. Then f is called an Eisenstein polynomial relative to g if there exists $T \in R[X]$ and an integer $e \geq 1$ such that $f = g^e + \pi T$ and $(\bar{g}, \bar{T}) = 1$ in $(R / \pi R)[X]$.

\textbf{Remark 2.11.} As in the classical Eisenstein’s criterion, we have a criterion for the irreducibility of an Eisenstein polynomial relative to g, called the Schönemann criterion, see [12, page 273]; if $f = g^e + \pi T$ is an Eisenstein polynomial relative to g such that $\bar{g} \in (R/m)[X]$ is irreducible and $\deg(T) < \deg(g)$, then f is irreducible in $K[X]$.

\textbf{Corollary 2.12.} Let R be a DVR with maximal ideal $m = \pi R$. If $\bar{P} = \bar{g}^e$ in $(R/m)[X]$ with $e \geq 2$, then $O_L = R[\alpha]$ if and only if P is an Eisenstein polynomial relative to g.

\textbf{Proof.} We obtain the result using Theorem 2.5, Definition 2.10, and Lemma 2.7.

\textbf{Remark 2.13.} Corollary 2.12 generalizes [14, Propositions 15 and 17]; it integrates the two results in one statement and provides the converse.

\section{Monogenicity over the ring of integers.}

Let $K = \mathbb{Q}(\alpha)$ be a number field of degree n, $P(X) \in \mathbb{Z}[X]$ a minimal polynomial of α, O_K the ring of integers of K, and p a prime number.

\textbf{Proposition 3.1.} Let $K = \mathbb{Q}(\alpha)$ be a number field and P the minimal polynomial of α. Then $O_K = \mathbb{Z}[\alpha]$ if and only if for every prime number p such that p^2 divides $\text{Disc}(P)$, the prime number p does not divide $\text{Ind}(\alpha)$.

\textbf{Proof.} We obtain the result from the fact that $O_K = \mathbb{Z}[\alpha]$ if and only if $\text{Ind}(\alpha) = 1$, and $\text{Disc}(P) = (\text{Ind}(\alpha))^2 d_K$ (see [6], [4, page 166]).

\textbf{Proposition 3.2.} Let $\bar{P}(X) = \prod_{i=1}^{r} \bar{P}_{i}^{e_{i}}(X)$ be the factorization of $P(X)$ modulo p in $\mathbb{F}_p[X]$, and put $f(X) = \prod_{i=1}^{r} P_{i}^{e_{i}}(X)$ with $P_{i}(X) \in \mathbb{Z}[X]$ a monic lifting of $\bar{P}_{i}(X)$ and $e_{i} \geq 2$ for all i. Let $h(X) \in \mathbb{Z}[X]$ be a monic lifting of $\bar{P}(X) / \bar{f}(X)$ and $T(X) = (f(X)h(X) - P(X)) / p \in \mathbb{Z}[X]$. Then the following statements are equivalent:

\begin{itemize}
\item[(i)] p does not divide $\text{Ind}(\alpha) = [O_K : \mathbb{Z}[\alpha]]$;
\item[(ii)] $(\bar{f}, \bar{T}) = 1$ in $\mathbb{F}_p[X]$;
\item[(iii)] $\nu_p(\text{Res}(f, P)) = \deg(f)$;
\item[(iv)] $\nu_p(\text{Res}(P_i, P)) = \deg(P_i)$, for every $i \in \{1, \ldots, r\}$.
\end{itemize}

\textbf{Proof.} (i)\Rightarrow(ii). Let $(O_K)_{(p)}$ be the integral closure of $\mathbb{Z}_{(p)}$ in K. We first show that p does not divide $\text{Ind}(\alpha)$ if and only if $(O_K)_{(p)} = \mathbb{Z}_{(p)}[\alpha]$. By the finiteness theorem [13, page 48], $(O_K)_{(p)} = \oplus_{i=0}^{n-1} \mathbb{Z}_{(p)}[\alpha]$, and, because $\mathbb{Z}_{(p)}$ is principal, $\alpha^i = \sum_{j=0}^{n-1} a_{ij} x_j$ with $a_{ij} \in \mathbb{Z}_{(p)}$, and therefore $|(O_K)_{(p)} : \mathbb{Z}_{(p)}[\alpha]| = |\det(a_{ij})|$.

On the other hand,

\[\text{Ind}(\alpha) = [O_K : \mathbb{Z}[\alpha]] = [(O_K)(p) : (\mathbb{Z}[\alpha])(p)] = (O_K)(p) : \mathbb{Z}(p)[\alpha], \]

hence \((O_K)(p) = \mathbb{Z}(p)[\alpha]\) if and only if \(p\) does not divide \(\text{Ind}(\alpha)\) if and only if \(\text{Ind}(\alpha) \in \bigcup (\mathbb{Z}(p)) = \mathbb{Z}(p) - p\mathbb{Z}(p)\). Hence by the proof of Theorem 2.5, \(p\) does not divide \(\text{Ind}(\alpha)\) if and only if \((\bar{f}, \bar{T}) = 1\) in \(\mathbb{F}_p[X]\) for every \(i = 1, 2, \ldots, r\) (in other words, if and only if \((\bar{f}, \bar{T}) = 1\) in \(\mathbb{F}_p[X]\)).

(ii)\(\iff\)(iii). By [2, Corollary 2, page 73],

\[(\bar{f}, \bar{T}) = 1 \quad \text{in} \quad \mathbb{F}_p[X] \quad \text{if and only if} \quad \text{Res}(\bar{f}, \bar{T}) = \bar{0} \quad \text{in} \quad \mathbb{F}_p \quad \text{if and only if} \quad \text{Res}(f, T) \in \mathbb{Z} - p\mathbb{Z}. \]

On the other hand, \(\text{Res}(f, T) = \prod_{i=1}^{r} \text{Res}(P_i, T)\) and \(\text{Res}(P_i, T) = (-1)^{\deg(P_i)} \times \text{deg}(P_i) \times \text{Res}(P_i, P)\). (3.2)

Theorem 3.3. Let \(K = \mathbb{Q}(\alpha)\) be a number field of degree \(n\), \(P(X) \in \mathbb{Z}[X]\) a monic minimal polynomial of \(\alpha\), and \(O_K\) the ring of integers of \(K\). Assume \(\bar{P}(X) = \prod_{i=1}^{r} P_i^{e_i}(X)\) in \(\mathbb{F}_p[X]\), for every prime number \(p\) such that \(p^2\) divides \(\text{Disc}(P)\), with \(P_i(X) \in \mathbb{Z}[X]\) a monic lifting of \(P_i(X)\) and \(e_i \geq 2\) for \(1 \leq i \leq r\). Then \(O_K = \mathbb{Z}[\alpha]\) if and only if for every prime number \(p\), such that \(p^2\) divides \(\text{Disc}(P)\), \(v_p(\text{Res}(P_i, P)) = \deg(P_i)\) for \(1 \leq i \leq r\).

Proof. It suffices to apply Propositions 3.1 and 3.2, and Theorem 2.5.

Remark 3.4. Proposition 3.2 provides a complement to the Dedekind criterion (see [4, page 305]). Indeed, in \(\mathbb{F}_p[X]\), we have \((\bar{f}, \bar{T}) = (f, \hat{T}, \hat{h})\) since all \(e_i \geq 2\).

We finish this section giving other conditions equivalent to \(p\) not being a divisor of \(\text{Ind}(\alpha)\).

Proposition 3.5. The following statements are equivalent:

(i) \(p\) does not divide \(\text{Ind}(\alpha) = [O_K : \mathbb{Z}[\alpha]]\);

(ii) \(\mathbb{Z}[\alpha] + pO_K = O_K\);

(iii) \(\mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]\).

Proof. (ii)\(\iff\)(iii). Consider the following map of \(\mathbb{F}_p\)-vector spaces:

\[j : \mathbb{Z}[\alpha]/p\mathbb{Z}[\alpha] \rightarrow O_K/pO_K, \quad j(x + p\mathbb{Z}[\alpha]) = x + pO_K. \quad (3.3) \]

As \(O_K\) and \(\mathbb{Z}[\alpha]\) are two free groups of the same rank \(n\), \(\mathbb{Z}[\alpha]/p\mathbb{Z}[\alpha]\) and \(O_K/pO_K\) are two \(\mathbb{F}_p\)-vector spaces of the same dimension \(n\) and injectivity of \(j\) is equivalent to surjectivity of \(j\). Moreover, \(j\) is one-to-one if and only if \(\mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]\) and \(j\) is onto if and only if \(\mathbb{Z}[\alpha] + pO_K = O_K\).
(i)⇒(iii). If p does not divide $\text{Ind}(\alpha)$ and $p\mathbb{Z}[\alpha] \subset \mathbb{Z}[\alpha] \cap pO_K$, then there exists $x \in O_K$ such that $x \not\in \mathbb{Z}[\alpha]$ and $px \in \mathbb{Z}[\alpha]$, so the order of the subgroup generated by $x + \mathbb{Z}[\alpha]$ of the finite group $O_K/\mathbb{Z}[\alpha]$ is equal to p, and, by Lagrange’s theorem, p divides $\text{Ind}(\alpha)$, which is the order of the group $O_K/\mathbb{Z}[\alpha]$, and this is impossible.

Conversely, assume that $\mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]$ and p divides $\text{Ind}(\alpha)$. Cauchy’s theorem implies that there exists an element of order p in $O_K/\mathbb{Z}[\alpha]$; in other words, there exists $x \in O_K$ such that $x \not\in \mathbb{Z}[\alpha]$ and $px \in \mathbb{Z}[\alpha]$. Then $px \in \mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]$, hence $x \in \mathbb{Z}[\alpha]$, which is impossible. □

4. Applications

4.1. Monogenicity of cyclotomic fields

Proposition 4.1. Let $n \geq 3$ be an integer, ξ_n a primitive nth root of unity, $K = \mathbb{Q}(\xi_n)$, and $\phi_n(X)$ the nth cyclotomic polynomial over \mathbb{Q}. Then $O_K = \mathbb{Z}[\xi_n]$.

Proof. We know from [15] that

$$\phi_n(X) = \prod_{1 \leq i \leq n \land i \not\equiv 1 \pmod{n}} (X - \xi_n^i) = \text{Irred}(\xi_n, \mathbb{Q}),$$

$$\text{Disc}(\phi_n) = (-1)^{\varphi(n)/2} \frac{n^{\varphi(n)}}{\prod_{p \mid n} p^{\varphi(n)/(p-1)}} = (-1)^{\varphi(n)/2} \prod_{i=1}^s p_i^{\varphi(n)(r_i - 1)/(p_i - 1))},$$

(4.1)

where $\varphi(n)$ is the Euler φ-function and

$$n = \prod_{i=1}^s p_i^{r_i} = p_i^{r_i}m_i \quad \text{with} \quad m_i = \prod_{j=1, j \not= i}^s p_j^{r_j}. \quad (4.2)$$

Let q be a prime number such that q^2 divides $\text{Disc}(\phi_n)$. Then there exists $i \in \{1, \ldots, s\}$ such that $q = p_i$. We have $\bar{\phi}_n(X) = (\bar{\phi}_{m_i}(X))^{\varphi(p_i^{r_i})} \pmod{p_i}$, where $\varphi(p_i^{r_i}) \geq 2$, and

$$\text{Res}(\phi_{m_i}, \phi_n) = (-1)^{\varphi(m_i)\varphi(n)} \text{Res}(\phi_n, \phi_{m_i}) = \text{Res}(\phi_n, \phi_{m_i}) = p_i^{\varphi(m_i)},$$

(4.3)

and we obtain that $v_{p_i}(\text{Res}(\phi_n, \phi_{m_i})) = \deg(\phi_{m_i}(X))$.

Now the result follows immediately from **Theorem 3.3** and **Proposition 3.2**. □

4.2. Monogenicity of the field $K = \mathbb{Q}(\alpha)$, with α a root of $P(X) = X^p - a$

Proposition 4.2. Let α be a root of the irreducible polynomial $P(X) = X^p - a$, where a is a squarefree integer and p is a prime number.
(i) If \(p \) divides \(a \), then \(O_K = \mathbb{Z}[\alpha] \) if and only if \(a \) is squarefree.

(ii) If \(p \) does not divide \(a \), then \(O_K = \mathbb{Z}[\alpha] \) if and only if \(a \) is squarefree and \(v_p(a^{p-1} - 1) = 1 \).

Proof. We have \(P(X) = X^p - a = \text{Irrd}(\alpha, \mathbb{Q}) \) and

\[
\text{Disc}(P) = (-1)^{p((p-1)/2)} N_{K/\mathbb{Q}}(P'(\alpha)) = (-1)^{(3p^2 - p - 2)/2} p(a^p)^{p-1}.
\]

(4.4)

If \(p \) is odd, the only prime numbers \(q \) such that \(q^2 \) divides \(\text{Disc}(P) \) are \(p \) and the prime divisors of \(a \). If \(p = 2 \), then 2 is the only prime number \(q \) such that \(q^2 \) divides \(\text{Disc}(P) \).

Let \(q \) be a prime number such that \(q^2 \) divides \(\text{Disc}(P) \). We have two cases:

1. if \(q \) does not divide \(a \), then \(\bar{P}(X) = \overline{g(X)^p} \) in \(\mathbb{F}_p[X] \), with \(g(X) = X - a \), and then \(\text{Res}(g, P) = P(a) = a^p - a \);

2. if \(q \) divides \(a \), then \(\bar{P}(X) = \overline{g(X)^p} \) in \(\mathbb{F}_q[X] \), with \(g(X) = X \) and then \(\text{Res}(g, P) = P(0) = -a \).

In both cases, the result is deduced from Theorem 3.3. \(\square \)

References

[8] ———, *Z-bases d’entiers 1, \(\theta \), \(\theta^2 \), \(\theta^3 \) dans les extensions cycliques de degré 4 de \(\mathbb{Q} \)*, [Z-bases of integers 1, \(\theta \), \(\theta^2 \), \(\theta^3 \) in cyclic extensions of degree 4 of \(\mathbb{Q} \)], Number Theory, Publ. Math. Fac. Sci. Besançon, Université de Franche-Comté, Besançon, 1981, pp. 1–14 (French).

[9] ———, *Non monogénéité de l’anneau des entiers des extensions cycliques de \(\mathbb{Q} \) de degré premier \(l \geq 5 \)* [Nonmonogeneity of the ring of integers of cyclic extensions of \(\mathbb{Q} \) of prime degree \(l \geq 5 \)], J. Number Theory 23 (1986), no. 3, 347–353 (French).

M. E. Charkani: Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohammed Ben Abdellah, BP 1796, Fes, Morocco

E-mail address: mcharkani@excite.com

O. Lahlou: Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohammed Ben Abdellah, BP 1796, Fes, Morocco

E-mail address: l.ouafae@caramail.com
Submit your manuscripts at
http://www.hindawi.com