FUZZY SUPER IRRESOLUTE FUNCTIONS

S. E. ABBAS

Received 26 December 2002

The concept of fuzzy super irresolute function was considered and studied by Šostak's (1985). A comparison between this type and other existing ones is established. Several characterizations, properties, and their effect on some fuzzy topological spaces are studied. Also, a new class of fuzzy topological spaces under the terminology fuzzy S^*-closed spaces is introduced and investigated.

2000 Mathematics Subject Classification: 54A40.

1. Introduction and preliminaries. Śostak [10], introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and Chang fuzzy topology [1], in the sense that not only the objects are fuzzified, but also the axiomatics. In [11, 12], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al. [2, 3] have redefined the same concept. In [8], Ramadan gave a similar definition, namely "smooth topological space." It has been developed in many directions [4, 5, 6, 7, 13].

In the present note, some counterexamples and characterizations of fuzzy super irresolute functions are examined. It is seen that fuzzy super irresolute function implies each of fuzzy irresolute [9] and fuzzy continuity [10], but not conversely. Also, properties preserved by fuzzy super irresolute functions are examined. Finally, we define a fuzzy S^*-closed space in fuzzy topological spaces in Šostak sense and characterize such a space from different angles. Our aim is to compare the introduced type of fuzzy covering property with the existing ones.

Throughout this note, let X be a nonempty set, $I = [0,1]$, and $I_s = (0,1]$. For $\alpha \in I$, $\alpha(x) = \alpha$ for all $x \in X$. The following definition and results which will be needed.

Definition 1.1 [10]. A function $\tau : I^X \rightarrow I$ is called a fuzzy topology on X if it satisfies the following conditions:

1. $\tau(0) = \tau(1) = 1$,
2. $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$,
3. $\tau(\bigvee_{i \in I} \mu_i) \geq \bigwedge_{i \in I} \tau(\mu_i)$ for any $\{\mu_i\}_{i \in I} \subset I^X$.

The pair (X, τ) is called a fuzzy topological space (FTS).
Remark 1.2. Let \((X, \tau)\) be an FTS. Then, for each \(\alpha \in I\), \(\tau_\alpha = \{\mu \in I^X : \tau(\mu) \geq r\}\) is a Chang’s fuzzy topology on \(X\).

Theorem 1.3 [3]. Let \((X, \tau)\) be an FTS. Then, for each \(r \in I_\circ\) and \(\lambda \in I^X\), an operator \(C_\tau : I^X \times I_\circ \rightarrow I^X\) is defined as follows:

\[
C_\tau(\lambda, r) = \bigwedge \{\mu \in I^X : \lambda \leq \mu, \tau(1 - \mu) \geq r\}.
\]

For \(\lambda, \mu \in I^X\) and \(r, s \in I_\circ\), the operator \(C_\tau\) satisfies the following conditions:

1. \(C_\tau(0, r) = 0\), \(\lambda \leq C_\tau(\lambda, r)\),
2. \(C_\tau(\lambda, r) \vee C_\tau(\mu, r) = C_\tau(\lambda \vee \mu, r)\),
3. \(C_\tau(\lambda, r) \leq C_\tau(\lambda, s)\) if \(r \leq s\),
4. \(C_\tau(C_\tau(\lambda, r), r) = C_\tau(\lambda, r)\).

Theorem 1.4 [9]. Let \((X, \tau)\) be an FTS. Then, for each \(r \in I_\circ\) and \(\lambda \in I^X\), an operator \(I_\tau : I^X \times I_\circ \rightarrow I^X\) is defined as follows:

\[
I_\tau(\lambda, r) = \bigvee \{\mu \in I^X : \lambda \geq \mu, \tau(\mu) \geq r\}.
\]

For \(\lambda, \mu \in I^X\) and \(r, s \in I_\circ\), the operator \(I_\tau\) satisfies the following conditions:

1. \(I_\tau(1 - \lambda, r) = 1 - C_\tau(\lambda, r)\),
2. \(I_\tau(1, r) = 1\), \(\lambda \geq I_\tau(\lambda, r)\),
3. \(I_\tau(\lambda, r) \land I_\tau(\mu, r) = I_\tau(\lambda \land \mu, r)\),
4. \(I_\tau(\lambda, r) \leq I_\tau(\lambda, s)\) if \(r \leq s\),
5. \(I_\tau(I_\tau(\lambda, r), r) = I_\tau(\lambda, r)\).

Definition 1.5 [9]. Let \((X, \tau)\) be an FTS. Then, for each \(r \in I_\circ\) and \(\lambda \in I^X\), the following statements hold:

1. \(\lambda\) is called \(r\)-fuzzy semi-open (\(r\)-FSO) if there exists \(\nu \in I^X\) with \(\tau(\nu) \geq r\) such that \(\nu \leq \lambda \leq C_\tau(\nu, r)\); equivalently, \(\lambda \leq C_\tau(I_\tau(\lambda, r), r)\);
2. \(\lambda\) is called \(r\)-fuzzy semiclosed (\(r\)-FSC) if there exists \(\nu \in I^X\) with \(\tau(1 - \nu) \geq r\) such that \(I_\tau(\nu, r) \leq \lambda \leq \nu\); equivalently, \(I_\tau(C_\tau(\lambda, r), r) \leq \lambda\);
3. \(\lambda\) is called \(r\)-fuzzy semiclopen (\(r\)-FSCO) if \(\lambda\) is \(r\)-FSO and \(r\)-FSC;
4. \(\lambda\) is called \(r\)-fuzzy regular open (\(r\)-FRO) if \(\lambda = I_\tau(C_\tau(\lambda, r), r)\);
5. the \(r\)-fuzzy semi-interior of \(\lambda\), denoted \(SI_\tau(\lambda, r)\), is defined by \(SI_\tau(\lambda, r) = \bigvee\{\nu \in I^X : \nu \leq \lambda, \nu \text{ is } r\text{-FSO}\}\);
6. the \(r\)-fuzzy semiclosure of \(\lambda\), denoted \(SC_\tau(\lambda, r)\), is defined by \(SC_\tau(\lambda, r) = \bigwedge\{\nu \in I^X : \nu \geq \lambda, \nu \text{ is } r\text{-FSC}\}\).

Theorem 1.6 [9]. Let \((X, \tau)\) be an FTS. For \(\lambda \in I^X\) and \(r \in I_\circ\), the following statements are valid:

1. \(\lambda\) is \(r\)-FSO if and only if \(\lambda = SI_\tau(\lambda, r)\), and \(\lambda\) is \(r\)-FSC if and only if \(\lambda = SC_\tau(\lambda, r)\);
2. \(I_\tau(\lambda, r) \leq SI_\tau(\lambda, r) \leq \lambda \leq SC_\tau(\lambda, r) \leq C_\tau(\lambda, r)\).
FUZZY SUPER IRRESOLUTE FUNCTIONS 2691

(3) $\text{SC}_\tau(\text{SC}_\tau(\lambda, r), r) = \text{SC}_\tau(\lambda, r)$;
(4) $C_\tau(\text{SC}_\tau(\lambda, r), r) = \text{SC}_\tau(C_\tau(\lambda, r), r) = C_\tau(\lambda, r)$;
(5) $\text{SI}_\tau(1 - \lambda, r) = 1 - \text{SC}_\tau(\lambda, r)$.

Lemma 1.7. For any fuzzy set λ in an FTS (X, τ) and $r \in I_*$, if $\tau(\lambda) \geq r$, then $I_\tau(C_\tau(\lambda, r), r) = \text{SC}_\tau(\lambda, r)$.

Proof. Since $\text{SC}_\tau(\lambda, r)$ is r-FSC, $I_\tau(C_\tau(\text{SC}_\tau(\lambda, r), r), r) \leq \text{SC}_\tau(\lambda, r)$ and hence, by Theorem 1.6(4), $I_\tau(C_\tau(\lambda, r), r) \leq \text{SC}_\tau(\lambda, r)$. To prove the opposite inclusion, since $\tau(\lambda) \geq r$, $r \in I_*$, we have $\lambda \leq I_\tau(C_\tau(\lambda, r), r)$ so that $1 - \lambda \geq 1 - I_\tau(C_\tau(\lambda, r), r) = C_\tau(I_\tau(1 - \lambda, r), r)$. But $C_\tau(I_\tau(1 - \lambda, r), r)$ is r-FSO. Hence $C_\tau(I_\tau(1 - \lambda, r), r) \leq \text{SI}_\tau(1 - \lambda, r)$ and so $\text{SC}_\tau(\lambda, r) \leq I_\tau(C_\tau(\lambda, r), r)$.

Definition 1.8. Let (X, τ) and (Y, η) be FTSs and let $f : X \to Y$ be a function which is called

(1) fuzzy continuous (FC) if and only if $\eta(\mu) \leq \tau(f^{-1}(\mu))$ for each $\mu \in I^Y$, [10],
(2) fuzzy open if and only if $\tau(\lambda) \leq \eta(f(\lambda))$ for each $\lambda \in I^X$, [10],
(3) fuzzy semicontinuous (FSC) if and only if $f^{-1}(\mu)$ is r-FSO set of X for each $\eta(\mu) \geq r$, $r \in I_* [9],$
(4) fuzzy irresolute (FI) if and only if $f^{-1}(\mu)$ is r-FSO set of X for each μ is r-FSO set of Y, $r \in I_*$ [9].

2. Fuzzy super irresolute functions

Definition 2.1. Let (X, τ) and (Y, η) be FTSs and let $f : X \to Y$ be a function which is called

(1) fuzzy super irresolute (F-super I) if and only if $\tau(f^{-1}(\mu)) \geq r$ for each μ is r-FSO set of Y, $r \in I_*$,
(2) fuzzy completely continuous (FCC) if and only if $f^{-1}(\mu)$ is r-FRO set of X for each $\mu \in I^Y$ and $\eta(\mu) \geq r$, $r \in I_* [9],$
(3) fuzzy completely irresolute (FCI) if and only if $f^{-1}(\mu)$ is r-FRO set of X for each r-FSO set $\mu \in I^Y$ and $r \in I_*$.

Remark 2.2. One can show the connection between these types and other existing ones by the following diagram:

\[
\begin{array}{ccc}
\text{FCI} & \longrightarrow & \text{F-super I} \\
\downarrow & & \downarrow \\
\text{FCC} & \longrightarrow & \text{FI} \\
\downarrow & & \downarrow \\
\text{FC} & \longrightarrow & \text{FSC.}
\end{array}
\] (2.1)

The converse of the previous implications need not be true in general as shown in the following counterexample.
COUNTEREXAMPLE 2.3. Let \(\mu_1, \mu_2, \) and \(\mu_3 \) be fuzzy subsets of \(X = \{a,b,c\} \) defined as follows:

\[
\begin{align*}
\mu_1(a) &= 0.9, & \mu_1(b) &= 0.0, & \mu_1(c) &= 0.1, \\
\mu_2(a) &= 0.9, & \mu_2(b) &= 0.7, & \mu_2(c) &= 0.2, \\
\mu_3(a) &= 0.9, & \mu_3(b) &= 0.3, & \mu_3(c) &= 0.2.
\end{align*}
\]

(2.2)

Then \(\tau, \eta : I^X \to I, \) defined as

\[
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0, \\
\frac{1}{2}, & \text{if } \lambda = \mu_1, \\
\frac{1}{3}, & \text{if } \lambda = \mu_2, \\
0, & \text{otherwise},
\end{cases}
\eta(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0, \\
\frac{1}{3}, & \text{if } \lambda = \mu_1, \mu_2, \\
\frac{1}{2}, & \text{if } \lambda = \mu_3, \\
0, & \text{otherwise},
\end{cases}
\]

(2.3)

are fuzzy topologies on \(X. \) Then,

1. the identity function \(\text{id}_X : (X, \tau) \to (X, \eta) \) is FI but not F-super I because \(\mu_3 \) is \(1/3 \)-FSO in \((X, \eta) \) and \(\tau(f^{-1}(\mu_3)) = \tau(\mu_3) = 0; \)

2. the identity function \(\text{id}_X : (X, \tau) \to (X, \tau) \) is FC but not F-super I function.

DEFINITION 2.4. An FTS \((X, \tau) \) is said to be fuzzy extremally disconnected if and only if \(\tau(C_{\tau}(\lambda, r)) \geq r \) for every \(\tau(\lambda) \geq r \) for each \(\lambda \in I^X \) and \(r \in I \).

THEOREM 2.5. For a function \(f : X \to Y, \) the following statements are true:

1. if \(X \) is fuzzy extremally disconnected and \(f \) is FI, then \(f \) is F-super I;

2. if \(Y \) is fuzzy extremally disconnected and \(f \) is FCI (resp., FC), then \(f \) is F-super I;

3. if both \(X \) and \(Y \) are fuzzy extremally disconnected, then the concepts F-super I, FCI, FI, FCC, FSC, and FC are equivalent.

PROOF. The proof is obvious. \(\square \)

THEOREM 2.6. Let \((X, \tau_1) \) and \((Y, \tau_2) \) be FTSs. Let \(f : X \to Y \) be a function. The following statements are equivalent:

1. a map \(f \) is F-super I;

2. for each \(r \)-FSC \(\mu \in I^Y, \) \(\tau(1 - f^{-1}(\mu)) \geq r, \) \(r \in I; \)

3. for each \(\lambda \in I^X \) and \(r \in I, \) \(f(C_{\tau_1}(\lambda, r)) \leq SC_{\tau_2}(f(\lambda), r); \)

4. for each \(\mu \in I^Y \) and \(r \in I, \) \(C_{\tau_1}(f^{-1}(\mu), r) \leq f^{-1}(SC_{\tau_2}(\mu, r)); \)

5. for each \(\mu \in I^Y \) and \(r \in I, \) \(f^{-1}(SI_{\tau_2}(\mu, r)) \leq I_{\tau_1}(f^{-1}(\mu), r). \)

PROOF. (1) \(\Leftrightarrow \) (2). It is easily proved from Theorem 1.4 and from \(f^{-1}(1 - \mu) = 1 - f^{-1}(\mu). \)

(2) \(\Rightarrow \) (3). Suppose there exist \(\lambda \in I^X \) and \(r \in I, \) such that

\[
f(C_{\tau_1}(\lambda, r)) \notin SC_{\tau_2}(f(\lambda), r).
\]

(2.4)
There exist \(y \in Y \) and \(t \in I \), such that
\[
f(C_{T_1}(\lambda, r))(y) > t > SC_{T_2}(f(\lambda), r)(y).
\] (2.5)

If \(f^{-1}(\{y\}) = \emptyset \), it is a contradiction because \(f(C_{T_1}(\lambda, r))(y) = 0 \).
If \(f^{-1}(\{y\}) \neq \emptyset \), there exists \(x \in f^{-1}(\{y\}) \) such that
\[
f(C_{T_1}(\lambda, r))(y) \geq C_{T_1}(\lambda, r)(x) > t > SC_{T_2}(f(\lambda), r)(f(x)).
\] (2.6)

Since \(SC_{T_2}(f(\lambda), r)(f(x)) < t \), there exists \(r \)-FSC \(\mu \in I^Y \) with \(f(\lambda) \leq \mu \) such that
\[
SC_{T_2}(f(\lambda), r)(f(x)) \leq \mu(f(x)) < t.
\] (2.7)

Moreover, \(f(\lambda) \leq \mu \) implies \(\lambda \leq f^{-1}(\mu) \). From (2), \(\tau(1 - f^{-1}(\mu)) \geq r \). Thus, \(C_{T_1}(\lambda, r)(x) \leq f^{-1}(\mu)(x) = \mu(f(x)) < t \), which is a contradiction to (2.6).

(3) \(\Rightarrow \) (4). For all \(\mu \in I^Y \), \(r \in I^\circ \), put \(\lambda = f^{-1}(\mu) \). From (3), we have
\[
f(C_{T_1}(f^{-1}(\mu), r)) \leq SC_{T_2}(f(f^{-1}(\mu)), r) \leq SC_{T_2}(\mu, r),
\] (2.8)

which implies that
\[
C_{T_1}(f^{-1}(\mu), r) \leq f^{-1}(f(C_{T_1}(f^{-1}(\mu), r))) \leq f^{-1}(SC_{T_2}(\mu, r)).
\] (2.9)

(4) \(\Rightarrow \) (5). It is easily proved from Theorem 1.4(1).
(5) \(\Rightarrow \) (1). Let \(\mu \) be \(r \)-FSO set of \(Y \). From Theorem 1.6(1), \(\mu = SI_{T_2}(\mu, r) \). By (5),
\[
f^{-1}(\mu) \leq I_{T_1}(f^{-1}(\mu), r).
\] (2.10)

On the other hand, by Theorem 1.4(2),
\[
f^{-1}(\mu) \geq I_{T_1}(f^{-1}(\mu), r).
\] (2.11)

Thus, \(f^{-1}(\mu) = I_{T_1}(f^{-1}(\mu), r) \), that is, \(\tau(f^{-1}(\mu)) \geq r \). \(\square \)

3. Properties preserved by F-super I functions

Definition 3.1. Let \((X, \tau) \) be an FTS and \(r \in I^\circ \). Then
(1) \(X \) is called \(r \)-fuzzy compact (resp., \(r \)-fuzzy almost compact and \(r \)-fuzzy nearly compact) if and only if for each family \(\{\lambda_i \in I^X : \tau(\lambda_i) \geq r, i \in \Gamma\} \) such that \(\bigvee_{i \in \Gamma} \lambda_i = 1 \), there exists a finite index set \(\Gamma_i \subset \Gamma \) such that \(\bigvee_{i \in \Gamma_i} \lambda_i = 1 \) (resp., \(\bigvee_{i \in \Gamma_i} C_T(\lambda_i, r) = 1 \) and \(\bigvee_{i \in \Gamma_i} I_T(C_T(\lambda_i, r), r) = 1 \));
(2) \(X \) is called \(r \)-fuzzy semicompact (resp., \(r \)-fuzzy S-closed) if and only if for each family \(\{\lambda_i \in I^X : \lambda_i \leq C_T(I_T(\lambda_i, r), r), i \in \Gamma\} \) such that \(\bigvee_{i \in \Gamma} \lambda_i = 1 \), there exists a finite index set \(\Gamma_i \subset \Gamma \) such that \(\bigvee_{i \in \Gamma_i} \lambda_i = 1 \) (resp., \(\bigvee_{i \in \Gamma_i} C_T(\lambda_i, r) = 1 \)).
Theorem 3.2. Every surjective F-super I image of \(r \)-fuzzy compact space is \(r \)-fuzzy semicompact, \(r \in I^* \).

Proof. Let \((X,\tau)\) be \(r \)-fuzzy compact, \(r \in I^* \), and let \(f : (X,\tau) \rightarrow (Y,\eta) \) be F-super I surjective function. If \(\{\lambda_i \in I^Y : \lambda_i \leq C_\eta(I_\eta(\lambda_i,r),r), \ i \in \Gamma \} \) with \(\bigvee_{i \in \Gamma} \lambda_i = 1 \), then \(\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = 1 \). Since \(f \) is F-super I, \(\tau(f^{-1}(\lambda_i)) \geq r \). Since \(X \) is \(r \)-fuzzy compact, there exists a finite subset \(\Gamma_0 \subset \Gamma \) with \(\bigvee_{i \in \Gamma_0} f^{-1}(\lambda_i) = 1 \). From the surjectivity of \(f \), we deduce

\[
1 = f(1) = \left(\bigvee_{i \in \Gamma_0} f^{-1}(\lambda_i) \right) = \bigvee_{i \in \Gamma_0} f^{-1}(\lambda_i) = \bigvee_{i \in \Gamma_0} \lambda_i.
\]
(3.1)

So, \(Y \) is \(r \)-fuzzy semicompact.

Corollary 3.3. Every surjective F-super I image of \(r \)-fuzzy compact space is \(r \)-fuzzy \(S \)-closed, \(r \in I^* \).

Theorem 3.4. Every surjective F-super I image of \(r \)-fuzzy almost compact space is \(r \)-fuzzy \(S \)-closed, \(r \in I^* \).

Proof. The proof is similar to that of Theorem 3.2.

Corollary 3.5. \(r \)-fuzzy semicompactness and \(r \)-fuzzy \(S \)-closedness are preserved under an F-super I surjection function, \(r \in I^* \).

Proof. The Corollary is a direct consequence of Theorems 3.2 and 3.4.

Theorem 3.6. Let \(f : X \rightarrow Y \) be FSC and F-super I surjective function. If \(X \) is \(r \)-fuzzy nearly compact, then \(Y \) is \(r \)-fuzzy \(S \)-closed, \(r \in I^* \).

Proof. Let \((X,\tau)\) be \(r \)-fuzzy nearly compact, and let \(r \in I^* \), \(f : (X,\tau) \rightarrow (Y,\eta) \) be FSC and F-super I surjective function. If \(\{\lambda_i \in I^Y : \lambda_i \leq C_\eta(I_\eta(\lambda_i,r),r), \ i \in \Gamma \} \) with \(\bigvee_{i \in \Gamma} \lambda_i = 1 \), then \(\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = 1 \). Since \(f \) is F-super I, \(\tau(f^{-1}(\lambda_i)) \geq r \). Since \(X \) is \(r \)-fuzzy nearly compact, there exists a finite subset \(\Gamma_0 \subset \Gamma \) with \(\bigvee_{i \in \Gamma_0} I_\tau(C_\tau(f^{-1}(\lambda_i),r),r) = 1 \). From the surjectivity of \(f \), we deduce

\[
1 = f(1) = \left(\bigvee_{i \in \Gamma_0} I_\tau(C_\tau(f^{-1}(\lambda_i),r),r) \right)
\]

\[
= \bigvee_{i \in \Gamma_0} f(I_\tau(C_\tau(f^{-1}(\lambda_i),r),r))
\]

\[
\leq \bigvee_{i \in \Gamma_0} f(f^{-1}(C_\eta(\lambda_i,r))) \quad \text{(since} \ f \ \text{is FSC [9]).}
\]

Thus \(\bigvee_{i \in \Gamma_0} C_\eta(\lambda_i,r) = 1 \). Hence \(Y \) is \(r \)-fuzzy \(S \)-closed.
4. Fuzzy S^*-closed spaces: characterizations and comparisons

Definition 4.1. Let (X, τ) be an FTS and $r \in I_\ast$. Then X is called r-fuzzy S^*-closed if and only if for each family $\{\lambda_i \in I^X : \lambda_i \leq C_r(I_\tau(\lambda_i, r), r), \ i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = 1$, there exists a finite index set $\Gamma_\ast \subseteq \Gamma$ such that

$$\bigvee_{i \in \Gamma_\ast} \text{SC}_\tau(\lambda_i, r) = 1. \quad (4.1)$$

Theorem 4.2. For an FTS (X, τ), $r \in I_\ast$, the following statements are equivalent:

1. X is r-fuzzy S^*-closed;
2. for every family $\{\lambda_i \in I^X : \lambda_i$ is r-FSCO, $i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = 1$, there exists a finite index set $\Gamma_\ast \subseteq \Gamma$ such that $\bigvee_{i \in \Gamma_\ast} \lambda_i = 1$;
3. every family of r-FSCO sets having the finite intersection property has nonnull intersection;
4. for every family $\{\lambda_i \in I^X : \lambda_i$ is r-FSC, $i \in \Gamma\}$ such that $\bigwedge_{i \in \Gamma} \lambda_i = 1$, there exists a finite index set $\Gamma_\ast \subseteq \Gamma$ such that $\bigwedge_{i \in \Gamma_\ast} \text{SI}_\tau(\lambda_i, r) = 1$.

Proof. (1)\Rightarrow(2). The proof is obvious.

(2)\Rightarrow(3). Let $\{\lambda_i\}_{i \in \Gamma}$ be a family of r-FSCO sets having the finite intersection property. If possible, let $\bigwedge_{i \in \Gamma} \lambda_i = 0$. Then $\bigvee_{i \in \Gamma} (1 - \lambda_i) = 1$, where each $(1 - \lambda_i)$ is r-FSCO. By (2), there exists a finite subset Γ_\ast of Γ such that $\bigvee_{i \in \Gamma_\ast} (1 - \lambda_i) = 1$, that is, $\bigwedge_{i \in \Gamma_\ast} \lambda_i = 0$, which is a contradiction.

(3)\Rightarrow(1). Suppose that $\{\lambda_i : i \in \Gamma\}$ is a family of r-FSO sets of X with $\bigvee_{i \in \Gamma} \lambda_i = 1$, and it has no finite subfamily $\{\lambda_{i_1}, \ldots, \lambda_{i_n}\}$ such that $\bigvee_{j=1}^n \text{SC}_\tau(\lambda_{i_j}, r) = 1$. Then $\bigwedge_{i=1}^n (1 - \text{SC}_\tau(\lambda_{i_j}, r)) \neq 0$. Thus, $\{1 - \text{SC}_\tau(\lambda_i, r) : i \in \Gamma\}$ is a family of r-FSCO sets having the finite intersection property. By (3), $\bigwedge_{i \in \Gamma} (1 - \text{SC}_\tau(\lambda_i, r)) \neq 0$, and hence, $\bigvee_{i \in \Gamma} \lambda_i \neq 1$, which is a contradiction.

(1)\Rightarrow(4). If $\{\lambda_i : i \in \Gamma\}$ is a family of nonnull r-FSC sets in X, $r \in I_\ast$, with $\bigwedge_{i \in \Gamma} \lambda_i = 0$, then $\{1 - \lambda_i : i \in \Gamma\}$ is r-FSO sets in X with $\bigvee_{i \in \Gamma} (1 - \lambda_i) = 1$. By (1), there is a finite subset $\Gamma_\ast \subseteq \Gamma$ such that

$$\bigwedge_{i \in \Gamma_\ast} \text{SI}_\tau(\lambda_i, r) = 0. \quad (4.2)$$

that is, $\bigwedge_{i \in \Gamma_\ast} \text{SI}_\tau(\lambda_i, r) = 0$.

(4)\Rightarrow(1). For any $\{\lambda_i \in I^X : \lambda_i$ is r-FSO, $i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = 1$, $\{1 - \lambda_i, i \in \Gamma\}$ is a family of r-FSC sets such that $\bigwedge_{i \in \Gamma} (1 - \lambda_i) = 0$. We can assume, without loss of generality, that each $1 - \lambda_i \neq 0$. By (4), there is a finite subset $\Gamma_\ast \subseteq \Gamma$ such that $\bigwedge_{i \in \Gamma_\ast} \text{SI}_\tau(1 - \lambda_i, r) = 0$, that is, $\bigvee_{i \in \Gamma_\ast} \text{SC}_\tau(\lambda_i, r) = 1$, which proves the r-fuzzy S^*-closedness of X. □

Theorem 4.3. Let (X, τ) be an FTS and $r \in I_\ast$. If X is r-fuzzy semicompact, then X is r-fuzzy S^*-closed as well.
Proof. Since for every \(\lambda \in I^X \) and \(r \in I_\circ \) we have \(\lambda \leq SC_\tau(\lambda, r) \), this immediately follows from the definitions.

Theorem 4.4. Let \((X, \tau)\) be an FTS and \(r \in I_\circ \). If \(X \) is \(r \)-fuzzy \(S^* \)-closed, then \(X \) is \(r \)-fuzzy \(S \)-closed as well.

Proof. Since for every \(\lambda \in I^X \) and \(r \in I_\circ \) we have \(SC_\tau(\lambda, r) \leq C_\tau(\lambda, r) \), this immediately follows from the definitions.

That the converse is false is evident from the following counterexample.

Counterexample 4.5. Let \(\mathbb{N} \) denote the set of natural numbers with the fuzzy topology \(\tau : I^\mathbb{N} \rightarrow I \) defined as

\[
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0, 1, \\
\frac{1}{3}, & \text{if } \lambda = \mu, \nu, \\
\frac{1}{2}, & \text{if } \lambda = \mu \vee \nu, \\
0, & \text{otherwise,}
\end{cases}
\]

(4.3)

where \(\mu(1) = 1, \mu(i) = 0 \) (for \(i = 2, 3, 4, \ldots \)), and \(\nu(2) = 1, \mu(j) = 0 \) (for \(j = 1, 3, 4, \ldots \)). Let \(\rho^1_i \) and \(\rho^2_i \) (for \(i = 3, 4, 5, \ldots \)) be the fuzzy sets in \(I^\mathbb{N} \) given by

\[
\rho^1_i(x) = \begin{cases}
1, & \text{for } x = 1 \text{ and } i, \\
0, & \text{otherwise,}
\end{cases}
\]

(4.4)

\[\rho^2_i(x) = \begin{cases}
1, & \text{for } x = 2 \text{ and } i, \\
0, & \text{otherwise.}
\end{cases} \]

Then \(\mathcal{U} = \{ \rho^1_i, \rho^2_i : i = 3, 4, 5, \ldots \} \) are \(1/3 \)-FSCO sets with \(\bigvee_{\rho \in \mathcal{U}} \rho = 1 \) having no finite subcover. Hence \((\mathbb{N}, \tau)\) is not \(1/3 \)-fuzzy \(S^* \)-closed, but it is easily seen that \((\mathbb{N}, \tau)\) is \(1/3 \)-fuzzy \(S \)-closed.

Theorem 4.6. For any fuzzy extremally disconnected FTS \((X, \tau)\) and \(r \in I_\circ \), \(X \) is \(r \)-fuzzy \(S^* \)-closed if and only if \(X \) is \(r \)-fuzzy \(S \)-closed.

Proof.

Necessity. It follows from the proof of Theorem 4.4.

Sufficiency. We are going to prove that if \((X, \tau)\) is any fuzzy extremally disconnected FTS, then \(C_\tau(\lambda, r) = SC_\tau(\lambda, r) \) for every \(r \)-FSO set \(\lambda \) in \((X, \tau)\) and \(r \in I_\circ \). Then our result follows from Definitions 3.1(2) and 4.1.

We always have \(SC_\tau(\lambda, r) \leq C_\tau(\lambda, r) \) for every \(\lambda \in I^X \) and \(r \in I_\circ \). So, we have to prove that with our hypothesis we have \(C_\tau(\lambda, r) \leq SC_\tau(\lambda, r) \) for every \(\lambda \in I^X \) and \(r \in I_\circ \).

If \(\lambda \) is \(r \)-FSO in \((X, \tau)\), then there exists \(\nu \in I^X \) with \(\tau(\nu) \geq r \) such that \(\nu \leq \lambda \leq C_\tau(\nu, r) \). So, \(C_\tau(\lambda, r) = C_\tau(\nu, r) \), where \(\tau(\nu) \geq r \). Because \((X, \tau)\) is
fuzzy extremally disconnected, we have that
\[C_\tau(\lambda, r) = C_\tau(\nu, r) = I_\tau(C_\tau(\nu, r), r) = I_\tau(C_\tau(\lambda, r), r). \] (4.5)

By Lemma 1.7, we have \(C_\tau(\lambda, r) = I_\tau(C_\tau(\lambda, r), r) \leq SC_\tau(\lambda, r) \).

Remark 4.7. From Theorems 4.3 and 4.4, we have that \(r \)-fuzzy semicompactness implies \(r \)-fuzzy \(S \)-closedness, \(r \in I_\circ \).

Remark 4.8. Obviously, for \(r \in I_\circ \), \(r \)-fuzzy \(S \)-closed space is \(r \)-fuzzy almost compact. Hence \(r \)-fuzzy compact space need not be \(r \)-fuzzy \(S^* \)-closed. That an \(r \)-fuzzy \(S^* \)-closed space is not necessarily \(r \)-fuzzy compact is shown by the following counterexample.

Counterexample 4.9. Let \(X \) be any nonempty set and let \(\tau : I^X \to I \) be defined as
\[
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0, 1, \\
1/2, & \text{if } \lambda = \alpha, \text{ for } 1/2 < \alpha < 1, \\
0, & \text{otherwise}.
\end{cases} \] (4.6)

Then \((X, \tau)\) is an FTS which is not \(1/2\)-fuzzy compact. Now for any \(\alpha \in I^X \) with \(\tau(\alpha) \geq 1/2 \), \(C_\tau(\alpha, 1/2) = 1 \) and hence \(I_\tau(C_\tau(\alpha, 1/2), 1/2) = 1 \), for all \(\alpha \in (1/2, 1] \). Since, by Lemma 1.7, \(SC_\tau(\alpha, 1/2) = I_\tau(C_\tau(\alpha, 1/2), 1/2) = 1 \), we have for any \(r \)-FSO set \(\lambda \), \(SC_\tau(\lambda, 1/2) = 1 \). Hence \(X \) is \(r \)-fuzzy \(S^* \)-closed.

However, we have the following theorem.

Theorem 4.10. For \(r \in I_\circ \), every \(r \)-fuzzy \(S^* \)-closed space is \(r \)-fuzzy nearly compact, \(r \in I_\circ \).

Proof. If \(X \) is not \(r \)-fuzzy nearly compact, then there exists \(\{\lambda_i \in I^X, i \in \Gamma\} \) with \(\tau(\lambda_i) \geq r \) and \(\bigvee_{i \in \Gamma} \lambda_i = 1 \) such that for any finite subset \(\Gamma_0 \subset \Gamma \),
\[
\bigvee_{i \in \Gamma_0} I_\tau(C_\tau(\lambda_i, r), r) \neq 1, \] (4.7)
that is,
\[
\bigvee_{i \in \Gamma_0} SC_\tau(\lambda_i, r) \neq 1 \] (4.8)
(by Lemma 1.7). Thus, \(X \) is not \(r \)-fuzzy \(S^* \)-closed.

In order to investigate for the condition under which \(r \)-fuzzy \(S^* \)-closed space is \(r \)-fuzzy compact, we set the following definition.
Definition 4.11. An FTS \((X, \tau)\) is called \(r\)-fuzzy \(S\)-regular if and only if for each \(r\)-FSO set \(\mu \in I^X, r \in I_*\),

\[
\mu = \bigvee \{ \rho \in I^X | \rho \text{ is } r\text{-FSO}, \ SC_\tau(\rho, r) \leq \mu \}. \tag{4.9}
\]

An FTS \((X, \tau)\) is called fuzzy \(S\)-regular if and only if it is \(r\)-fuzzy \(S\)-regular for each \(r \in I_*\).

Theorem 4.12. If an FTS \((X, \tau)\) is \(r\)-fuzzy \(S\)-regular and \(r\)-fuzzy \(S^*\)-closed, \(r \in I_*\), then it is \(r\)-fuzzy compact.

Proof. Let \(\{ \lambda_i \in I^X | \tau(\lambda_i) \geq r, i \in \Gamma \}\) be a family such that \(\bigvee_{i \in \Gamma} \lambda_i = 1\). Since \((X, \tau)\) is \(r\)-fuzzy \(S\)-regular, for each \(\tau(\lambda_i) \geq r\), \(\lambda_i\) is \(r\)-FSO,

\[
\lambda_i = \bigvee_{i_k \in K_i} \{ \lambda_{i_k} \mid \lambda_{i_k} \text{ is } r\text{-FSO}, \ SC_\tau(\lambda_{i_k}, r) \leq \lambda_i \}. \tag{4.10}
\]

Hence \(\bigvee_{i \in \Gamma} (\bigvee_{i_k \in K_i} \lambda_{i_k}) = 1\). Since \((X, \tau)\) is \(r\)-fuzzy \(S^*\)-closed, there exists a finite index \(J \times K_J\) such that

\[
1 = \bigvee_{j \in J} \left(\bigvee_{j_k \in K_J} SC_\tau(\lambda_{j_k}, r) \right). \tag{4.11}
\]

For each \(j \in J\), since

\[
\bigvee_{j_k \in K_J} SC_\tau(\lambda_{j_k}, r) \leq \lambda_j, \tag{4.12}
\]

we have \(\bigvee_{j \in J} \lambda_j = 1\). Hence \((X, \tau)\) is \(r\)-fuzzy compact.

It is evident that every FI function is FSC. That the converse is not always true is shown in [9]. Again, it is proved in [9] that \(f : X \to Y\) is FI if and only if \(f^{-1}(\mu)\) is \(r\)-FSC for every \(r\)-FSC set \(\mu\) in \(Y\) and \(r \in I_*\). Now we have the following theorem.

Theorem 4.13. The FI image of \(r\)-fuzzy \(S^*\)-closed space is \(r\)-fuzzy \(S^*\)-closed, \(r \in I_*\).

Theorem 4.14. If \(f : (X, \tau) \to (Y, \eta)\) is FI surjective and \(X\) is \(r\)-fuzzy \(S^*\)-closed, then \(Y\) is \(r\)-fuzzy \(S\)-closed, \(r \in I_*\).

Proof. If \(\{ \lambda_i \in I^Y : \lambda_i \text{ is } r\text{-FSO}, i \in \Gamma \}\) is a family such that \(\bigvee_{i \in \Gamma} \lambda_i = 1\), then \(\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = 1\). Since \(f\) is FI, then, for each \(i \in \Gamma\), \(f^{-1}(\lambda_i)\) is \(r\)-FSO set of \(X\). By \(r\)-fuzzy \(S^*\)-closedness of \(X\), there is a finite subset \(\Gamma_s \subset \Gamma\) such that
\[V_{i \in \Gamma} SC_{\tau}(f^{-1}(\lambda_i, r)) = 1. \] Now,

\[1 = f(1) = f \left(\bigvee_{i \in \Gamma} SC_{\tau}(f^{-1}(\lambda_i, r)) \right) \]
\[\leq f \left(\bigvee_{i \in \Gamma} C_{\tau}(f^{-1}(\lambda_i, r)) \right) \]
\[\leq \bigvee_{i \in \Gamma} C_{\eta}(\lambda_i, r), \]

which implies that \(Y \) is \(r \)-fuzzy \(S \)-closed.

Theorem 4.15. If \(f : (X, \tau) \to (Y, \eta) \) is CI surjective and \(X \) is \(r \)-fuzzy nearly compact, then \(Y \) is \(r \)-fuzzy semicompact, \(r \in I^* \).

Proof. The proof is similar to that of Theorem 4.14.

Definition 4.16. Let \((X, \tau)\) and \((Y, \eta)\) be FTSs. A function \(f : (X, \tau) \to (Y, \eta) \) is called semiweakly continuous if and only if

\[f^{-1}(\lambda) \leq SI_{\tau}(f^{-1}(SC_{\eta}(\lambda)), r), \]

(4.14)

for each \(r \)-FSO set \(\lambda \) in \((Y, \eta)\), \(r \in I^* \).

Theorem 4.17. Let \((X, \tau)\) and \((Y, \eta)\) be FTSs and let \(f : (X, \tau) \to (Y, \eta) \) be a semiweakly continuous function. If \(X \) is \(r \)-fuzzy semicompact, then \(Y \) is \(r \)-fuzzy \(S^* \)-closed, \(r \in I^* \).

Proof. If \(\{\lambda_i \in I^*: \lambda_i \text{ is } r\text{-FSO}, i \in \Gamma\} \) is a family such that \(\bigvee_{i \in \Gamma} \lambda_i = 1 \). From the semiweak continuity of \(f \), we have \(f^{-1}(\lambda_i) \leq SI_{\tau}(f^{-1}(SC_{\eta}(\lambda_i, r)), r) \). So, \(SI_{\tau}(f^{-1}(SC_{\eta}(\lambda_i, r)), r) \) is a family of \(r \)-FSO sets in \((X, \tau)\) with

\[\bigvee_{i \in \Gamma} SI_{\tau}(f^{-1}(SC_{\eta}(\lambda_i, r)), r) = 1. \]

(4.15)

By the semicompactness of \(X \), there exists a finite subset \(\Gamma_0 \subset \Gamma \) such that \(\bigvee_{i \in \Gamma_0} SI_{\tau}(f^{-1}(SC_{\eta}(\lambda_i, r)), r) = 1 \). So,

\[1 = f(1) = f \left(\bigvee_{i \in \Gamma_0} SI_{\tau}(f^{-1}(SC_{\eta}(\lambda_i, r)), r) \right) \]
\[\leq \bigvee_{i \in \Gamma_0} f f^{-1}(SC_{\eta}(\lambda_i), r) \]
\[\leq \bigvee_{i \in \Gamma_0} SC_{\eta}(\lambda_i, r) \]

(4.16)

Hence, \(\bigvee_{i \in \Gamma} SC_{\eta}(\lambda_i, r) = 1 \) and \(Y \) is \(r \)-fuzzy \(S^* \)-closed.
ACKNOWLEDGMENT. The author is very grateful to the referees.

REFERENCES

S. E. Abbas: Department of Mathematics, Faculty of Science, South Valley University, Sohag 82524, Egypt

E-mail address: sabbas73@yahoo.com
Submit your manuscripts at http://www.hindawi.com