ON UNIFORMLY CLOSE-TO-CONVEX FUNCTIONS
AND UNIFORMLY QUASICONVEX FUNCTIONS

K. G. SUBRAMANIAN, T. V. SUDHARSAN, and HERB SILVERMAN

Received 30 October 2002

Two new subclasses of uniformly convex and uniformly close-to-convex functions are introduced. We obtain inclusion relationships and coefficient bounds for these classes.

2000 Mathematics Subject Classification: 30C45.

1. The class \(UCC(\alpha) \). Denote by \(S \) the family consisting of functions

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

that are analytic and univalent in \(\Delta = \{ z : |z| < 1 \} \) and by \(C, S^*, \) and \(K \) the subfamilies of functions that are, respectively, convex, starlike, and close to convex in \(\Delta \). Noor and Thomas [7] introduced the class of functions known as quasiconvex functions. A normalized function of the form (1.1) is said to be quasiconvex in \(\Delta \) if there exists a convex function \(g \) with \(g(0) = 0, \ g'(0) = 1 \) such that for \(z \in \Delta \),

\[
\text{Re} \left(\frac{zf'(z)}{g'(z)} \right) > 0.
\]

Let \(Q \) denote the class of quasiconvex functions defined in \(\Delta \). It was shown that \(Q < K \), where \(< \) denotes subordination, so that every quasiconvex function is close to convex. Goodman [2, 3] introduced the classes UCV and UST of uniformly convex and uniformly starlike functions. In [10], Rønning defined the class \(UCV(\alpha) \), \(-1 \leq \alpha < 1 \), consisting of functions of the form (1.1) satisfying

\[
\text{Re} \left[1 + \frac{zf''(z)}{f'(z)} \right] - \alpha \geq \left| \frac{zf''(z)}{f'(z)} \right|, \quad z \in \Delta.
\]

Geometrically, \(UCV(\alpha) \) is the family of functions \(f \) for which \(1 + zf''(z)/f'(z) \) takes values that lie inside the parabola \(\Omega = \{ \omega : \text{Re}(\omega - \alpha) > |\omega - 1| \} \), which is symmetric about the real axis and whose vertex is \(w = (1 + \alpha)/2 \).
Since the function

\[q_\alpha(z) = 1 + \frac{2(1 - \alpha)}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2 \]

(1.4)

maps \(\Delta \) onto this parabolic region, \(f \in \text{UCV}(\alpha) \) if and only if

\[1 + \frac{zf''(z)}{f'(z)} < q_\alpha(z). \]

(1.5)

Rønning [10] also defined the family \(S_p(\alpha) \) consisting of functions \(zf'(z) \) when \(f \) is in \(\text{UCV}(\alpha) \). In particular, \(f \) is in \(S_p(\alpha) \) if and only if \(zf'(z)/f(z) \preceq q_\alpha(z) \).

Note for \(g(z) = zf'(z)/f(z) \) that

\[g(z) + zg'(z)/g(z) = 1 + zf''(z)/f'(z), \]

and hence a result of Miller and Mocanu [6] shows that \(\text{UCV}(\alpha) \subset S_p(\alpha) \).

Kumar and Ramesha [4] investigated the class \(\text{UCC} \) of uniformly close-to-convex functions consisting of normalized functions of the form (1.1) satisfying

\[f'(z)/g'(z) \preceq q_0(z), \]

where \(g(z) \in C \) and \(q_0(z) \) is given by (1.4) for \(\alpha = 0 \).

More generally, we give the following definition.

Definition 1.1. A function \(f \) is said to be uniformly close to convex of order \(\alpha \), \(-1 \leq \alpha < 1\), denoted by \(\text{UCC}(\alpha) \), if \(f'(z)/g'(z) \preceq q_\alpha(z) \), where \(q_\alpha(z) \) is as defined by (1.4) and \(g(z) \) is convex.

Since \(\Re q_\alpha(z) > 0 \), we see that \(\text{UCC}(\alpha) \) is a subclass of \(K \). To see that \(\text{UCC}(\alpha) \) also contains the family \(S_p(\alpha) \), we note for \(f \in S_p(\alpha) \subset S^* \) that \(f(z) = zg'(z) \) for some \(g \in C \). Hence, \(zf'(z)/f(z) = f'(z)/g'(z) \preceq q_\alpha(z) \).

We have thus proved the following inclusion chain.

Theorem 1.2. For \(-1 \leq \alpha < 1\), \(\text{UCV}(\alpha) \subset S_p(\alpha) \subset \text{UCC}(\alpha) \subset K \).

We next give a sufficient condition for a function to be in \(\text{UCC}(\alpha) \).

Theorem 1.3. If \(\sum_{n=2}^{\infty} n|a_n| \leq (1 - \alpha)/2 \), then \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) is in \(\text{UCC}(\alpha) \), \(-1 \leq \alpha < 1\).

Proof. Setting \(g(z) = z \), we have

\[f'(z)/g'(z) = f'(z)/f''(z) = 1 + \sum_{n=2}^{\infty} n a_n z^{n-1}, \]

so that for \(z \in \Delta \),

\[\left| \frac{f'(z)}{g'(z)} - 1 \right| < \sum_{n=2}^{\infty} n|a_n| \leq 1 - \sum_{n=2}^{\infty} n|a_n| - \alpha \leq \Re f'(z) - \alpha. \]

(1.6)

Thus \(f'(z)/g'(z) \) lies in the parabolic region \(\Omega = \{ \omega : |\omega - 1| < \Re(\omega - \alpha) \} \).

That is, \(f'(z)/g'(z) < q_\alpha(z) \), where \(q_\alpha(z) \) is as defined by (1.4). \(\Box \)
2. A convolution relation. We now prove a convolution result for the family UCC(\(\alpha\)). But first we need the following lemma.

Lemma 2.1 (see [8]). Let \(\phi(z) \in C, \psi \in S^*\). If \(F(z)\) is analytic and \(\text{Re}\{F(z)\} > \alpha, -1 \leq \alpha < 1\), then

\[
\text{Re}\left\{ \frac{\phi \ast F \psi}{\phi \ast \psi} \right\} > \alpha, \quad z \in \Delta.
\] (2.1)

The above result was proved in [11] for the case \(\alpha = 0\).

Theorem 2.2. If \(f \in \text{UCC}(\alpha)\), then to each \(g \in S^*\), an \(h \in S^*\) may be associated for which \(\text{Re}(f \ast g)/h > (1 + \alpha)/2, z \in \Delta\).

Proof. If \(f \in \text{UCC}(\alpha)\), then \(f'/g'_1(z) \prec q_\alpha(z)\), where \(g_1(z) \in C\) and \(q_\alpha(z)\) is defined by (1.4). Hence, \(\text{Re}(f'(z)/g'_1(z)) > (1 + \alpha)/2\). Therefore, we can find an \(\psi \in S^*\) for which

\[
\text{Re} \left(\frac{zf'/\psi}{f} \right) > \frac{1 + \alpha}{2}.
\] (2.2)

Set \(F(z) = zf'/\psi(z)\). Then, for \(g \in S^*\), there corresponds a \(\phi \in C\) such that \(z\phi' = g\). Also \(f \ast g = zf' \ast \phi = \phi \ast F \psi \) and \(h = \phi \ast \psi \in S^*\). By Lemma 2.1,

\[
\text{Re} \left(\frac{\phi \ast F \psi}{\phi \ast \psi} \right) = \text{Re} \left(\frac{f \ast g}{h} \right) > \frac{1 + \alpha}{2},
\] (2.3)

and this proves the result. \(\square\)

3. Coefficient estimates. We need the following result by Rogosinski [9] to obtain coefficient bounds for the class UCC(\(\alpha\)).

Lemma 3.1. Let \(h(z) = 1 + \sum_{k=1}^\infty c_k z^k\) be subordinate to \(H(z) = 1 + \sum_{k=1}^\infty C_k z^k\). If \(H(z)\) is univalent in \(\Delta\) and \(H(\Delta)\) is convex, then \(|c_n| \leq |C_1|\).

Theorem 3.2. If \(f(z) = z + \sum_{n=2}^\infty a_n z^n \in \text{UCC}(\alpha)\), then

\[
|a_n| \leq (n - 1)c + 1, \quad n \geq 2,
\] (3.1)

where \(c = 4(1 - \alpha)/\pi^2\).

Proof. Set

\[
\Phi(z) = \frac{f'(z)}{g'(z)} = 1 + \sum_{k=1}^\infty c_k z^k
\] (3.2)

so that \(\Phi(z) \prec q_\alpha(z)\), where \(q_\alpha(z)\) is defined in (1.4).
Since \(q_\alpha(z) \) is univalent and maps \(\Delta \) onto a convex region, we may apply Lemma 3.1.

Now
\[
q_\alpha(z) = 1 + \frac{8(1 - \alpha)}{\pi^2} z + \cdots,
\]
so that
\[
|c_n| \leq \frac{8(1 - \alpha)}{\pi^2}.
\] (3.3)

With \(g(z) = z + \sum_{k=2}^{\infty} b_k z^k \), we compare the coefficients of \(z^n \) for the expansion of \(\phi(z) \) to obtain
\[
(n + 1) |a_{n+1}| = c_n + \sum_{k=1}^{n-1} (k + 1)b_{k+1}c_{n-k} + (n + 1)b_{n+1}.
\] (3.4)

Since \(g(z) \) is convex, it is well known that \(|b_n| \leq 1, n = 1, 2, \ldots \). From (3.4), we get
\[
(n + 1) |a_{n+1}| \leq c n(n + 1) + (n + 1),
\] (3.5)
and the proof is complete.

4. The class \(UQC(\alpha) \). We now introduce a natural analogue to the class \(UCV(\alpha) \) in terms of Alexander’s result on convex functions [1, page 43].

Definition 4.1. A normalized function of the form (1.1) is said to be uniformly quasiconvex of order \(\alpha \), \(-1 \leq \alpha < 1\), in \(\Delta \), denoted by \(UQC(\alpha) \), if there exists a convex function \(g(z) \) with \(g(0) = 0, g'(0) = 1 \), such that
\[
(zf'(z))' \prec q_\alpha(z),
\] (4.1)
where \(q_\alpha(z) \) is as defined by (1.4).

Remark 4.2. (1) By setting \(f(z) = g(z) \), we see that \(UCV(\alpha) \subseteq UQC(\alpha) \).

(2) We see that \(f \in UQC(\alpha) \) if and only if \(zf' \in UCC(\alpha) \).

In view of the above remark, we obtain from Theorem 1.3 a sufficient coefficient bound for inclusion in the family \(UQC(\alpha) \).

Theorem 4.3. If \(\sum_{n=2}^{\infty} n^2 |a_n| \leq (1 - \alpha)/2 \), then \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in UQC(\alpha) \).

We next prove a theorem which shows that every function in \(UQC(\alpha) \) is close to convex and hence univalent. We need a result due to Miller and Mocanu [5].

Lemma 4.4. Let \(M(z) \) and \(N(z) \) be regular in \(\Delta \) with \(M(z) = N(z) = 0 \) and let \(\alpha \) be real. If \(N(z) \) maps \(\Delta \) onto a possibly many-sheeted region which is starlike with respect to the origin, then for \(z \in \Delta \),
\[
\text{Re} \frac{M'(z)}{N'(z)} > \alpha \Rightarrow \text{Re} \frac{M(z)}{N(z)} > \alpha.
\] (4.2)
Theorem 4.5. If $F(z) \in \text{UQC}(\alpha)$, then $F(z) \in K$ and hence it is univalent in Δ.

Proof. Since

$$\frac{(zf'(z))'}{g'(z)} < q_\alpha(z) \Rightarrow \Re \left\{ \frac{(zf'(z))'}{g'(z)} \right\} > \frac{1 + \alpha}{2},$$

an application of Lemma 4.4, with $M(z) = zf'(z)$, $N(z) = g(z)$, proves the result.

Theorem 4.6. If $f(z) \in \text{UQC}(\alpha)$, then $H(z) = \int_0^zf'(t)dt$ is in $\text{UCC}(\alpha)$.

Proof. If $f(z) \in \text{UQC}(\alpha)$, then there exists a function $g(z) \in C$ such that $(zf'(z))'/g'(z) < q_\alpha(z)$, where $q_\alpha(z)$ is as given by (1.4). The result now follows on observing that $H'(z) = (zf'(z))'$.

We close with coefficient estimates for the class $\text{UQC}(\alpha)$.

Theorem 4.7. If $f(z) = z + \sum_{n=2}^{\infty}a_nz^n \in \text{UQC}(\alpha)$, then

$$|a_n| \leq \frac{(n-1)c + 1}{n}, \quad n \geq 2,$$

where $c = 4(1 - \alpha)/\pi^2$.

Proof. Proceeding on the same lines as in the proof of Theorem 3.2, we obtain the result.

Remark 4.8. When $\alpha = 0$, $\text{UQC}(0) = Q$ [6] and we see that the bounds are lower than the corresponding bounds for Q in [6].

References

K. G. Subramanian: Department of Mathematics, Madras Christian College, Tambaram, Chennai 600 059, India

T. V. Sudharsan: Department of Mathematics, South India Vaniar Educational Trust (SIVET) College, Gourivakkam, Chennai 601 302, India

Herb Silverman: Department of Mathematics, University of Charleston, Charleston, SC 29424, USA

E-mail address: silvermanh@cofc.edu
Submit your manuscripts at http://www.hindawi.com