ON CHAINS OF CENTERED VALUATIONS

RACHID CHIBLOUN

Received 5 June 2002

We study chains of centered valuations of a domain \(A \) and chains of centered valuations of \(A[\mathbf{X}] \) corresponding to valuations of \(A \). Finally, we make some applications to chains of valuations centered on the same ideal of \(A[\mathbf{X}] \) and extending the same valuation of \(A \).

2000 Mathematics Subject Classification: 13A18, 13F20.

1. Introduction and preliminary results. All rings will be commutative with unit element. The field of fractions of a domain \(R \) will be denoted by \(\text{Fr}(R) \). Let \(R \subseteq S \) be domains and take a prime ideal \(p \subseteq \text{Spec}(R) \). Then we write \(k(p) = \text{Fr}(R/p) \) and denote the transcendence degree of \(\text{Fr}(S) \) over \(\text{Fr}(R) \) by \(\text{trdeg}_R^S \). We will use the following notation: \(R[\mathbf{X}] = R[\mathbf{X}_1, \ldots, \mathbf{X}_n] \), \(p[\mathbf{X}] = p[\mathbf{X}_1, \ldots, \mathbf{X}_n] \), and \(\text{Fr}(R)(\mathbf{X}) = \text{Fr}(R)(\mathbf{X}_1, \ldots, \mathbf{X}_n) \).

Let \(P \in \text{Spec}(R[\mathbf{X}]) \), \(P \) lies over \(p \) if \(P \cap R = p \). Let \(A \) be a subring of a field \(K \), \(L/K \) a field extension, and \(v \) a valuation on \(K \). The subring \(A_v = \{ x \in K \mid v(x) \geq 0 \} \) is the valuation ring associated to \(v \), \(m(v) = \{ x \in K \mid v(x) > 0 \} \) is its maximal ideal, and \(k_v = A_v/m(v) \) is its residue field. The valuation \(v \) is positive on \(A \) if \(A \subseteq A_v \), and then \(v \) is a valuation on \(A \). The prime ideal \(m(v) \cap A \) is called the center of \(v \) on \(A \). The valuation \(v \) is called trivial if \(A_v = K \). If \(v' \) is a valuation on \(k_v \), then the set \(\{ x \in K \mid x \in A_{v'}, \frac{\mathbf{x}}{\mathbf{x}} \in A_{v'} \} \) is a valuation ring on \(K \). The valuation associated to this valuation ring is called the composite valuation and is denoted by \(v_1 = v'v \).

Let \(v, v' \) be valuations on \(K \). By definition, \(v \preceq v' \) if one of the following equivalent conditions is satisfied:

1. \(A_{v'} \subseteq A_v \),
2. \(m(v) \subseteq m(v') \),
3. \(v' = v''v \) for some valuation on \(k_v \);

\(v \) and \(v' \) are called equivalent if \(A_{v'} = A_v \); \(v < v' \) if \(v \preceq v' \) but not equivalent. A valuation \(w \) on \(L \) is an extension of \(v \) if \(A_v = A_w \cap K \). The valuation \(w \) on \(K(X) \) given by

\[w \left(\sum_{i=0}^{n} a_i(X - a)^i \right) = \inf \{ v(a_i) \mid 0 \leq i \leq n \} \tag{1.1} \]

is called the canonical extension of \(v \) to \(K(X) \). We have that \(k_w = k_v(X) \).
The following classical results will be used in this paper; the proofs can be found in [2, Proposition 1.2], [4, Theorem 1.5], and [6, Propositions 1.1, 1.3, and 1.4].

Proposition 1.1. Let \(v \) be a valuation on \(K \) and \(w_0 < w_1 \) two valuations on \(L \) extending \(v \). If \(\text{trdeg}_{Kv}^{kw_1} \) is finite, then

\[
\text{trdeg}_{Kv}^{kw_1} < \text{trdeg}_{Kv}^{kw_0}.
\]

(1.2)

Proposition 1.2. Let \(v_0 < v_1 \) be two valuations on \(K \) and \(w_1 \) a valuation on \(L \) extending \(v_1 \). Then there exists a valuation \(w_0 \) on \(L \) extending \(v_0 \), with \(w_0 < w_1 \).

Proposition 1.3. Let \(w \) be a valuation on \(L \) and \(v \) its restriction to \(K \). If \(\text{trdeg}_K^L \) is finite, then

\[
\text{trdeg}_K^L \leq \text{trdeg}_K^L.
\]

(1.3)

Proposition 1.4. If \(p \subseteq q \) in \(\text{Spec}(A) \) and if \(v_0 \) is a valuation of \(K \) with center \(p \) on \(A \), then there exists a valuation \(v_1 \) of \(K \) with center \(q \) on \(A \) such that \(v_0 \leq v_1 \).

Theorem 1.5. Let \(f : A \to B \) be a homomorphism of domains. Then there exist an algebraic extension \(L' \) of \(\text{Fr}(B) \) and a valuation \(v \) on \(K \) with center \(\text{Ker}(f) \) on \(A \) such that

\[
A/\text{Ker}(f) \subseteq k_v \subseteq L.
\]

(1.4)

In this paper, we will study chains of valuations of a polynomial ring \(A[X_1, \ldots, X_n] \) and of a field extension \(F \) of \(\text{Fr}(A) \). We give the length of chains of valuations which pass through a given valuation, and we characterize when a valuation is maximal or minimal in the following situations:

(a) all the valuations are centered on the same ideal,
(b) all the valuations extend the same valuation of \(\text{Fr}(A) \).

Then we study chains of centered valuations on a domain \(A \) and chains of centered valuations on \(A[X_1, \ldots, X_n] \) corresponding to valuations on \(A \). Finally, we give some applications to chains of valuations centered on the same ideal of \(A[X_1, \ldots, X_n] \) and extending the same valuation on \(A \).

2. **Valuations centered on the same ideal.** Throughout this section, \(K \) is the quotient field of an integral domain \(A \), \(L \) is a field extension of \(K \), and \(v \) is a valuation on \(A \).

Proposition 2.1. There exist \(n + 1 \) valuations \(w_0 < \cdots < w_n \) on \(A[n] \) extending \(v \) in such a way that, for each \(i \in \{0, \ldots, n\} \),

\[
\text{trdeg}_{Kv}^{kw_i} = n - i.
\]

(2.1)
PROOF. Let $k = k_v$ and let w_0 be the canonical extension of v to $K(X)$. It is well known that $k_{w_0} = k(X)$. Let w be a valuation on $k(X)$, positive on $k[X]$ and with center (X) on $k[X]$, and $w_1 = w w_0$ the composite valuation of w and w_0. The valuation $w_0 < w_1$ as w is not trivial, so $A_{w_1} \cap K \subseteq A_{w_0} \cap K = A_v$ and it is easy to see that

$$A_v \subseteq \{ z \in K(X) \mid z \in A_{w_0}, \overline{z} \in A_w \} \cap K. \quad (2.2)$$

Therefore, w_1 extends v. As $A[X] \subseteq A_{w_0}$ and $k[X] \subseteq A_w$, $X \in A_{w_0}$ and $\overline{X} = X \in A_w$, that is, $X \in A_{w_1}$, and w_1 is a valuation of $A[X]$. We have $\text{trdeg}_{k_v} k_{w_0} = 1$, and according to Proposition 1.1, $0 \leq \text{trdeg}_{k_v} k_{w_0} < \text{trdeg}_v k_{w_0} = 1$, so $\text{trdeg}_{k_v} k_{w_1} = 0$.

Let $n > 1$ and suppose that the property is true for $n - 1$. There exists $v_0 < v_1$, two valuations of $A[X_1]$ extending v, and for each $i \in \{0, 1\}$, $\text{trdeg}_{k_v} k_{w_i} = 1 - i$. There exists n valuations $w_1 < \cdots < w_n$ of $A[n]$ extending v_1, and for each $i \in \{1, \ldots, n\}$, we have that $\text{trdeg}_{k_v} k_{w_i} = n - i$. According to Proposition 1.2, there exists a valuation w_0 of $K(X_1, \ldots, X_n)$ extending v_0 and $w_0 < w_1 < \cdots < w_n$. The valuation w_0 is a valuation of $A[n]$ because $A[n] \subseteq A_{w_1} \subset A_{w_0}$. For each $i \in \{1, \ldots, n\}$, w_i extends v and $\text{trdeg}_{k_v} k_{w_i} = \text{trdeg}_{k_v} k_{w_0} + \text{trdeg}_{k_v} k_{w_1} = n - i$, w_0' extends v, and

$$\text{trdeg}_{k_v} k_{w_0} = \text{trdeg}_{k_v} k_{w_0'} + \text{trdeg}_{k_v} k_{v_0} = \text{trdeg}_{k_v} k_{w_0} + 1 > \text{trdeg}_{k_v} k_{w_1} = n - 1,$$

according to Proposition 1.3, $n - 1 < \text{trdeg}_{k_v} k_{w_0} \leq n$, that is, $\text{trdeg}_{k_v} k_{w_0} = n$. \hfill \Box

COROLLARY 2.2. If $\text{trdeg}_{k_v} k = n$, then there exist $n + 1$ valuations $w_0 < \cdots < w_n$ on L extending v such that $\text{trdeg}_{k_v} k_{w_i} = n - i$ for all $i \in \{0, \ldots, n\}$.

PROOF. Let $\{x_1, \ldots, x_n\}$ be a transcendence basis of L over K, v a valuation of A_v, and $A_v [x_1, \ldots, x_n] \equiv A_v [X_1, \ldots, X_n]$. According to Proposition 2.1, there exist $n + 1$ valuations $v_0 < \cdots < v_n$ on $K(x_1, \ldots, x_n)$ extending v such that $\text{trdeg}_{k_v} k_{v_i} = n - i$ for each $i \in \{0, \ldots, n\}$. Let w_n be a valuation of L extending v_n. Applying Proposition 1.2, we obtain $n + 1$ valuations $w_0 < \cdots < w_n$ of L such that for each $i \in \{0, \ldots, n\}$, w_i prolongs v_i, then w_i prolongs v, and

$$\text{trdeg}_{k_v} k_{w_i} = \text{trdeg}_{k_{k_{v_i}}} k_{w_i} + \text{trdeg}_{k_v} k_{v_i} = n - i.$$ \hfill \Box

LEMMA 2.3. Let v_0 be a valuation on L with center q on A. For each $k \in \mathbb{N}$ strictly smaller than $\text{trdeg}_{k(q)} k_{v_0}$, there exists a valuation v_1 of L with center q on A such that $v_0 < v_1$ and $\text{trdeg}_{k(q)} k_{v_1} = k$.

\hfill \Box
PROOF. Let \(\{z_1, \ldots, z_{k+1}\} \) be a family of elements of \(k_{v_0} \), algebraically independent over \(k(q) \). According to Theorem 1.5, there exist an algebraic extension \(L' \) of \(k(q)z_1, \ldots, z_k \) and a valuation \(\nu' \) of \(k_{v_0} \) with center \((z_{k+1}) \) on \((A/q)[z_1, \ldots, z_k] \), such that \((A/q)[z_1, \ldots, z_k] \leq k_{\nu'} \subseteq L' \). Let \(\nu = \nu' \nu_0 \) be the composite valuation of \(\nu' \) with \(\nu_0 \), \(\nu_1 \) is a valuation of \(L \). For each \(b \in A, b \in A_{v_0} \) and \(\bar{b} \in A/q \subseteq A_{v_1} \), that is, \(b \in A_{v_1} \), and if \(a \in m(\nu_1) \cap A \), then \(\bar{a} \in (m(\nu_1)/m(\nu_0)) \cap (A/q) = m(\nu') \cap (A/q) = (0), \) that is, \(a \in q \) and \(m(\nu_1) \cap A \subseteq q \) or \(q = m(\nu_1) \cap A \subseteq m(\nu_1) \cap A \); therefore the center of \(\nu_1 \) on \(A \) is \(q \). As \(A_{\nu'} = A_{v_1}/m(\nu_0), m(\nu') = m(\nu_1)/m(\nu_0) \) and \(k_{\nu'} = A_{\nu'}/m(\nu') = A_{v_1}/m(\nu_1) \). Thus, \(\nu_0 < \nu_1 \) and \(\text{trdeg}_{k(q)}^{k_{\nu_1}} = \text{trdeg}_{k(q)}^{k_{\nu_0}} \) = \(\text{trdeg}_{k(q)}^{k_{\nu}} \).

\[\text{THEOREM 2.4.} \text{ Let } w \text{ be a valuation on } L \text{ with center } q \text{ on } A. \text{ Then } \text{trdeg}_{k(q)}^{k_{w}} \text{ is the supremum of all natural numbers } \bar{k} \text{ for which there exists a chain of valuations } w = w_0 < \cdots < w_{k} \text{ on } L, \text{ with center } q \text{ on } A. \]

PROOF. Suppose that we have a chain of valuations \(w = w_0 < \cdots < w_{k} \) on \(L \), with center \(q \) on \(A \). If \(\text{trdeg}_{k(q)}^{k_{w}} \) is finite, then it follows from Proposition 1.1 that

\[0 \leq \text{trdeg}_{k(q)}^{k_{w_0}} < \cdots < \text{trdeg}_{k(q)}^{k_{w_1}} = \text{trdeg}_{k(q)}^{k_{w}}, \quad (2.5) \]

and consequently \(k \leq \text{trdeg}_{k(q)}^{k_{w}} \). This proves that \(\bar{k} \leq \text{trdeg}_{k(q)}^{k_{w}} \).

To prove the converse inequality, we consider two different cases:

(a) \(\text{trdeg}_{k(q)}^{k_{w}} = k_1 \in \mathbb{N} \) is finite. If \(k_1 = 0 \), then there is nothing to prove. Take \(k_1 > 0 \). By Lemma 2.3, there exists a valuation \(\nu_1 \) on \(L \) with center \(q \) on \(A \) such that \(w < \nu_1 \) and \(\text{trdeg}_{k(q)}^{k_{\nu_1}} = k_1 - 1 \). Using an easy induction argument, we find \(k_1 + 1 \) valuations with \(w = w_0 < \cdots < w_k \) on \(L \), all with center \(q \) on \(A \);

(b) \(\text{trdeg}_{k(q)}^{k_{w}} = \infty \). By Lemma 2.3, we can find, for every \(k \in \mathbb{N} \), a valuation \(\nu_1 \) on \(L \) with center \(q \) on \(A \) such that \(\text{trdeg}_{k(q)}^{k_{\nu_1}} = k \). It then follows from (a) that there exists a chain of valuations \(w = w_0 < \cdots < w_k \) on \(L \), all with center \(q \) on \(A \). We can do this for every \(k \in \mathbb{N} \), hence the supremum is infinite. \(\square \)

\[\text{LEMMA 2.5.} \text{ Let } w \text{ be a valuation on } A[n] \text{ with center } q \text{ on } A. \]

(a) If \(\text{trdeg}_{k(q)}^{k_{w}} = \infty \), then for every \(k \in \mathbb{N} \), there exists a valuation \(\nu_1 \) on \(A[n] \) with center \(q \) on \(A \) such that \(w < \nu_1 \) and \(\text{trdeg}_{k(q)}^{k_{\nu_1}} = k \).

(b) If \(\text{trdeg}_{k(q)}^{k_{w}} = k \in \mathbb{N} \), then there exists a chain of valuations \(w = w_0 < \cdots < w_k \) on \(A[n] \), all with center \(q \) on \(A \).

PROOF. (a) Let \(Q \) be the center of \(w \) on \(A[n] \) and \(k_1 = \text{trdeg}_{A/q}^{A[n]/q} \). We know that \(k_1 = n - \text{ht}(Q/q[n]) \), where \(\text{ht}(Q/q[n]) \) means the height of the prime ideal \(Q/q[n] \), and there exists a chain \(Q = Q_0 < \cdots < Q_{k_1} \) of prime ideals of \(A[n] \), all lying over \(q \).
Assume first that \(k < k_1 \); then there exists \(i \in \{1, \ldots, k_1\} \) such that \(\text{trdeg}_{A[n]/Q_i}^{A[n]} = k \). Let \(w'' \) be a valuation on \(A[n] \) with center \(Q_i \) and \(w < w'' \) (see Proposition 1.4). According to Lemma 2.3, there exists a valuation \(w_1 \) on \(A[n] \) with center \(Q_i \) such that \(w'' \leq w_1 \) and \(\text{trdeg}_{A[n]/Q_i}^{k_w} = 0 \). Thus, \(w < w_1 \) and \(\text{trdeg}_{A[n]/Q_i}^{k_w} = \text{trdeg}_{A[n]/Q_i}^{A[n]} + \text{trdeg}_{A[n]/Q_i}^{A[n]/Q_i} = k \).

Now assume that \(k \geq k_1 \) and let \(\alpha = k - k_1 \). By Theorem 2.4, there exists a valuation \(w_1 \) on \(A[n] \) with center \(Q \) such that \(w < w_1 \) and \(\text{trdeg}_{A[n]/Q}^{A[n]} = \alpha \), hence

\[
\text{trdeg}_{A/q}^{k_w} = \text{trdeg}_{A[n]/Q}^{k_w} + \text{trdeg}_{A[n]/Q}^{A[n]/Q} = \alpha + k_1 = k.
\]

(2.6)

(b) Let \(Q \) be the center of \(w \) on \(A[n] \) and \(k_1 = \text{trdeg}_{A[n]/Q}^{k_w} \). According to Theorem 2.4, there exists a chain of valuations \(w = w_0 < \cdots < w_{k_1} \) on \(A[n] \), all with center \(Q \), such that \(\text{trdeg}_{A[n]/Q_i}^{k_w} = k_1 - i \) for each \(i \in \{1, \ldots, k_1\} \). Let \(\alpha = \text{trdeg}_{A[n]/Q}^{A[n]/Q_i} \); then there exists a chain \(Q = Q_0 \subset \cdots \subset Q_\alpha \) of prime ideals of \(A[n] \) lying over \(q \). According to Proposition 1.4, there exist \(\alpha + 1 \) valuations \(w_{k_1} < \cdots < w_{k_1 + \alpha} = w_k \) on \(A[n] \) such that \(w_{k_1 + j} \) has center \(Q_j \) on \(A[n] \) for each \(j \in \{0, \ldots, \alpha\} \). Therefore, \(w_{k_1 + j} \) has center \(q \) on \(A \), and the chain of valuations \(w_0 < \cdots < w_{k} \) meets the requirements.

THEOREM 2.6. Let \(w \) be a valuation on \(A[n] \) with center \(q \) on \(A \). Then \(\text{trdeg}_{A/q}^{k_w} \) is the supremum of all natural numbers \(K \) such that there exists a chain of valuations \(w = w_0 < \cdots < w_k \) on \(A[n] \) with center \(q \) on \(A \).

PROOF. Let \(w = w_0 < \cdots < w_k \) be a chain of valuations on \(A[n] \) with center \(q \) on \(A \). If \(\text{trdeg}_{A/q}^{k_w} \) is finite, then \(0 \leq \text{trdeg}_{A/q}^{k_w} < \cdots < \text{trdeg}_{A/q}^{k_w} \), so \(k \leq \text{trdeg}_{A/q}^{k_w} \), and it follows that \(K < \text{trdeg}_{A/q}^{k_w} \).

Take \(k \leq \text{trdeg}_{A/q}^{k_w} \). We distinguish two cases:

1. \(\text{trdeg}_{A/q}^{k_w} \) is finite. It follows from Lemma 2.5(b) that there exists a chain of valuations \(w = w_0 < \cdots < w_k \) on \(A[n] \) with center \(q \) on \(A \);
2. \(\text{trdeg}_{A/q}^{k_w} \) is infinite. It follows from Lemma 2.5(a) that there exists a valuation \(w_1 \) on \(A[n] \) with center \(q \) on \(A \) such that \(w < w_1 \) and \(\text{trdeg}_{A/q}^{k_w} = k \). In both cases, we obtain the existence of a chain of valuations \(w = w_0 < \cdots < w_k \) on \(A[n] \), all with center \(q \) on \(A \).

PROPOSITION 2.7. Let \(w \) be a valuation on \(A[n] \) (resp., \(L \)) extending \(v \). Then \(\text{trdeg}_{A/q}^{k_w} \) is the supremum of the set of integers \(k \) such that there exists a chain of valuations \(w = w_0 < \cdots < w_k \) on \(A[n] \) (resp., \(L \)) extending \(v \).

PROOF. Let \(w' \) be a valuation on \(K(n) \) (resp., \(L \)). We first show that \(w' \) is a valuation on \(A[n] \) (resp., \(L \)) extending \(v \) if and only if \(w' \) is a valuation on \(A_v[n] \) (resp., \(L \)) with center \(m(v) \) on \(A_v \).

First, assume that \(w' \) is a valuation on \(A[n] \) (resp., \(L \)) extending \(v \). Then \(A_{w'} \cap K = A_v \) and \(w' \) is a valuation on \(A[n] \) (resp., \(L \)), hence \(w' \) is a valuation...
on $A_v[n]$ (resp., L) and

$$m(w') \cap A_v = m(w') \cap K \cap A_v = m(v) \cap A_v = m(v). \quad (2.7)$$

Conversely, $A[n] \subseteq A_v[n] \subseteq A_{w'}$, therefore $A_v \subseteq A_{w'} \cap K$. If $z \in A_{w'} \cap K$ and $z \notin A_v$, then $z^{-1} \in m(v) = m(w') \cap K$, a contradiction. Hence, $A_{w'} \cap K = A_v$ and w' extends v.

To finish the proof, it suffices to apply Theorems 2.4 and 2.6 to w and $m(v) \in \text{Spec}(A_v)$.

Corollary 2.8.

(a) Let w be a valuation on $A[n]$ (resp., L) with center q on A. Then $\text{ht}(m(w)/qA_w)$ is the supremum \overline{k} of the integers k for which there exists a chain of valuations $w_k < \cdots < w_0 = w$ on $A[n]$ (resp., L) with center q on A.

(b) Let w be a valuation on $A[n]$ (resp., L) extending v. Then $\text{ht}(m(w)/m(v)A_w)$ is the supremum \overline{k} of the integers k for which there exists a chain of valuations $w_k < \cdots < w_0 = w$ on $A[n]$ (resp., L) extending v.

Proof. (a) Let $w_k < \cdots < w_0 = w$ be a chain of valuations on $A[n]$ (resp., L) with center q on A. We have $qA_w \subseteq m(w_k) \subseteq m(w_0) = m(w)$, and therefore $\text{ht}(m(w)/qA_w) \geq \overline{k}$.

Conversely, let $k_1 \in \mathbb{N}$ with $k_1 \leq \text{ht}(m(w)/qA_w)$. Then there exists a chain $P_{k_1} \subseteq \cdots \subseteq P_0 = m(w)$ in $\text{Spec}(A_w)$ such that $P_{k_1} \cap A = q$. The valuation rings $A_w = (A_{w'})_{p_0} \subseteq \cdots \subseteq (A_{w'})_{p_{k_1}}$ of $K(n)$ (resp., L) are all with center q on A. For each $i \in \{0, \ldots, k_1\}$, let w_i be the valuation on $K(n)$ (resp., L) associated to $(A_w')_{p_i}$. Then $w_{k_1} < \cdots < w_0 = w$ are valuations on $A(n)$ (resp., L), all with center q on A.

(b) The proof follows immediately from (a) and the proof of Proposition 2.7.

Corollary 2.9.

(a) A valuation w is a maximal (resp., minimal) element in the set of valuations on $A[n]$ (resp., L) extending v if and only if $\text{trdeg}_{qA_w}^k w = 0$ (resp., $\text{ht}(m(w)/m(v)A_w) = 0$).

(b) A valuation w is a maximal (resp., minimal) element in the set of valuations on $A[n]$ (resp., L) with center q on A if and only if $\text{trdeg}_{A/q}^k w = 0$ (resp., $\text{ht}(m(w)/qA_w) = 0$).

Corollary 2.10. Let w be a valuation on $A[n]$ (resp., L).

(a) If w has center q on A, then the maximum length of a chain of valuations on $A[n]$ (resp., L) having center q on A and passing through w, is equal to

$$\text{ht}(m(w)/qA_w) + \text{trdeg}_{A/q}^k w. \quad (2.8)$$
(b) If \(w \) extends \(v \), then the maximum length of a chain of valuations on \(A[n] \) (resp., \(L \)) extending \(v \) is equal to
\[
\text{ht} \left(\frac{m(w)}{m(v)} A_w \right) + \text{trdeg}^{k_w}_{k_v}. \tag{2.9}
\]

Proposition 2.11. (a) Let \(s \) be the maximal value of \(\text{ht} \left(\frac{m(w)}{q A_w} \right) + \text{trdeg}^{k_w}_{k_v} \), where \(w \) runs through all valuations on \(A[n] \) (resp., \(K(n) \)) with center \(q \) on \(A \). Let \(t \) be the maximal value of \(\text{trdeg}^{k_v'}_{k_v} \), where \(v' \) runs through all valuations on \(K \) with center \(q \) on \(A \). Then \(s = n + t \).

(b) The value \(n \) is the maximal value of \(\text{ht} \left(\frac{m(w)}{m(v)} A_w \right) + \text{trdeg}^{k_w}_{k_v} \), where \(w \) runs through all valuations on \(A[n] \) (resp., \(K(n) \)) extending \(v \).

Proof. (a) Let \(w \) be a valuation on \(A[n] \) (resp., \(K(n) \)) with center \(q \) on \(A \) and let \((k_1, k_2) \in \mathbb{N}^2 \) be such that \(k_1 \leq \text{trdeg}^{k_w}_{k_v} \) and \(k_2 \leq \text{ht} \left(\frac{m(w)}{q A_w} \right) \). According to Theorems 2.4 and 2.6, there exists a chain of valuations \(w = w_0 < \cdots < w_{k_1} \) on \(A[n] \) (resp., \(K(n) \)) with center \(q \) on \(A \). By Corollary 2.8, there exists a chain of valuations \(w_{k_2} < \cdots < w_0 = w \) on \(A[n] \) (resp., \(K(n) \)) with center \(q \) on \(A \). Thus, we have a chain of valuations \(w_{k_2} < \cdots < w_0 = w < \cdots < w_{k_1} \) on \(A[n] \) (resp., \(K(n) \)) with center \(q \) on \(A \), and
\[
k_1 + k_2 \leq \text{trdeg}^{k_{w_{k_2}}}_{A/q} = \text{trdeg}^{k_{w_{k_2}}}_{k_v} + \text{trdeg}^{k_{w_{k_2}}}_{A/q} \leq \text{trdeg}^{K(n)}_{k_v} + t \leq n + t,
\tag{2.10}
\]
where \(w_{k_2} | K \) is the restriction of \(w_{k_2} \) to \(K \). Consequently, \(s \leq n + t \).

Conversely, take \(k \leq t \). Then there exists a valuation \(v' \) on \(K \) with center \(q \) on \(A \) such that \(k \leq \text{trdeg}^{k_v'}_{k_v} \). According to Proposition 2.1, there exists a valuation \(w_0 \) on \(A[n] \) extending \(v' \) with \(\text{trdeg}^{k_{w_0}}_{k_v'} = n \), and
\[
n + k \leq \text{trdeg}^{k_{w_0}}_{k_v'} + \text{trdeg}^{k_{v'}}_{A/q} = \text{trdeg}^{k_{w_0}}_{A/q} \leq s. \tag{2.11}
\]

(b) The proof follows immediately from (a) and the preceding results.

Corollary 2.12. If the transcendence degree of \(L \) on \(K \) is infinite, then there is no upper bound on \(\text{trdeg}^{k_w}_{A/q} + \text{ht} \left(\frac{m(w)}{q A_w} \right) \), with \(w \) running through all valuations on \(L \) with center \(q \) on \(A \).

Proof. The proof is immediate from the preceding proposition.

3. The symbol \(\delta((0), Q) \) in \(A[n] \). Throughout this section, \(A \) will be an integral domain, \((0) \neq q \) a prime ideal of \(A \), \(K \) the quotient field of \(A \), and \(n \) will be a nonnegative integer.

Lemma 3.1. Let \(Q \) be a superior of \(q \) in \(A[X] \) such that there exists \(a \in A \) with \(X - a \in Q \). Then, for each valuation \(v \) of \(K \) with center \(q \) on \(A \), there exists
a valuation \(w\) of \(K(X)\) with center \(Q\) on \(A[X]\), extending \(v\), and such that

\[
\text{trdeg}_{\text{Fr}(A[X]/Q)}^{kw} = \text{trdeg}_{\text{Fr}(A/q)}^{kv} + 1.
\] (3.1)

Proof. Let \(\delta\) be a strictly positive element of the value group \(G_v\) of \(v\). We define the valuation \(w\) on \(K(X)\) as follows: if

\[
f(X) = b_0 + \cdots + b_n(X-a)^n,
\] (3.2)

then

\[
w(f(X)) = \inf \{ v(a_i) + i\delta \mid i \in \{0, \ldots, n\} \}.
\] (3.3)

It is well known (see [1]) that \(\text{trdeg}_{kw} = 1\). We show that \(w\) is a valuation on \(A[X]\) with center \(Q\) on \(A[X]\). For \(f(X) = b_0 + \cdots + b_n(X-a)^n \in A[X]\), we have

\[
w(f(X)) = \inf \{ v(b_i) + i\delta \mid i \in \{0, \ldots, n\} \} \geq 0.
\] (3.4)

If \(f(X) \in m(w) \cap A[X]\), then \(b_0 \in m(v) \cap A = q\) and \(f(X) \in Q\).

Conversely, let \(g(X) = a_0 + \cdots + a_m(X-a)^m \in Q \subset A[X]\). For each \(i \in \{1, \ldots, m\}\), \(v(a_i) + i\delta > 0\) and \(a_0 \in m(v) \cap A = q\), hence

\[
w(g(X)) = \inf \{ v(a_i) + i\delta \mid i \in \{0, \ldots, m\} \} > 0,
\] (3.5)

that is, \(g(X) \in m(w) \cap A[X]\). Thus, we have

\[
\text{trdeg}_{\text{Fr}(A[X]/Q)}^{kw} = \text{trdeg}_{\text{Fr}(A/q)}^{kw} = \text{trdeg}_{k_v}^{kw} + \text{trdeg}_{\text{Fr}(A/q)}^{kv} = \text{trdeg}_{\text{Fr}(A/q)}^{kv} + 1.
\] (3.6)

Lemma 3.2. Let \(Q\) be a superior of \(q\) in \(A[X]\) and let \(v\) be a valuation on \(K\) with center \(q\) on \(A\). Then there exists a valuation \(w\) on \(K(X)\) with center \(Q\) on \(A[X]\) extending \(v\) such that \(\text{trdeg}_{\text{Fr}(A[X])}^{kw} = \text{trdeg}_{\text{Fr}(A/q)}^{kv} + 1\).

Proof. (a) Assume that \(A\) is integrally closed in the algebraic closure \(K'\) of \(K\). We have two different cases:

1. \(q\) is a maximal ideal of \(A\), \(Q' = Q/q[X]\) is generated by \(g(X) = X^n + \alpha_{n-1}X^{n-1} + \cdots + \alpha_0 \in (A/q)[X]\). Let \(a_i \in A\) be a representant of \(\alpha_i \in (A/q)\). Then

\[
f(X) = a_0 + \cdots + a_{n-1}(X-a)^{n-1} + X^n = \prod_{i=1}^{m} (X-r_i)^{\alpha_i} \in K[X].
\] (3.7)

Since \(r_i\) is integral over \(A\), so \(r_i \in A\), and

\[
g(X) = \prod_{i=1}^{m} (X-r_i)^{\alpha_i} \in Q'.
\] (3.8)
Then there exists $j \in \{1, \ldots, m\}$ such that $X - r_j \in Q$. We conclude by Lemma 3.2.

(2) Now, let q be any prime ideal in A. Let $S = A - q$; we have $(S^{-1}Q)$ which is a superior to qA_q in $A_q[X]$ and A_q is integrally closed in K'. The valuation v has center qA_q on A_q, so there exists a valuation w of $K[X]$ with center $S^{-1}Q$ on $A_q[X]$ extending v, with

$$\text{trdeg}_{K[X]/S^{-1}Q}^k v = \text{trdeg}_{A[X]/Q}^k v + 1, \quad (3.9)$$

$$\text{trdeg}_{A[X]/Q}^k w = \text{trdeg}_{A[X]/Q}^k v + 1.$$

(b) Let A' be the integral closure of A in the algebraic closure K' of K. Let v' be a valuation on K' extending v. The integral closure of A in K' is the intersection of all the valuation rings on K' that contain A, as v is a valuation on A, so v' is a valuation on A'. Let q' be the center of v' on A', $q' \cap A = q$, and $q'[X] \cap A[X] = q[X]$. The closure $A'[X]$ is integral over $A[X]$, so there exists a prime ideal Q' of $A'[X]$ such that Q' is a superior of q', and Q' lies over Q. According to (a), there exists a valuation w' of $K'[X]$ with center Q' on $A'[X]$ extending v' with

$$\text{trdeg}_{A'[X]/Q'}^k v' = \text{trdeg}_{A[X]/Q}^k v' + 1.$$

Let w be the restriction of w' to $K(X)$; w is a valuation on $A[X]$,

$$m(w) \cap A[X] = m(w') \cap K(X) \cap A[X]$$

$$= m(w') \cap A'[X] \cap A[X] = Q' \cap A[X] = Q,$$

(3.10)

and w prolongs v. Also

$$\text{trdeg}_{A'[X]/Q'}^k v' + \text{trdeg}_{A[X]/Q}^k v' = \text{trdeg}_{A[X]/Q}^k v + \text{trdeg}_{A[X]/Q}^k v'.$$

(3.11)

It follows from Proposition 1.3 that $\text{trdeg}_{A[X]/Q}^k v' \leq \text{trdeg}_{A[X]/Q}^k v = 0$, hence

$$\text{trdeg}_{A'[X]/Q'}^k v' = \text{trdeg}_{A[X]/Q}^k v,$$

$$\text{trdeg}_{A[X]/Q}^k w' = \text{trdeg}_{A[X]/Q}^k w,$$

$$\text{trdeg}_{A[X]/Q}^k w = \text{trdeg}_{A[X]/Q}^k v + 1.$$

(3.12)

REMARK 3.3. Let Q be a prime ideal of $A[X]$ lying over q. Then, for each valuation v of K with center q on A, there exists a valuation w of $K(X)$ extending v and with center Q on $A[X]$ such that

$$\text{trdeg}_{A[X]/Q}^k w = \text{trdeg}_{A[X]/Q}^k v + \text{ht} (Q/X).$$

(3.13)

Indeed, Lemma 3.2 implies the case where Q is a superior of q. If $Q = q[X]$, let w be the canonical extension of v to $K(X)$. It is well known (see Section 1) that $\text{trdeg}_{A[X]/Q}^k v = \text{trdeg}_{A[X]/Q}^k v$.

Theorem 3.4. Let Q be a prime ideal of $A[n]$ lying over q. Then, for each valuation v of K with center q on A, there exists a valuation w of $K(n)$ extending v and with center Q on $A[n]$ such that

$$\operatorname{trdeg}^{k_v}_{\text{Fr}(A[n]/Q)} = \operatorname{trdeg}^{k_v}_{\text{Fr}(A/q)} + \operatorname{ht}(Q/q[n]).$$

(Proof. One proceeds by induction on n. The case $n = 1$ follows from Remark 3.3. Assume that the statement is true for $n - 1$. Let $Q_1 = Q \cap A[X_1]$. Then there exists a valuation w_1 of $K(X_1)$ extending v, with center Q_1 on $A[X_1]$, and

$$\operatorname{trdeg}^{k_{w_1}}_{\text{Fr}(A[X_1]/Q_1)} = \operatorname{trdeg}^{k_v}_{\text{Fr}(A/q)} + \operatorname{ht}(Q_1/q[X_1]),$$

and there exists a valuation w of $K(X_1)(X_2,\ldots,X_n) = K(n)$ extending w_1, with center Q on $A[n]$, and

$$\operatorname{trdeg}^{k_w}_{\text{Fr}(A[n]/Q)} = \operatorname{trdeg}^{k_{w_1}}_{\text{Fr}(A[X_1]/Q_1)} + \operatorname{ht}(Q/Q_1[X_2,\ldots,X_n])$$
$$= \operatorname{trdeg}^{k_v}_{\text{Fr}(A/q)} + \operatorname{ht}(Q_1/q[X_1]) + \operatorname{ht}(Q/Q_1[X_2,\ldots,X_n]).$$

We conclude by remarking that

$$\operatorname{ht}(Q_1/q[X_1]) + \operatorname{ht}(Q/Q_1[X_2,\ldots,X_n]) = \operatorname{ht}(Q/q[X_1,\ldots,X_n]).$$

\[\square\]

Notation 3.5. Take $q_1 \subset q_2$ in $\text{Spec}(A)$. We will denote by $\delta(q_1,q_2)$ the maximal value d for which there exists a valuation v on $\text{Fr}(A/q_1)$ with center q_2/q_1 on A/q_1 such that $\operatorname{trdeg}^{k_v}_{\text{Fr}(A/q_2)} = d$.

Jaffard has shown in [2] that $\delta((0),q_2)$ is the greatest number n such that there exists a chain of valuations $v_0 < \cdots < v_n$ on A with center q_2 on A.

Corollary 3.6. Let Q be a prime ideal of $A[n]$ lying over q. Then

$$\delta((0),Q) = \delta((0),q) + \operatorname{ht}(Q/q[n]).$$

(Proof. In the case where $Q = q[n]$, the result is well known (see [2]). Suppose that $Q \neq q[n]$. For each valuation v of K with center q on A, there exists a valuation w of $K(n)$ with center Q on $A[n]$, extending v, with

$$\operatorname{trdeg}^{k_w}_{\text{Fr}(A[n]/Q)} = \operatorname{trdeg}^{k_v}_{\text{Fr}(A/q)} + \operatorname{ht}(Q/q[n]) \leq \delta((0),Q),$$

and consequently

$$\delta((0),Q) \geq \delta((0),q) + \operatorname{ht}(Q/q[n]).$$
Conversely, let \(w' \) be a valuation on \(K(n) \) with center \(Q \) on \(A[n] \) and let \(v' \) be its restriction to \(K \). The valuation \(v' \) has center \(q \) on \(A \) and

\[
\text{trdeg}_{\text{Fr}(A[n]/Q)} k_{w'} + \text{trdeg}_{\text{Fr}(A/q)} k_{v'} \leq n + \delta((0), q),
\]

(3.21)

and therefore

\[
\text{trdeg}_{\text{Fr}(A[n]/Q)} k_{w'} \leq \delta((0), q) + \text{ht}(Q/q[n]),
\]

\[
\delta((0), Q) \leq \delta((0), q) + \text{ht}(Q/q[n]).
\]

(3.22)

Proposition 3.7. Let \(q_1 \) be a prime ideal of \(A \) and \(Q_1 \subset Q_2 \) two prime ideals of \(A[n] \) lying over \(q_1 \). Then

\[
\delta(Q_1, Q_2) = \text{ht}(Q_2/q_1[n]) - \text{ht}(Q_1/q_1[n]) - 1.
\]

(3.23)

Proof. Let \(T = A - q_1 \). Then \(T^{-1}(A[n]/Q_1) \) is an \(\text{Fr}(A/q_1) \)-algebra of finite type, and therefore a Noetherian domain according to [3]. Then

\[
\delta(Q_1, Q_2) = \delta((0), Q_2/Q_1) = \delta((0), T^{-1}(Q_2/Q_1))
\]

\[
= \text{ht}(T^{-1}(Q_2/Q_1)) - 1 = \text{ht}(Q_2/Q_1) - 1
\]

(3.24)

We finish this section studying the case of trivial valuations and we assume that \(q = (0) \).

Proposition 3.8. Let \(Q \) be a prime ideal of \(A[n] \) lying over \((0)\). Then there exists a valuation \(w \) of \(K(n) \) with center \(Q \) on \(A[n] \) such that

\[
\text{trdeg}_{\text{Fr}(A[n]/Q)} k_w = \begin{cases}
\text{ht}(Q) - 1 & \text{if } Q \neq 0, \\
0 & \text{if } Q = 0.
\end{cases}
\]

(3.25)

Proof. If \(Q = (0) \), then it suffices to take for \(w \) the trivial valuation on \(K(n) \). We suppose that \(Q \neq (0) \). If \(n = 1 \), then for each \(w \in A(Q) \), according to the preceding result, \(\text{trdeg}_{\text{Fr}(A[X]/Q)} k_w \leq \delta((0), Q) = 0 \), and therefore

\[
\text{trdeg}_{\text{Fr}(A[X]/Q)} k_w = \text{ht}(Q) - 1 = 0.
\]

(3.26)

Take \(n > 1 \), assume that the property holds for \(n - 1 \), and let \(Q_1 = Q \cap A[X_1] \). Then there exists a valuation \(w_1 \) of \(K(X_1) \) with center \(Q_1 \) on \(A[X_1] \) and \(\text{trdeg}_{\text{Fr}(A[X_1]/Q_1)} k_{w_1} = 0 \). If \(w_1 \) is the trivial valuation, then there exists a valuation \(w \) of \(K(X_1)(X_2, \ldots, X_n) = K(n) \) with center \(Q \) on \(A[X_1][X_2, \ldots, X_n] = A[n] \) and
and only if \(Q \) is maximal in \(A[n] \) and with center \(Q \) on \(A[n] \), and
\[
\trdeg_{\text{Fr}(A[n]/Q)}^{kw} = \ht(Q) - 1.
\]
If \(w_1 \) is not trivial, then \(Q_1 \neq (0) \) and it follows from Theorem 3.4 that there exists a valuation \(w \) on \(K(n) \) extending \(w_1 \) and with center \(Q \) on \(A[n] \), and
\[
\trdeg_{\text{Fr}(A[n]/Q)}^{kw} = \trdeg_{\text{Fr}(A[v_1]/Q_1)}^{kw} + \ht(Q/Q_1[X_2,\ldots,X_n])
\]
\[
= \ht(Q) - \ht(Q_1)
\]
\[
= \ht(Q) - 1.
\]

4. Valuations on \(A[n] \) centered on the same ideal and extending the same valuation. Let \(v \) be a valuation on \(K \) with center \(q \) on \(A \) and \(Q \) a prime ideal of \(A[n] \) lying over \(q \). We will use the following notation:

(a) \(A(Q) = \{ w \mid w \) is a valuation on \(A[n] \) with center \(Q \} \);
(b) \(A(v) = \{ w \mid w \) is a valuation on \(A[n] \) extending \(v \} \);
(c) \(A(v,Q) = \{ w \mid w \) is a valuation on \(A[n] \) with center \(Q \) extending \(v \} \).

Lemma 4.1. Let \(w \) be a valuation on \(K(n) \). Then \(w \) is maximal in \(A(v,Q) \) if and only if \(w \) is maximal in \(\{ w'' \mid w'' \) is a valuation on \(A_v[n] \) with center \(Q_1 = m(w) \cap A_v[n] \} \) and \(Q_1 \) is maximal in \(\{ Q' \mid Q' \in \text{Spec}(A_v[n]) \) with \(Q' \cap A[n] = Q \} \).

Proof. Suppose that \(w \) is maximal in \(A(v,Q) \). Assume that there exists \(Q_2 \in \text{Spec}(A_v[n]) \) such that \(Q_1 \subset Q_2 \) and \(Q_2 \cap A[n] = Q \). By Proposition 1.4, there exists a valuation \(w_2 \) on \(A_v[n] \) with center \(Q_2 \), and \(w < w_2 \) such that \(m(w_2) \cap A[n] = Q \) and \(A_v \subseteq A_{w_2} \cap K \subseteq A_w \cap K = A_v \). Thus, \(w_2 \) extends \(v \) with center \(Q \) on \(A[n] \), which is a contradiction.

Assume that \(w < w' \), with \(w' \) a valuation on \(A_v[n] \) with center \(Q_1 \). Then \(m(w') \cap A[n] = Q \) and \(w' \) extends \(v \), that is, \(w' \) is a valuation on \(A[n] \) with center \(Q \) and extending \(v \), which is impossible.

Conversely, if \(w < w' \) with \(w' \) a valuation on \(A[n] \) extending \(v \) and with center \(Q \), then \(m(w) \cap A_v[n] = Q_1 \subset m(w') \cap A_v[n] \), but \(m(w') \cap A_v[n] \cap A[n] = m(w') \cap A[n] = Q \), which is again a contradiction.

Remark 4.2. Take \(w \in A(v,Q) \). Let \(Q_1 = m(w) \cap A_v[n] \) and assume that \(Q_1 \) is maximal in \(\{ Q' \mid Q' \in \text{Spec}(A_v[n]) \) with \(Q' \cap A[n] = Q \} \). The ideal \(Q_1/m(v)[n] \) is maximal in \(\{ Q' \mid Q' \in \text{Spec}(k_v[n]) \) with \(Q' \cap (A/q)[n] = Q/q[n] \} \). According to [5], we have
\[
\ht(Q_1/m(v)[n]) - \ht(Q/q[n]) = \inf \{ \trdeg_{A/q}^{kw}, \trdeg_{A/q}^{A[n]/Q} \}. \tag{4.1}
\]

Theorem 4.3. For \(w \in A(v,Q) \), the following assertions are equivalent:
(a) \(w \) is maximal in \(A(v,Q) \);
(b) \(\inf(\trdeg_{kw}^{A_v}, \trdeg_{A[n]/Q}^{kw}) = 0 \).

Proof. First, suppose that \(w \) is maximal in \(A(v,Q) \).
Case 1. The transcendence degree of \(k(v) \) on \(k(q) \) is finite. Let \(Q_1 = m(w) \cap A_v[n] \). Then
\[
\text{trdeg}_{A[n]/Q}^k + n - \text{ht}(Q/q[n]) = \text{trdeg}_{A/q}^k + \text{trdeg}_{A_v[n]/Q_1}^A + n - \text{ht}(Q/q[n]) \tag{4.2}
\]
According to Lemma 4.1, \(\text{trdeg}_{A_v[n]/Q}^A = 0 \), and
\[
\text{trdeg}_{A[n]/Q}^A + n - \text{ht}(Q/q[n]) = n - \text{ht}(Q_1/m(v)[n]) + \text{trdeg}_{A/q}^k, \tag{4.3}
\]
and therefore
\[
\text{trdeg}_{A[n]/Q}^A = \text{trdeg}_{A/q}^k + \text{trdeg}_{A_v[n]/Q_1}^A + n - \text{ht}(Q/q[n]) = n - \text{ht}(Q_1/m(v)[n]) + \text{trdeg}_{A/q}^k, \tag{4.4}
\]
Remark 4.2 implies that
\[
\text{trdeg}_{A[n]/Q}^k = \text{trdeg}_{A/q}^k - \inf \left(\text{trdeg}_{A/q}^k, \text{trdeg}_{A_v[n]/Q}^A \right) \tag{4.5}
\]
If \(\text{trdeg}_{A[n]/Q}^k \neq 0 \), then \(\text{trdeg}_{A[n]/Q}^k = \text{trdeg}_{A/q}^k + \text{ht}(Q/q[n]) - n \), and therefore
\[
\text{trdeg}_{A/q}^k = \text{trdeg}_{A/q}^k + \text{trdeg}_{A_v[n]/Q_1}^A = \text{trdeg}_{A/q}^k, \tag{4.6}
\]
that is, \(\text{trdeg}_{A/q}^k = 0 \).

Case 2. The transcendence degree of \(k(v) \) on \(k(q) \) is infinite. We will show that \(\text{trdeg}_{k_v}^k = 0 \). According to Lemma 4.1 and **Remark 4.2**, \(\text{ht}(Q_1/m(v)[n]) - \text{ht}(Q/q[n]) = \text{trdeg}_{A[n]/Q}^A = n - \text{ht}(Q/q[n]) \), \(\tag{4.7} \)
and therefore \(\text{ht}(Q_1/m(v)[n]) = n \). Thus,
\[
\text{trdeg}_{A_v[n]/Q_1}^A + \text{trdeg}_{A_v[n]/m(v)}^A = \text{trdeg}_{A_v[n]/Q}^A, \tag{4.8}
\]
so
\[
\text{trdeg}_{k_v}^k = \text{trdeg}_{A_v[n]/Q}^A = n - \text{ht}(Q_1/m(v)[n]) = 0. \tag{4.9}
\]
Conversely, assume that \(\inf(\text{trdeg}_{k_v}^k, \text{trdeg}_{A[n]/Q}^A) = 0 \). It follows from Corollary 2.9 that \(w \) is maximal in \(A(v,Q) \). \(\square \)

Proposition 4.4. If \(w_0 \in A(v,Q) \) is not maximal in \(A(v,Q) \), then there exists \(w_1 \) in \(A(v,Q) \) such that \(w_0 < w_1 \) and \(\text{trdeg}_{A[n]/Q_1}^k = \text{trdeg}_{A[n]/Q}^k - 1 \).
Proof. Let $Q_0 = m(w_0) \cap A_v[n]$. According to Lemma 4.1, $\text{trdeg}_{A_v[n]}/Q_0^{k_0} \neq 0$ or Q_0 is not maximal in \{ $Q' \mid Q' \in \text{Spec}(A_v[n])$ with $Q' \cap A[n] = Q$ \}.

If $\text{trdeg}_{A_v[n]}/Q_0^{k_0} \neq 0$, then it follows from Lemma 2.3 that there exists a valuation w_1 on $A_v[n]$ with center Q_0 such that $w_0 < w_1$ and $\text{trdeg}_{A_v[n]/Q_0^{k_0}}^{k_0} = \text{trdeg}_{A_v[n]/Q_0}^{k_0} - 1$. The valuation w_1 extends v since $A_v \subseteq A_{w_1} \cap K \subseteq A_{w_0} \cap K = A_v$.

If $\text{trdeg}_{A_v[n]/Q_0^{k_0}}^{k_0} = 0$, let Q_1 be a prime ideal of $A_v[n]$ lying over Q_0 with $Q_0 \subset Q_1$ and $\text{ht}(Q_1/Q_0) = 1$. According to Proposition 1.4 and Theorem 2.4, there exists a valuation w_1 on $A_v[n]$ with center Q_1 such that $w_0 < w_1$ and $\text{trdeg}_{A_v[n]/Q_1}^{k_1} = \text{trdeg}_{A_v[n]/Q_0}^{k_0}$; w_1 is a valuation on $A[n]$ with center Q. Then

\[
\text{trdeg}_{A[n]/Q}^{k_0} = \text{trdeg}_{A[n]/Q}^{k_1} = \text{ht}(Q/q[n]) - \text{ht}(Q_0/m(v)[n]) + \text{trdeg}_{A/q}^{k_0},
\]

and therefore

\[
\text{trdeg}_{A[n]/Q}^{k_0} - \text{trdeg}_{A[n]/Q}^{k_1} = \text{ht}(Q_1/m(v)[n]) - \text{ht}(Q_0/m(v)[n]) = \text{ht}(Q_1/Q_0) = 1.
\] (4.11)

Theorem 4.5. For $w \in A(v,Q)$, let $d(w,v,Q) = \text{Sup}\{ k \mid k \in \mathbb{N}, \exists k+1 \text{ valuations } w_0 < \cdots < w_k \text{ in } A(v,Q) \}$. Then

\[
d(w,v,Q) = \inf \left(\text{trdeg}_{A[n]/Q}^{k_w}, \text{trdeg}_{A[n]/Q}^{k_w} \right).
\] (4.12)

Proof. Let $k = d(w,v,Q)$. According to Proposition 4.4, there exist $w_0 < \cdots < w_k$ in $A(v,Q)$, with $\text{trdeg}_{A[n]/Q}^{k_0} = \text{trdeg}_{A[n]/Q}^{k_1} - i$ for each $i \in \{0,\ldots,k\}$ and w_k maximal in $A(v,Q)$, that is,

\[
\text{trdeg}_{A[n]/Q}^{k_0} = \text{trdeg}_{A[n]/Q}^{k_1} - \inf \left(\text{trdeg}_{A[n]/Q}^{k_0}, \text{trdeg}_{A[n]/Q}^{k_0} \right) = \text{trdeg}_{A[n]/Q}^{k_0} - k,
\] (4.13)

and therefore

\[
k = \text{trdeg}_{A[n]/Q}^{k_w} - \text{trdeg}_{A[n]/Q}^{k_v} + \inf \left(\text{trdeg}_{A[n]/Q}^{k_0}, \text{trdeg}_{A[n]/Q}^{k_0} \right)
\] (4.14)

and therefore

\[
s = \sup \{ k \mid \exists k+1 \text{ valuations } w_0 < \cdots < w_0 = w \text{ on } A(v,Q) \}
\] (4.15)

Proposition 4.6. For $w \in A(v,Q)$,

\[
h = \inf \left(\text{ht}(m(w)/ QA_w), \text{ht}(m(w)/ m(v) A_w) \right).
\]
Proof. Let $k \in \mathbb{N}$ and let $w_k < \cdots < w_0 = w$ be valuations on $A(v, Q)$. As $A(v, Q) \subseteq A(v) \cap A(Q)$, $k \leq \text{inf}(ht(m(w)/QA_w), ht(m(w)/m(v)A_w))$, and consequently $s \leq h$.

The converse inequality is trivial if $s = \infty$. So let $s < \infty$ and assume $s < h$. Take $w_k < \cdots < w_0 = w$ in $A(v, Q)$. Then

\[
ht(m(w)/QA_w) = \text{ht}(m(w)/m(w_k)) + \text{ht}(m(w_k)/QA_{w_k}) = k + \text{ht}(m(w_k)/QA_{w_k}),
\]

and therefore $\text{ht}(m(w_k)/QA_{w_k}) \neq 0$, and there exists $w'_{k+1} \in A(Q)$ with $w'_{k+1} < w_k$. As

\[
\text{ht}(m(w)/m(v)A_w) = \text{ht}(m(w)/m(w_k)) + \text{ht}(m(w_k)/m(v)A_{w_k}) = k + \text{ht}(m(w_k)/m(v)A_{w_k}),
\]

we have that $\text{ht}(m(w_k)/m(v)A_{w_k}) \neq 0$, and therefore there exists $w''_{k+1} \in A(v)$ with $w''_{k+1} < w_k$. Thus, $A_{w_k} \subseteq A_{w'_{k+1}}, A_{w_k} \subseteq A_{w''_{k+1}}, A_{w'_{k+1}} = (A_{w_k})_{P'}$, and $A_{w''_{k+1}} = (A_{w_k})_{P''}$ with P' and P'' two prime ideals of A_{w_k}. As P' and P'' are comparable, $A_{w'_{k+1}} \subseteq A_{w''_{k+1}}$, or $A_{w''_{k+1}} \subseteq A_{w'_{k+1}}$. If $w''_{k+1} \subseteq w'_{k+1}$, $m(w'_{k+1}) \subseteq m(w''_{k+1})$ and $m(v) = m(w'_{k+1}) \cap A_v \subseteq m(w''_{k+1}) \cap A_v$, that is, $m(w'_{k+1}) \cap A_v = m(v)$ and w'_{k+1} extends v, it will be a contradiction since $w'_{k+1} \in A(v, Q)$.

If $w'_{k+1} \subseteq w''_{k+1}$, then $m(w''_{k+1}) \subseteq m(w'_{k+1}) \subset m(v)$, and then $m(w''_{k+1}) \cap A[n] = Q$ and $w''_{k+1} \in A(v, Q)$, which is again a contradiction.

We conclude that $s = h$ and finish the proof. \qed

Corollary 4.7. For $w \in A(v, Q)$, the following assertions are equivalent:
(a) w is minimal in $A(v, Q)$;
(b) $\text{inf}(ht(m(w)/QA_w), ht(m(w)/m(v)A_w)) = 0$;
(c) w is minimal in $A(Q)$ or in $A(v)$.

Notation 4.8. For each valuation w on $A(v, Q)$, let $l(w)$ be the maximal length of a chain of valuations on $A(v, Q)$ passing through w. The maximum value of $l(w)$, where w runs through the set $A(v, Q)$, will be denoted by $d(A(v, Q))$.

Theorem 4.9. For each valuation w on $A(v, Q)$,
(a) $l(w) = \text{inf}(ht(m(w)/QA_w), ht(m(w)/m(v)A_w)) + \text{inf}(\text{trdeg}^k_{w})$,
(b) $d(A(v, Q)) = \text{trdeg}^k_{w} + \text{ht}(Q/q[n])$.

Proof. (a) The proof follows immediately from Theorem 4.5 and Proposition 4.6.
(b) Let $w' \in A(v, Q)$. Then

\[
\text{trdeg}^k_{A[n]/Q} + n - \text{ht}(Q/q[n]) = \text{trdeg}^k_{w'} = \text{trdeg}^k_{w'} + \text{trdeg}^k_{v},
\]

(4.18)
thus
\[
\text{trdeg}_{A[n]/Q}^{k_v} = \text{trdeg}_{k(q)}^{k_v} + \text{ht}(Q/q[n]) + \left(\text{trdeg}_{k(q)}^{k_{w'}} - n\right)
\]
\[
\leq \text{trdeg}_{k(q)}^{k_v} + \text{ht}(Q/q[n]).
\]
(4.19)

Therefore,
\[
d(A(v, Q)) \leq \text{trdeg}_{k(q)}^{k_v} + \text{ht}(Q/q[n]).
\]

Theorem 3.4 implies the existence of \(w \in A(v, Q) \) satisfying \(\text{trdeg}_{A[n]/Q}^{k_w} = \text{trdeg}_{k(q)}^{k_v} + \text{ht}(Q/q[n]) \), and the converse inequality follows.

\[\square\]

REFERENCES

Rachid Chibloun: Département de Mathématiques et Informatique, Université Moulay Ismail, BP 4010, Béni M’hamed, Meknès, Morocco

E-mail address: chibloun@fsmek.ac.ma