A NEW CHARACTERIZATION OF SOME ALTERNATING AND SYMMETRIC GROUPS

AMIR KHOSRAVI and BEHROOZ KHOSRAVI

Received 5 February 2002

We suppose that \(p = 2^\alpha 3^\beta + 1 \), where \(\alpha \geq 1 \), \(\beta \geq 0 \), and \(p \geq 7 \) is a prime number. Then we prove that the simple groups \(A_n \), where \(n = p, p + 1 \), or \(p + 2 \), and finite groups \(S_n \), where \(n = p, p + 1 \), are also uniquely determined by their order components. As corollaries of these results, the validity of a conjecture of J. G. Thompson and a conjecture of Shi and Bi (1990) both on \(A_n \), where \(n = p, p + 1 \), or \(p + 2 \), is obtained. Also we generalize these conjectures for the groups \(S_n \), where \(n = p, p + 1 \).

2000 Mathematics Subject Classification: 20D05, 20D60, 20D08.

1. Introduction. Let \(G \) be a finite group. We denote by \(\pi(G) \) the set of all prime divisors of \(|G| \). We construct the prime graph of \(G \) as follows. The prime graph \(\Gamma(G) \) of a group \(G \) is the graph whose vertex set is \(\pi(G) \), and two distinct primes \(p \) and \(q \) are joined by an edge (we write \(p \sim q \)) if and only if \(G \) contains an element of order \(pq \). Let \(t(G) \) be the number of connected components of \(\Gamma(G) \) and let \(\pi_1, \pi_2, \ldots, \pi_{t(G)} \) be the connected components of \(\Gamma(G) \). If \(2 \in \pi(G) \), then we always suppose that \(2 \in \pi_1 \).

Now \(|G| \) can be expressed as a product of coprime positive integers \(m_i \), \(i = 1, 2, \ldots, t(G) \), where \(\pi(m_i) = \pi_i \). These integers are called the order components of \(G \). The set of order components of \(G \) will be denoted by \(OC(G) \). Also we call \(m_2, \ldots, m_{t(G)} \) the odd-order components of \(G \). The order components of non-abelian simple groups having at least three prime graph components are obtained by Chen [7, Tables 1, 2, 3]. Similarly, the order components of non-abelian simple groups with two-order components can be obtained by using the tables in [18, 28].

The following groups are uniquely determined by their order components: Suzuki-Ree groups [6], Sporadic simple groups [4], \(PSL_2(q) \) [7], \(E_8(q) \) [2], \(G_2(q) \), where \(q \equiv 0 (\text{mod} \, 3) \) [3], \(F_4(q) \), where \(q \) is even [15], \(PSL_3(q) \), where \(q \) is an odd prime power [14], \(PSL_3(q) \), where \(q = 2^n \) [13], \(PSU_3(q) \), where \(q > 5 \) [16], and \(A_p \), where \(p \) and \(p - 2 \) are primes [12].

It was proved by Oyama [20] that a finite group which has the same table of characters as an alternating group \(A_n \) is isomorphic to \(A_n \). It was also proved by Koike [17] that a finite group which has the isomorphic subgroup-lattice as an alternating group \(A_n \) is isomorphic to \(A_n \).
Let $\pi_e(G)$ denote the set of orders of elements in G. Shi and Bi [27] proved that if $\pi_e(G) = \pi_e(A_n)$ and $|G| = |A_n|$, then $G \cong A_n$. Iranmanesh and Alavi [12] proved that if p and $p - 2$ are primes and $\text{OC}(G) = \text{OC}(A_p)$, then $G \cong A_p$. Praeger and Shi [21] and Shi and Bi [26] proved that $A_8, A_9, A_{11}, A_{13}, S_7,$ and S_8 are characterizable by their element orders. Also recently, Kondrat’ev and Mazurov [19] and Zavarnitsin [29] proved that if $\pi_e(G) = \pi_e(A_n)$, where $n = s, s + 1, s + 2$ and s is a prime number, then $G \cong A_n$.

Now we prove the following theorems.

Theorem 1.1. Let $p = 2^\alpha 3^\beta + 1$, where $\alpha \geq 1$, $\beta \geq 0$, and $p \geq 7$ is a prime number. Let $M = A_n$, where $n = p, p + 1, p + 2$. Then $\text{OC}(G) = \text{OC}(M)$ if and only if $G \cong M$.

Theorem 1.2. Let $p = 2^\alpha 3^\beta + 1$, where $\alpha \geq 1$, $\beta \geq 0$, and $p \geq 7$ is a prime number. Let $M = S_n$, where $n = p, p + 1$. Then $\text{OC}(G) = \text{OC}(M)$ if and only if $G \cong M$.

In this paper, all groups are finite and by simple groups we mean non-abelian simple groups. All further unexplained notations are standard and we refer, for example, to [10]. Also frequently we use the results of Williams [28] and Kondrat’ev [18] about the prime graph of simple groups.

2. Preliminary results

Remark 2.1. Let N be a normal subgroup of G and $p \sim q$ in $\Gamma(G/N)$. Then $p \sim q$ in $\Gamma(G)$. In fact if $xN \in G/N$ has order pq, then there is a power of x which has order pq.

Definition 2.2 (see [11]). A finite group G is called a 2-Frobenius group if it has a normal series $1 \trianglelefteq H \trianglelefteq K \trianglelefteq G$, where K and G/H are Frobenius groups with kernels H and K/H, respectively.

Lemma 2.3 (see [28, Theorem A]). If G is a finite group with its prime graph having more than one component, then G is one of the following groups:
(a) a Frobenius or 2-Frobenius group;
(b) a simple group;
(c) an extension of a π_1-group by a simple group;
(d) an extension of a simple group by a π_1-solvable group;
(e) an extension of a π_1-group by a simple group by a π_1-group.

Lemma 2.4 (see [28, Lemma 3]). If G is a finite group with more than one prime graph component and has a normal series $1 \trianglelefteq H \trianglelefteq K \trianglelefteq G$ such that H and G/K are π_1-groups and K/H is a simple group, then H is a nilpotent group.

The next lemma follows from [1, Theorem 2].

Lemma 2.5. Let G be a Frobenius group of even order and let H, K be Frobenius complement and Frobenius kernel of G, respectively. Then $t(\Gamma(G)) = 2,$
and the prime graph components of \(G \) are \(\pi(H) \), \(\pi(K) \) and \(G \) has one of the following structures:

(a) \(2 \in \pi(K) \) and all Sylow subgroups of \(H \) are cyclic;
(b) \(2 \in \pi(H) \), \(K \) is an abelian group, \(H \) is a solvable group, the Sylow subgroups of odd order of \(H \) are cyclic groups, and the \(2 \)-Sylow subgroups of \(H \) are cyclic or generalized quaternion groups;
(c) \(2 \in \pi(H) \), \(K \) is an abelian group, and there exists \(H_0 \leq H \) such that \(|H : H_0| \leq 2 \), \(H_0 = Z \times \text{SL}(2,5) \), \((|Z|,2.3.5) = 1\), and the Sylow subgroups of \(Z \) are cyclic.

The next lemma follows from [1, Theorem 2] and Lemma 2.4.

Lemma 2.6. Let \(G \) be a 2-Frobenius group of even order. Then \(t(\pi(G)) = 2 \) and \(G \) has a normal series \(1 \leq H \leq K \leq G \) such that

(a) \(\pi_1 = \pi(G/K) \cup \pi(H) \) and \(\pi(K/H) = \pi_2 \);
(b) \(G/K \) and \(K/H \) are cyclic, \(|G/K| \) divides \(|\text{Aut}(K/H)|\), \((|G/K|,|K/H|) = 1 \), and \(|G/K| < |K/H| \);
(c) \(H \) is nilpotent and \(G \) is a solvable group.

Lemma 2.7 (see [8, Lemma 8]). Let \(G \) be a finite group with \(t(\pi(G)) \geq 2 \) and let \(N \) be a normal subgroup of \(G \). If \(N \) is a \(\pi_1 \)-group for some prime graph component of \(G \) and \(m_1, m_2, \ldots, m_r \) are some order components of \(G \) but not a \(\pi_1 \)-number, then \(m_1 m_2 \cdots m_r \) is a divisor of \(|N| - 1 \).

The next lemma follows from [5, Lemma 1.4].

Lemma 2.8. Suppose that \(G \) and \(M \) are two finite groups satisfying \(t(\pi(M)) \geq 2 \), \(N(G) = N(M) \), where \(N(G) = \{ n \mid G \text{ has a conjugacy class of size } n \} \), and \(Z(G) = 1 \). Then \(|G| = |M| \).

Lemma 2.9 (see [5, Lemma 1.5]). Let \(G_1 \) and \(G_2 \) be finite groups satisfying \(|G_1| = |G_2| \) and \(N(G_1) = N(G_2) \). Then \(t(\pi(G_1)) = t(\pi(G_2)) \) and \(OC(G_1) = OC(G_2) \).

Lemma 2.10. Let \(G \) be a finite group and let \(M \) be a non-abelian finite group with \(t(M) = 2 \) satisfying \(OC(G) = OC(M) \).

1. Let \(|M| = m_1 m_2 \), \(OC(M) = \{ m_1, m_2 \} \), and \(\pi(m_i) = \pi_i \) for \(i = 1, 2 \). Then \(|G| = m_1 m_2 \) and one of the following holds:
 (a) \(G \) is a Frobenius or 2-Frobenius group;
 (b) \(G \) has a normal series \(1 \leq H \leq K \leq G \) such that \(G/K \) is a \(\pi_1 \)-group, \(H \) is a nilpotent \(\pi_1 \)-group, and \(K/H \) is a non-abelian simple group. Moreover, \(OC(K/H) = \{ m'_{1}, m'_{2}, \ldots, m'_{j}, m_2 \} \), \(|K/H| = m'_1 m'_2 \cdots m'_j m_2 \), and \(m'_1 m'_2 \cdots m'_j | m_1 \), where \(\pi(m'_j) = \pi'_j \), \(1 \leq j \leq s \).
2. In case (b), \(|G/K| | |\text{Out}(K/H)| \).

Proof. The proof of (1) follows from the above lemmas. Since \(t(G) \geq 2 \), we have \(t(G/H) \geq 2 \). Otherwise \(t(G/H) = 1 \), so that \(t(G) = 1 \). Since \(H \) is a \(\pi_1 \)-group,
we arrive at a contradiction. Moreover, we have $Z(G/H) = 1$. For any $xH \in G/H$ and $xH \notin K/H$, xH induces an automorphism of K/H and this automorphism

Table 2.1

<table>
<thead>
<tr>
<th>p</th>
<th>$A_5, A_6; L_2(q)$, where q is a Fermat prime, a Mersenne prime, or $q = 2^n, n \geq 3, L_3(2^2), Sz(2^{2n+1}), n \geq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$A_5, A_6, A_7; M_{11}, M_{22}; L_2(q)$, where $q = 7^2, 5^n, or 2.3^n + 1 which is a prime, $n \geq 1, L_3(2^2), S_4(q), q = 3, 7, U_4(3); Sz(q), q = 2^3, 2^5$</td>
</tr>
<tr>
<td>13</td>
<td>$A_13, A_{14}, A_{15}; Suz, Fi_{22}; L_2(q), q = 3^2, 5^2, 13^n, or 2.13^n - 1 which is a prime, $n \geq 1, L_3(3), L_4(3), O_7(3), S_4(3), S_6(3), O^+_8(3), G_2(q), q = 3^2, 3; F_4(2), U_3(q), q = 2^2, 23, Sz(2^3), 3D_4(2), 2E_6(2), 2F_4(2)'$</td>
</tr>
<tr>
<td>17</td>
<td>$A_{17}, A_{18}, A_{19}; J_3, He, F_{23}, F_{24}'; L_2(q), q = 2^{17}, 17^n, 2.17^n + 1 which is a prime, $n \geq 1, S_4(4), S_6(2), F_4(2), O^+_8(2), O^+_7(2), 2E_6(2)$</td>
</tr>
<tr>
<td>37</td>
<td>$A_{19}, A_{20}, A_{21}; J_1, J_3, O'N, Th, HN; L_2(q), q = 19^n, 2.19^n - 1 which is a prime, $n \geq 1, L_3(7), U_3(2^3), R(3^3), 2F_4(2^3)$</td>
</tr>
<tr>
<td>73</td>
<td>$A_{37}, A_{38}, A_{39}; J_4, L_4'; L_2(q), q = 37^n, 2.37^n - 1 which is a prime, $n \geq 1, U_3(11), R(3^3), 2F_4(2^3)$</td>
</tr>
<tr>
<td>109</td>
<td>$A_{109}, A_{110}, A_{111}; L_2(q), q = 109^n, 2.109^n - 1 which is a prime, $n \geq 1, 2F_4(2^3)$</td>
</tr>
<tr>
<td>$p = 2^m + 1, m = 2^s$</td>
<td>$A_p, A_{p+1}, A_{p+2}; L_2(q), q = 2^m, p^k, 2 \cdot p^k + 1 which is a prime, s \geq k \geq 1, S_a(2^b), a = 2c+1 and b = 2d, c \geq 1, c + d = s, F_4(2^c), e \geq 1, 4e = 2s, O_2(m+1)(2), s \geq 2, O_a(2^b), c \geq 2, c + d = s$</td>
</tr>
<tr>
<td>Other</td>
<td>$A_p, A_{p+1}, A_{p+2}; L_2(q), q = p^k, 2 \cdot p^k - 1 which is a prime, k \geq 1$</td>
</tr>
</tbody>
</table>
is trivial if and only if $xH \in Z(G/H)$. Therefore, $G/K \leq \text{Out}(K/H)$ and since $Z(G/H) = 1$, (2) follows.

Definition 2.11. A group G is called a C_{pp} group if the centralizers of its elements of order p in G are p-groups.

Lemma 2.12 (see [9]). Let p be a prime and $p = 2^\alpha 3^\beta + 1$, $\alpha \geq 0$ and $\beta \geq 0$. Then any finite simple C_{pp} group is given by Table 2.1.

3. Characterization of some alternating and symmetric groups. In the sequel, we suppose that $p = 2^\alpha 3^\beta + 1$, where $\alpha \geq 1$, $\beta \geq 0$, and $p \geq 7$ is a prime number.

Lemma 3.1. Let G be a finite group and let M be A_n, where $n = p, p + 1$, or $p + 2$, or S_n, where $n = p, p + 1$. If $\text{OC}(G) = \text{OC}(M)$, then G is neither a Frobenius group nor a 2-Frobenius group.

Proof. If G is a Frobenius group, then by Lemma 2.5, $\text{OC}(G) = \{|H|, |K|\}$, where K and H are Frobenius kernel and Frobenius complement of G, respectively. Since $|H| \mid |K| - 1$, we have $|H| < |K|$. Therefore, $2 \nmid |H|$, and hence $2 \nmid |K|$. So, $|H| = p, |K| = |G|/p$. We claim that there exists a prime p' such that $3n/4 < p'$. Note that $p \leq n$, and hence $p'^2 \nmid |A_n|$. Let $\beta(n)$ be the number of prime numbers less than or equal to n. In fact, by [22, Theorem 2] we have

$$\frac{n}{\log n - 1/2} < \beta(n) < \frac{n}{\log n - 3/2}, \quad (3.1)$$

where $n \geq 67$. Thus

$$\beta(n) - \beta\left(\frac{3n}{4}\right) > \frac{n}{\log n - 1/2} - \frac{3n/4}{\log(3n/4) - 3/2}. \quad (3.2)$$

When $n \geq 405$, we get $\beta(n) - \beta(3n/4) > 1$, and for $n < 405$, we can immediately obtain the result by checking the table of prime numbers. Now let P' be the p'-Sylow subgroup of K. Since K is nilpotent, $P' \trianglelefteq G$. Then $p \nmid p' - 1$, by Lemma 2.7, which is a contradiction since $p' < p$. Therefore, G is not a Frobenius group.

Now let G be a 2-Frobenius group. By Lemma 2.6, there is a normal series $1 \leq H \leq K \leq G$ such that $|K/H| = p$ and $|G/K| < p$. So, $|H| \neq 1$ since $|G| = |G/K| \cdot |K/H| \cdot |H|$. Since $2 \nmid |H|$, let p' be as above and let P' be the p'-Sylow subgroup of H. Now, $p \nmid p' - 1$, which is impossible. Hence, G is not a 2-Frobenius group.

Lemma 3.2. Let G be a finite group and $M = A_n$, where $n = p, p + 1$, or $p + 2$, or S_n, where $n = p, p + 1$. If $\text{OC}(G) = \text{OC}(M)$, then G has a normal series $1 \leq H \leq K \leq G$ such that H and G/K are π_1-groups and K/H is a simple group. Moreover, the odd-order component of M is equal to an odd-order component of K/H. In particular, $t(\Gamma(K/H)) \geq 2$. Also $|G/H|$ divides $|\text{Aut}(K/H)|$, and in fact $G/H \leq \text{Aut}(K/H)$.

PROOF. The first part of the lemma follows from the above lemmas since the prime graph of M has two prime graph components. For primes p and q, if K/H has an element of order pq, then G has one. Hence, by the definition of prime graph component, the odd-order component of M is an odd-order component of K/H. Since $K/H \triangleleft G/H$ and $C_{G/H}(K/H) = 1$, we have

$$G/H = \frac{N_{G/H}(K/H)}{C_{G/H}(K/H)} \cong T, \quad T \leq \text{Aut}(K/H).$$ \hspace{1cm} (3.3)

Theorem 3.3. Let $p = 2^\alpha 3^\beta + 1$, where $\alpha \geq 1$, $\beta \geq 0$, and $p \geq 7$ is a prime number. Let $M = A_n$, where $n = p, p + 1, p + 2$. Then $OC(G) = OC(M)$ if and only if $G \cong M$.

Proof. By Lemma 3.2, G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi(G/K) \subset \pi_1$, K/H is a non-abelian simple group, $t(\Gamma(K/H)) \geq 2$, and the odd-order component of M is an odd-order component of K/H. Therefore, K/H is a finite simple C_{pp} group. Now using Table 2.1, we consider each possibility of K/H separately.

In the sequel, we frequently use the results of [28, Table I] and [18, Tables 2, 3].

Step 1. Let $p = 7, 13, 17, 19, 37, 73$, or 109.

Since the proofs of these cases are similar, we state only one of them, say $p = 13$. Using Table 2.1, we have

1. $K/H \cong S_{uz}$ or F_{22}. It is a contradiction since $3^7 \nmid |S_{uz}|$ and $3^9 \nmid |F_{22}|$ but $3^7 \nmid |A_n|$, where $n = 13, 14, 15$;
2. $K/H \cong L_2(27)$, $L_2(25)$, $L_3(3)$, $L_4(3)$, $S_2(8)$, $(2F_4(2))'$, or $U_3(4)$. If $K/H \cong L_2(27)$, then $|G/K| = |H| \cdot |G/K| \neq 1$. By Lemma 2.6, $(|G/K| \mid \text{Out}(K/H)) = 6$. So, $|H| \neq 1$. Let P be the 5-Sylow subgroup of H. But since H is nilpotent, $P \triangleleft G$. Hence, $13 \mid (|P| - 1)$, which is a contradiction. Other cases are similar;
3. $K/H \cong L_2(13^r)$ or $L_2(2.13^r - 1)$, where $2.13^r - 1$ is a prime, $r \geq 1$. Note that $13^2 \nmid |G|$, hence $r = 1$. So, $K/H \cong L_2(13)$ or $L_2(25)$, and we can proceed similar to (2);
4. $K/H \cong O_7(3)$. It is a contradiction since $3^9 \mid |O_7(3)|$ but $3^9 \nmid |A_n|$;
5. $K/H \cong S_4(5)$ or $S_6(3)$. It is a contradiction since $5^4 \mid |S_4(5)|$ but $5^4 \nmid |A_n|$. Also $3^9 \mid |S_6(3)|$ but $3^9 \nmid |A_n|$;
6. $K/H \cong O_8^+(3)$. It is a contradiction since $3^{12} \mid |O_8^+(3)|$ but $3^{12} \nmid |A_n|$;
7. $K/H \cong G_2(3)$ or $G_2(8)$. If $K/H \cong G_2(3)$, then we get a contradiction since for $n = 13, 14$ we have $3^6 \mid |G_2(3)|$ but $3^6 \nmid |A_n|$. For $n = 15$, since $\mid \text{Out}(G_2(3))\mid = 2$, we have $|H| \neq 1$. Now we proceed similar to (2). If $K/H \cong G_2(8)$, then we get a contradiction since $2^{18} \mid |G_2(8)|$ but $2^{18} \nmid |A_n|$;
8. $K/H \cong F_4(2)$. It is a contradiction since $17 \mid |F_4(2)|$ but $17 \nmid |A_n|$;
9. $K/H \cong U_3(23)$. It is a contradiction since $23 \mid |U_3(23)|$ but $23 \nmid |A_n|$;
(10) \(K/H \cong 3^3 D_4(2) \) or \(2 E_6(2) \). It is a contradiction since \(2^{12} \nmid |A_n| \). Also \(19 \nmid |A_n| \).

(11) \(K/H \) is an alternating group, namely \(A_{13}, A_{14}, \) or \(A_{15} \).

First suppose that \(n = 13 \). Since \(|K/H| \leq |A_{13}| \), \(K/H \cong A_{13} \). But \(|G| = |A_{13}| \), and hence \(H = 1 \) and \(K = G \cong A_{13} \). If \(n = 14 \), then \(K/H \cong A_{13} \) or \(A_{14} \). But if \(r \neq 6 \), then \(\text{Aut}(A_r) = S_r \), and hence \(|\text{Out}(A_r)| = 2 \). If \(K/H \cong A_{13} \), then \(|G/K| \mid 2 \), and hence \(|H| \neq 1 \). Now we get a contradiction similar to (2). Therefore, \(K/H \cong A_{14} \), and hence \(G \cong A_{14} \). If \(n = 15 \), we do similarly.

Step 2. Let \(p = 2^m + 1 \), where \(m = 2^s \).

Using Table 2.1, we have

(i) \(K/H \cong L_2(2^m) \). Note that for every \(m \) we have \(|L_2(2^m)| \mid |G| \). Using Lemma 2.6, \(|G/K| \mid |\text{Out}(K/H)| \). Also \(|\text{Out}(L_2(2^m))| = m \). Hence, \(|H| \neq 1 \). Now let \(p' \) be a prime number less than \(p \) such that

\[
p' \mid \frac{|A_n|}{m|K/H|}.
\]

Let \(P' \) be the \(p' \)-Sylow subgroup of \(H \). Since \(H \) is nilpotent, \(P' \trianglelefteq G \). Hence, \(p \mid (|P| - 1) \), which is a contradiction;

(ii) \(K/H \cong L_2(p^k) \) or \(L_2(2p^k) \), where \(2p^k + 1 \) is a prime and \(1 \leq k \leq s \).

We know that \(p \mid |A_n| \), hence \(k = 1 \). Now we proceed similar to (i);

(iii) \(K/H \cong S_d(2^b) \), where \(a = 2^{c+1} \) and \(b = 2^d \), \(c \geq 1 \), \(c + d = s \). Let \(q = 2^b \) and \(f = 2^c \). Then \(p = q^f + 1 \) and we have

\[
|S_d(2^b)| = q^{f^2}(q^f - 1)(q^f + 1)\Pi_{i=1}^{f-1}(q^i - 1)(q^i + 1).
\]

Each factor of the form \((q^j + 1) \) is less than or equal to \(p \) and therefore divides \(|A_n| \). Also \(q^{f^2} = (2^m)^j \leq 2^{m^2} \leq 2^{m^2} \). \(|S_d(2^b)| \mid |A_n| \). But \(|S_d(2^b)| = b \). Then \(|H| \neq 1 \) and we can proceed similar to (i);

(iv) \(K/H \cong F_4(2^e) \), where \(e \geq 1 \), \(4e = 2^s \), or \(O_{2(m+1)}(2) \), where \(s \geq 2 \), or \(O_n^2(2^b) \), where \(c \geq 2 \), \(c + d = s \). Again this part is similar to (iii);

(v) \(K/H \cong A_p, A_{p+1}, A_{p+2} \).

First suppose that \(n = p \). Since \(|K/H| \leq |A_p| \), \(K/H \cong A_p \). But \(|G| = |A_p| \), and hence \(H = 1 \) and \(K = G \cong A_p \). If \(n = p + 1 \), then \(K/H \cong A_p \) or \(A_{p+1} \). But if \(r \neq 6 \), then \(\text{Aut}(A_r) = S_r \), and hence \(|\text{Out}(A_r)| = 2 \). If \(K/H \cong A_p \), then \(|G/K| \mid 2 \), and hence \(|H| \neq 1 \). Now we get a contradiction similar to (i). Therefore, \(K/H \cong A_{p+1} \), and hence \(G \cong A_{p+1} \). If \(n = p + 2 \), we do similarly.

Step 3. For other primes \(p \), we have \(K/H \cong A_p, A_{p+1}, A_{p+2} \); \(L_2(q) \), where \(q = p^k \), \(2p^k - 1 \) which is a prime, \(k \geq 1 \).

In fact the proof of this step is exactly similar to that of **Step 2** and we omit it for convenience.
Theorem 3.4. If G is a non-abelian finite group with connected prime graph, then G is not characterizable with its order component.

Proof. Clearly, $\text{OC}(G) = \text{OC}(\mathbb{Z}|G|)$, but $G \not\cong \mathbb{Z}|G|$. □

Corollary 3.5. Every simple group with one component (see [28, Table I]) is not characterizable with this method.

Theorem 3.6. Let n be a positive integer. If there exist at least two non-isomorphic abelian groups of order n, then abelian groups of order n are not characterizable with their order component.

Proof. The proof is obvious. □

Remark 3.7. It was a conjecture that every finite simple group M, where $\Gamma(M)$ is not connected, is characterizable with its order components. But the following example is a counterexample.

Example 3.8. If q is an odd-prime power and $n = 2^k \geq 4$, then $\text{OC}(S_{2n}(q)) = \text{OC}(O_{2n+1}(q))$, but obviously $S_{2n}(q) \not\cong O_{2n+1}(q)$.

Theorem 3.9. Let $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \geq 1$, $\beta \geq 0$, and $p \geq 7$ is a prime number. Let $M = S_n$, where $n = p, p + 1$. Then $\text{OC}(G) = \text{OC}(M)$ if and only if $G \cong M$.

Proof. Similar to the proof of Theorem 3.3, since G is a C_{pp} group, we have $K/H \cong A_n$. Now using Lemma 3.2, we have

$$A_n \leq \frac{G}{H} \leq \text{Aut}(A_n) = S_n.$$ \hspace{1cm} (3.6)

Therefore, $G/H \cong A_n$ or $\text{Aut}(A_n) = S_n$. If $G/H \cong A_n$, then $|H| = 2$ and $H < G$. Hence, $H \subseteq Z(G) = 1$, which is a contradiction. Therefore, $G/H \cong S_n$, and since $|G| = |S_n|$, we have $G \cong S_n$. □

4. Some related results

Remark 4.1. It is a well known conjecture of J. G. Thompson that if G is a finite group with $Z(G) = 1$ and M is a non-abelian simple group satisfying $N(G) = N(M)$, then $G \cong M$.

We can generalize this conjecture for the groups under discussion by our characterization of these groups.

Corollary 4.2. Let G be a finite group with $Z(G) = 1$ and let M be $A_p, A_{p+1}, A_{p+2}, S_p$, or S_{p+1}. If $N(G) = N(M)$, then $G \cong M$.

Proof. By Lemmas 2.8 and 2.9, if G and M are two finite groups satisfying the conditions of Corollary 4.2, then $\text{OC}(G) = \text{OC}(M)$. So, Theorems 3.3 and 3.9 imply this corollary. □
Remark 4.3. Shi and Bi in [26] put forward the following conjecture.

Shi’s Conjecture. Let G be a group and M a finite simple group. Then $G \cong M$ if and only if

(i) $|G| = |M|$,
(ii) $\pi_e(G) = \pi_e(M)$, where $\pi_e(G)$ denotes the set of orders of elements in G.

This conjecture is valid for sporadic simple groups [24], groups of alternating type [27], and some simple groups of Lie type [23, 25, 26]. As a consequence of Theorems 3.3 and 3.9, we prove a generalization of this conjecture for the groups under discussion.

Corollary 4.4. Let G be a finite group and let M be A_p, A_{p+1}, A_{p+2}, S_p, or S_{p+1}. If $|G| = |M|$ and $\pi_e(G) = \pi_e(M)$, then $G \cong M$.

Proof. By assumption, we must have $OC(G) = OC(M)$. Thus the corollary follows by Theorems 3.3 and 3.9.

References

[3] ———, A new characterization of $G_2(q)$, $[q \equiv 0(\text{mod} 3)]$, J. Southwest China Normal Univ. (1996), 47–51.

Amir Khosravi: Faculty of Mathematical Sciences and Computer Engineering, University for Teacher Education, 599 Taleghani Ave., Tehran 15614, Iran

Behrooz Khosravi: 241 Golnaz Street, Velenjak, Tehran 19847, Iran

E-mail address: khosravibbb@yahoo.com