ON FINITELY EQUIVALENT CONTINUA

JANUSZ J. CHARATONIK

Received 7 January 2002

For positive integers \(m \) and \(n \), relations between (hereditary) \(m \)- and \(n \)-equivalence are studied, mostly for arc-like continua. Several structural and mapping problems concerning (hereditarily) finitely equivalent continua are formulated.

2000 Mathematics Subject Classification: 54F15.

A continuum means a compact connected metric space. For a positive integer \(n \), a continuum \(X \) is said to be \(n \)-equivalent provided that \(X \) contains exactly \(n \) topologically distinct subcontinua. A continuum \(X \) is said to be hereditarily \(n \)-equivalent provided that each nondegenerate subcontinuum of \(X \) is \(n \)-equivalent. If there exists a positive integer \(n \) such that \(X \) is \(n \)-equivalent, then \(X \) is said to be finitely equivalent. Thus, for \(n = 1 \), the concepts of “1-equivalent” and “hereditarily 1-equivalent” coincide, and they mean the same as “hereditarily equivalent” in the sense considered, for example, by Cook in [2].

Observe the following statement.

Statement 1. Each subcontinuum of an \(n \)-equivalent continuum is \(m \)-equivalent for some \(m \leq n \). Thus, each finitely equivalent continuum is hereditarily finitely equivalent.

Some structural results concerning finitely equivalent continua are obtained by Nadler Jr. and Pierce in [9]. They have shown that if a continuum \(X \) is (a) semi-locally connected at each of its noncut points, then it is finitely equivalent if and only if it is a graph; (b) aposyndetic at each of its noncut points and finitely equivalent, then it is a graph. Furthermore, in both cases (a) and (b), if \(X \) is \(n \)-equivalent, then each subcontinuum of \(X \) is a \(\theta_{n+1} \)-continuum. Recall that Nadler Jr. and Pierce in [9, page 209] posed the following problem.

Problem 2. Determine which graphs, or at least how many, are \(n \)-equivalent for each \(n \).

The arc and the pseudo-arc are the only known 1-equivalent continua. In [10] Whyburn has shown that each planar 1-equivalent continuum is tree-like, and planarity assumption has been deleted after 40 years by Cook [2] who proved tree-likeness of any 1-equivalent continuum. But it is still not known whether or not the arc and the pseudo-arc are the only ones among 1-equivalent continua.

In contrast to 1-equivalent case, 2-equivalent continua need not be hereditarily 2-equivalent, a simple closed curve is 2-equivalent while not hereditarily
2-equivalent. The 2-equivalent continua were studied by Mahavier in [5] who proved that if a 2-equivalent continuum contains an arc, then it is a simple triod, a simple closed curve or irreducible, and that the only locally connected 2-equivalent continua are a simple triod and a simple closed curve. It is also shown that if X is a decomposable, not locally connected, 2-equivalent continuum containing an arc, then X is arc-like and it is the closure of a topological ray R such that the remainder $\text{cl}(R) \setminus R$ is an end continuum of X. Furthermore, two examples of 2-equivalent continua are presented in [5]: the first, [5, Example 1, page 246], is a decomposable continuum X which is the closure of a ray R such that the remainder $\text{cl}(R) \setminus R$ is homeomorphic to X; the second, [5, Example 2, page 247], is an arc-like hereditarily decomposable continuum containing no arc.

Looking for an example of a hereditarily 2-equivalent continuum note that the former example surely is not hereditarily 2-equivalent because it contains an arc. We analyze the latter one.

The continuum M constructed in [5, Example 2, page 247] does not contain any arc, and it contains a continuum N such that each subcontinuum of M is homeomorphic to M or to N, see [5, the paragraph following Lemma 3, page 249]. Further, by its construction, N does contain continua homeomorphic to M (see [5, the final part of the proof, page 251]). Therefore, the following statement is established.

Theorem 3. The continuum M constructed in [5, Example 2, page 247] has the following properties:
(a) M is an arc-like;
(b) M is hereditarily decomposable;
(c) M does not contain any arc;
(d) M is hereditarily 2-equivalent.

In connection with the above theorem, the following problem can be posed.

Problem 4. Determine for what integers $n \geq 3$, there exists a continuum M satisfying conditions (a), (b), and (c) of Theorem 3 and being hereditarily n-equivalent.

The following results are consequences of [1, Theorem, page 35].

Theorem 5. For each hereditarily n-equivalent continuum X, that does not contain any arc, there exists an $(n + 2)$-equivalent continuum Y such that each of its subcontinua is homomorphic either to a subcontinuum of X or to Y, or to an arc.

Proof. Indeed, a compactification Y of a ray R having the continuum X as the remainder, that is, such that $X = \text{cl}(R) \setminus R$ is such a continuum.

Since if M is arc-like and hereditarily decomposable, then so is any of compactifications Y of a ray having the continuum X as the remainder, we get the next result as a consequence of Theorem 5.
Corollary 6. If a continuum \(M \) satisfies conditions (a), (b), and (c) of Theorem 3 and is hereditarily \(n \)-equivalent, then any of compactifications of a ray having the continuum \(M \) as the remainder satisfies conditions (a) and (b) of Theorem 3 and is \((n + 2)\)-equivalent.

In [7], an uncountable family \(\mathcal{F} \) is constructed of compactifications of the ray with the remainder being the pseudo-arc.

Statement 7. Each member \(X \) of the (uncountable) family \(\mathcal{F} \) constructed in [7] is an arc-like 3-equivalent continuum. Any subcontinuum of \(X \) is homeomorphic to an arc, to a pseudo-arc, or to the whole \(X \).

A continuum \(X \) has the \(RNT \)-property (retractable onto near trees) provided that for each \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that if a tree \(T \) is \(\delta \)-near to \(X \) with respect to the Hausdorff distance, then there is an \(\varepsilon \)-retraction of \(X \) onto \(T \), see [6, Definition 0]. It is shown in [6, Theorem 5] that if a continuum \(X \) is a compactification of the ray \(R \) and \(X \) has the RNT-property, then the remainder \(\text{cl}(R) \setminus R \subset X = \text{cl}(R) \) is the pseudo-arc. Therefore, Theorem 5 implies the following proposition.

Proposition 8. Each compactification \(X \) of the ray having the RNT-property is a 3-equivalent continuum. Each subcontinuum of \(X \) is homeomorphic to an arc, a pseudo-arc, or to the whole \(X \).

Observe that \(M \) of Theorem 3 being an arc-like is hereditarily unicoherent, and being hereditarily decomposable, it is a \(\lambda \)-dendroid (containing no arc). Another (perhaps the first) example of a \(\lambda \)-dendroid, in fact, an arc-like, containing no arc, has been constructed by Janiszewski in 1912, [3] but his description was rather intuitive than precise. It would be interesting to investigate if that old example of Janiszewski is or is not \(n \)-equivalent (hereditarily \(n \)-equivalent) for some \(n \).

The following problems can be considered as a program of a study in the area rather than particular questions.

Problems 9. For each positive integer \(n \), characterize continua which are (a) \(n \)-equivalent; (b) hereditarily \(n \)-equivalent.

Problem 10. Characterize continua which are finitely equivalent.

Sometimes a characterization of a class of spaces (or of spaces having a certain property) can be expressed in terms of containing some particular spaces. A classical illustration of this is a well-known characterization of nonplanar graphs by containing the two Kuratowski’s graphs: \(K_5 \) and \(K_{3,3} \), see, for example, [8, Theorem 9.36, page 159]. To be more precise, recall the following concept. Let \(\mathcal{A} \) be a class of spaces and let \(\mathcal{P} \) be a property. Then \(\mathcal{P} \) is said to be **finite (or countable) in the class** \(\mathcal{A} \) provided that there is a finite (or countable,
respectively) set \(\mathcal{F} \) of members of \(\mathcal{A} \) such that a member \(X \) has the property \(\mathcal{F} \) if and only if \(X \) contains a homeomorphic copy of some member of \(\mathcal{F} \). The result of [7] mentioned above in Statement 7 shows that this is not the way of characterizing 3-equivalent continua. Namely, the existence of the family \(\mathcal{F} \) shows the following theorem.

Theorem 11. The property of being 3-equivalent is neither finite nor countable in the class of (a) all continua; (b) arc-like continua.

A mapping \(f : X \to Y \) between continua \(X \) and \(Y \) is said to be

(i) *atomic* provided that for each subcontinuum \(K \) of \(X \), either \(f(K) \) is degenerate or \(f^{-1}(f(K)) = K \);

(ii) *monotone* provided that the inverse image of each subcontinuum of \(Y \) is connected;

(iii) *hereditarily monotone* provided that for each subcontinuum \(K \) of \(X \), the partial mapping \(f|K : K \to f(K) \) is monotone.

It is known that each atomic mapping is hereditarily monotone, see, for example, [4, (4.14), page 17]. Since each arcwise connected 2-equivalent continuum is either a simple closed curve or a simple triod, see [5, Theorem 2, page 244], each semilocally connected 3-equivalent continuum is either a simple 4-od [8, Definition 9.8, page 143] (i.e., a letter \(X \)) or a letter \(H \), see [9, page 209]. And since these continua are preserved under atomic mappings (as it is easy to see), we conclude that atomic mappings preserve the property of being 2-equivalent and being 3-equivalent for locally connected continua. However, this is not an interesting result, because each atomic mapping of an arcwise connected continuum onto a nondegenerate continuum is a homeomorphism, see [4, (6.3), page 51]. But the result cannot be extended to hereditarily monotone mappings, because a mapping that shrinks one arm of a simple triod to a point is hereditarily monotone and not atomic, and it maps a 2-equivalent continuum onto an arc that is 1-equivalent.

On the other hand, if \(X \) is the 2-equivalent continuum which is the closure of a ray \(R \) as described in [5, Example 1, page 246], then the mapping \(f : X \to [0,1] \), that shrinks the remainder \(\text{cl}(R) \setminus R \) to a point (and is a homeomorphism on \(R \)), is atomic and it maps 2-equivalent continuum \(X \) onto the 1-equivalent continuum \([0,1]\). Therefore, atomic mappings do not preserve the property of being a 2-equivalent continuum. In connection with these examples, the following question can be asked.

Question 12. Let a continuum \(X \) be \(n \)-equivalent and let a mapping \(f : X \to Y \) be an atomic surjection. Must then \(Y \) be \(m \)-equivalent for some \(m \leq n \)?

In general, we can pose the following problems.

Problems 13. What kinds of mappings between continua preserve the property of being: (a) \(n \)-equivalent? (b) hereditarily \(n \)-equivalent? (c) finitely equivalent?
REFERENCES

Janusz J. Charatonik: Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México DF, Mexico

E-mail address: jjc@math.unam.mx