SOME SUBMERSIONS OF CR-HYPERSURFACES OF KAEHLER-EINSTEIN MANIFOLD

VITTORIO MANGIONE

Received 26 April 2002

The Riemannian submersions of a CR-hypersurface M of a Kaehler-Einstein manifold \tilde{M} are studied. If M is an extrinsic CR-hypersurface of \tilde{M}, then it is shown that the base space of the submersion is also a Kaehler-Einstein manifold.

1. Introduction. The study of the Riemannian submersions $\pi : M \rightarrow B$ was initiated by O'Neill [14] and Gray [9]. This theory was very much developed in the last thirty five years. Besse's book [3, Chapter 9] is a reference work. Bejancu introduced a remarkable class of submanifolds of a Kaehler manifold that are known as CR-submanifolds (see [1, 2]). On a CR-submanifold, there are two complementary distributions D and D^\perp, such that D is J-invariant and D^\perp is J-anti-invariant with respect to the complex structure J of the Kaehler manifold. The integrability of the anti-invariant distribution D was proved by Blair and Chen [4].

Recently, Kobayashi [10] considered the similarity between the total space of a Riemannian submersion and a CR-submanifold of a Kaehler manifold in terms of the distribution. He studied the case of a generic CR-submanifolds in a Kaehler manifold and proved that the base space is a Kaehler manifold.

In Section 3, we extend the result of Kobayashi to the general case of a CR-submanifold.

In Section 4, we study a Riemannian submersion from an extrinsic hypersurface M of a Kaehler-Einstein manifold \tilde{M} onto an almost-Hermitian manifold B. In this case, we prove that the basic manifold is a Kaehler-Einstein manifold. If \tilde{M} is C^{n+1}, a standard example is the Hopf fibration $S^{2n+1} \rightarrow CP^n$ equipped with the canonical metrics.

For the basic formulas of Riemannian geometry, we use [11, 12].

2. Preliminaries. Let \tilde{M} be a complex m-dimensional Kaehler manifold with complex structure J and Hermitian metric $\langle \cdot, \cdot \rangle$. Bejancu [2] introduced the concept of a CR-submanifold of \tilde{M} as follows: a real Riemannian manifold M, isometrically immersed in a Kaehler manifold \tilde{M}, is called a CR-submanifold of \tilde{M} if there exists on M a differentiable holomorphic distribution D and its
orthogonal complement D^\perp on M is a totally real distribution, that is, $JD^\perp_x \subseteq T^\perp_x M$, where $T^\perp_x M$ is the normal space to M at $x \in M$ for any $x \in M$. It is easily seen that each real orientable hypersurface of M is a CR-submanifold. The Riemannian metric induced on M will be denoted by the same symbol $\langle \cdot, \cdot \rangle$.

Let $\tilde{\nabla}$ (resp., ∇) be the operator of covariant differentiation with respect to the Levi-Civita connection on \tilde{M} (resp., M). The second-fundamental form B is given by

$$B(E,F) = \tilde{\nabla}_EF - \nabla_{EF}$$

for all $E,F \in \Gamma(TM)$, where $\Gamma(TM)$ is the space of differentiable vector fields on M. We denote everywhere by $\Gamma(\tau)$ the space of differentiable sections of a vector bundle τ.

Let ν be the orthogonal complementary vector bundle of $J(D^\perp)$ in $T^\perp M$, that is, $T^\perp M = J(D^\perp) \oplus \nu$.

It is clear that ν is a holomorphic subbundle of $T^\perp M$, that is, $J\nu = \nu$.

Definition 2.1 (Kobayashi [10]). Let M be a CR-submanifold of a Kaehler manifold \tilde{M}. A submersion from a CR-manifold M onto an almost-Hermitian manifold is a Riemannian submersion $\pi : M \rightarrow M'$ with the following conditions:

(i) D^\perp is the kernel of π^*,

(ii) $\pi_* : D_x \rightarrow T_{\pi(x)} M'$ is a complex isometry for every $x \in M$.

This definition is given by Kobayashi for the case where μ is a null subbundle of $T^\perp M$ (see [10]). If $JD^\perp_x = T^\perp_x M$ for any $x \in M$, we say that M is a *generic CR-submanifold* of \tilde{M} (Yano and Kon [15]). For example, any real orientable hypersurface of \tilde{M} is a generic CR-submanifold of \tilde{M}.

Concerning the basic notions on the Riemannian submersions, see O'Neill [14] and Gray [9].

The vertical distribution of a Riemannian submersion is an integrable distribution. In our case, the distribution vertical is D^\perp, which is integrable according to a theorem by Blair and Chen [4].

The sections of D^\perp (resp., D) are called the *vertical vector fields* (resp., the *horizontal vector fields*) of the Riemannian submersion $\pi : M \rightarrow M'$. The letters U, V, W, and W' will always denote vertical vector fields, and the letters X, Y, Z, and Z' denote horizontal vector fields. For any $E \in \mathfrak{X}(M)$, vE and hE denote the vertical and horizontal components of E, respectively. A horizontal vector field X on M is said to be basic if X is π-related to a vector field X' on M'.
It is easy to see that every vector field X' on M' has a unique horizontal lift X to M, and X is basic.

Conversely, let X be a horizontal vector field and suppose that $\langle X, Y \rangle_x = \langle X, Y \rangle_y$ for all Y basic vector fields on M, for all $x, y \in \pi^{-1}(x')$, and for all $x' \in M'$. Then, the vector field X is basic. We have the following O'Neill’s lemma (see [8, 14]).

Lemma 2.2. Let X and Y be basic vector fields on M. Then, they are satisfying the following:

(i) the horizontal component $h[X, Y]$ of $[X, Y]$ is a basic vector field and $\pi_\ast h[X, Y] = [X', Y'] \circ \pi$,

(ii) $h(\nabla_X Y)$ is a basic vector field corresponding to $\nabla'_X Y'$, where ∇' is the Levi-Civita connection on $(M', \langle \cdot, \cdot \rangle')$,

(iii) $[X, U] \in \Gamma(D^\perp)$ for any vertical field $U \in \Gamma(D^\perp)$.

We recall that a Riemannian submersion $\pi : (M, g) \to (M', g')$ determines the fundamental tensor field T and A by the formulas

$$T_E F = h \nabla_E v F + \nu \nabla_E h F,$$

$$A_E F = \nu \nabla_E h F + h \nabla_E \nu F,$$

(2.3)

for all $E, F \in \Gamma(TM)$ (cf. O'Neill [14] and Besse [3]).

It is easy to prove that T and A satisfy

$$T_U V = T_V U,$$

$$A_X Y = \frac{1}{2} \nu [X, Y],$$

(2.4)

(2.5)

for any $U, V \in \Gamma(D^\perp)$ and $X, Y \in \Gamma(D)$.

Formula (2.4) means that the restriction of T to the integrable distribution D^\perp is the second-fundamental form of the fiber submanifolds in M, and (2.5) measures the integrability of the distribution D.

We have the following properties:

$$\nabla_U X = T_U X + h \nabla_U X,$$

$$\nabla_X U = \nu \nabla_X U + A_X U,$$

$$\nabla_X Y = h \nabla_X Y + A_X Y,$$

(2.6)

for any $X, Y \in \Gamma(\mathcal{E})$ and $U \in \Gamma(\mathcal{V})$.

3. Kaehler structure on the basic space M'. From (2.1), we have

$$\tilde{\nabla}_X Y = h \nabla_X Y + \nu \nabla_X Y + \overline{h} B(X, Y) + \overline{\nu} B(X, Y)$$

(3.1)

for any $X, Y \in \Gamma(D)$.

Here, we denote by h and v (resp., \overline{h} and \overline{v}) the canonical projections on D and D^\perp (resp., μ and JD^\perp). Define a tensor field C on M as the vertical component $v(\nabla_X Y)$ of $\nabla_X Y$ (cf. Kobayashi [10]). The tensor field C is known to be a skew-symmetric tensor field defined by Kobayashi such that

$$C(X, Y) = \frac{1}{2} v[X, Y]$$ \hspace{1cm} (3.2)

for all $X, Y \in \Gamma(D)$.

Note that the tensor field C is the restriction of A to $\Gamma(\mathcal{E}) \times \Gamma(\mathcal{E})$.

From Definition 2.1 and Lemma 2.2, we obtain that $Jh\nabla_X Y$ (resp., $h\nabla_X JY$) is a basic vector field and corresponds to $J'\nabla'_X Y'$ (resp., $\nabla'_X J'Y'$) for any basic vector fields X and Y on M.

On the Kaehler manifold \tilde{M}, we have

$$\tilde{\nabla}_E JF = J\tilde{\nabla}_E F.$$ \hspace{1cm} (3.3)

From (3.1) and (3.3), we obtain the following proposition.

PROPOSITION 3.1. For any basic vector fields X and Y on M,

$$Jh\nabla_X Y = h\nabla_X JY,$$ \hspace{1cm} (3.4)

$$JC(X, Y) = \overline{v}B(X, JY),$$ \hspace{1cm} (3.5)

$$C(X, JY) = J\overline{v}B(X, Y),$$ \hspace{1cm} (3.6)

$$J\overline{h}B(X, Y) = \overline{h}B(X, JY).$$ \hspace{1cm} (3.7)

THEOREM 3.2. Let M be a CR-submanifold of a Kaehler manifold \tilde{M} and $\pi : M \to M'$ be a CR-submersion of M on an almost-Hermitian manifold M'. Then, M' is a Kaehler manifold.

PROOF. From Lemma 2.2 and (3.4), we obtain that $\nabla'_X J'Y' = J'\nabla'_X Y'$, so that M' is a Kaehler manifold. \hfill \square

REMARK 3.3. Proposition 3.1 is proved for generic CR-submanifolds of \tilde{M} (i.e., $\mu = 0$) in [10].

4. Riemannian submersions from extrinsic hyperspheres of Einstein-Kaehler manifolds. We recall that a totally umbilical submanifold M of a Riemannian manifold \tilde{M} is a submanifold whose first-fundamental form and second-fundamental form are proportional.

The extrinsic hyperspheres are defined to be totally umbilical hypersurfaces, having nonzero parallel mean-curvature vector field (cf. Nomizu and Yano [13]). Many of the basic results concerning extrinsic spheres in Riemannian and Kaehlerian geometry were obtained by Chen [5, 6, 7].
Let M be an orientable hypersurface in a Kaehler manifold \tilde{M}. Then, M is an extrinsic hypersphere of \tilde{M} if it satisfies

$$B(E,F) = \langle E, F \rangle H$$

for any vector fields E and F on M. Here, H denote the mean-curvature vector field of M. If we put $k = \|H\|$ (where the norm $\|\cdot\|$ is, with respect to a scalar product, induced on every tangent space to M), then k is a nonzero constant function on the extrinsic hypersphere M.

We denote by N the global unit normal vector field to M. Then, $\xi = -JN$ is a global unit vector on M such that $N = J\xi$. Let D be the maximal J-invariant subspace (with respect to J) of the tangent space T_pM for every $p \in M$. We see that M is a CR-hypersurface of M such that $TM = D \oplus D^\perp$, where D^\perp is the one-dimensional anti-invariant distribution generated by the vector field ξ on M.

The anti-invariant distribution D^\perp is integrable, and its leaves are totally geodesic in M (but not in \tilde{M}).

This is an easy consequence from Gauss and Weingarten’s formulas of the leaves of D^\perp in M. This means that O’Neill’s tensor T vanishes on the fibres of the Riemannian submersion $\pi : M \to B$.

The main result of this section is the following theorem.

Theorem 4.1. Let M be an orientable extrinsic hypersphere of an Kaehler-Einstein manifold \tilde{M}. If $\pi : M \to B$ is a CR-submersion of M on an almost-Hermitian manifold B, then B is an Kaehler-Einstein manifold.

To prove Theorem 4.1, we need several lemmas.

Lemma 4.2. Following the assumptions of Theorem 4.1, then

$$\langle A_x\xi, A_y\xi \rangle = k^2 \langle X, Y \rangle$$

for any horizontal vector X on M.

Proof. From Gauss’s formula (2.1) and the umbilicality of M, we get $\tilde{\nabla}_X \xi = \nabla_X \xi$ for any vector field X on M. Then, we have

$$\langle \tilde{\nabla}_X JN, Y \rangle = \langle \nabla_X \xi, Y \rangle = \langle h\nabla_X \xi, Y \rangle = \langle A_x \xi, Y \rangle. \quad (4.3)$$

On the other hand, \tilde{M} is a Kaehler manifold, so that ∇ commute with J:

$$\langle \tilde{\nabla}_X JN, Y \rangle = \langle J\tilde{\nabla}_X N, Y \rangle = -\langle \tilde{\nabla}_X N, JY \rangle = \langle B(X, JY), N \rangle$$

$$= \langle G(X, JY)H, N \rangle = k \langle X, JY \rangle. \quad (4.4)$$
Consequently,
\[\langle A_X \xi, A_Y \xi \rangle = k \langle X, JA_Y \xi \rangle = -k \langle JX, A_Y \xi \rangle = k^2 \langle X, Y \rangle. \tag{4.5} \]

Lemma 4.3. Following the assumptions of Theorem 4.1, then
\[\langle A_X Y, A_Z W \rangle = k^2 \langle X, JY \rangle \langle Z, JW \rangle \tag{4.6} \]

for any horizontal vector fields on \(M \).

Proof. We say that \(A_X Y \) is a vertical vector field, hence
\[A_X Y = \langle A_X Y, \xi \rangle \xi. \tag{4.7} \]

Then,
\[\langle A_X Y, A_Z W \rangle = \langle A_X Y, \xi \rangle \langle A_Z W, \xi \rangle = k^2 \langle X, JY \rangle \langle Z, JW \rangle. \tag{4.8} \]

Lemma 4.4. Following the assumptions of Theorem 4.1, then
\[\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) + k^2 \{ \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle \}, \tag{4.9} \]

where \(\tilde{R} \) and \(R \) are the curvature tensor on \(\tilde{M} \) and \(M \), respectively.

Proof. We have the Gauss equation
\[\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) + \langle B(X, Z), B(Y, W) \rangle \]
\[- \langle B(Y, Z), B(X, W) \rangle. \tag{4.10} \]

Using the umbilicality condition, we get (4.9).

Lemma 4.5. For any horizontal vector fields \(X \) and \(Y \) on \(M \),
\[\tilde{R}(\xi, X, Y, \xi) = 0, \quad \tilde{R}(\xi, JX, JY, \xi) = 0. \] \(\tag{4.11} \)

Proof. For a Riemannian submersion with totally geodesic fibres, the following formula is known:
\[\tilde{R}(X, V, Y, U) = \langle (\nabla_X A)(X, Y), U \rangle + \langle A_X V, A_Y U \rangle. \tag{4.12} \]

On the other hand, the first term on the right part is skew-symmetric with respect to the vertical vector fields \(V \) and \(U \). From (4.12) and (4.9), we obtain (4.11).
Proof of Theorem 4.1. For the horizontal vector fields $X, Y, Z,$ and W on $M,$ we have the following equation of O’Neill:

\[
R(X, Y, Z, W) = R'(X', Y', Z', W') - 2\langle A_X Y, A_Z W \rangle
+ \langle A_Y Z, A_X W \rangle - \langle A_X Z, A_Y W \rangle
\]

(4.13)

(see [3, 14]).

By (4.9) and (4.11), we get the following formula that connects the curvature of M' to the curvature of the Kaehler manifold \tilde{M}:

\[
\tilde{R}(X, Y, Z, W) = R'(X', Y', Z', W')
- k^2 \{ \langle X, JZ \rangle \langle Y, JW \rangle - \langle X, JW \rangle \langle Y, JZ \rangle \\
+ 2 \langle X, JY \rangle \langle Z, JW \rangle \}
- k^2 \{ \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle \}.
\]

(4.14)

Let $(e_1, \ldots, e_p; Je_1, \ldots, Jl_p)$ be a local J-frame of basic vector fields for the horizontal distribution $D.$ Then, $(e_1, \ldots, e'_p; J'e_1, \ldots, J'e_p)$ is a local J'-frame if $\pi_{\text{star}} e_i = e'_i$ on the Kaehler manifold $B.$

Using the above lemmas, from (4.14) by a straightforward calculation, we conclude that B is a Kaehler-Einstein manifold if \tilde{M} is a Kaehler-Einstein manifold.

\[\square\]

Corollary 4.6. Let \tilde{M} be a complex-form space and M an orientable CR-hypersurface of $\tilde{M}.$ Then, the base space of submersion $\pi : M \to B$ is also a complex-form space.

Proof. The corollary follows by straightforward calculation making use of (4.14).

\[\square\]

Example 4.7. Let S^{2n+1} be the standard hypersphere in $C^{n+1}.$ Then, S^{2n+1} is an extrinsic hypersphere in $C^{n+1},$ and we have the Hopf fibration $\pi : S^{2n+1} \to CP^n$ equipped with the canonical metrics.

References

Vittorio Mangione: Dipartimento di Matematica, Università Degli Studi di Parma, Via Massimo D’Azeglio, 85/A, 43100 Parma, Italy

E-mail address: vittorio.mangione@unipr.it