ON HOPF GALOIS HIRATA EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 17 March 2003

Let H be a finite-dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, and B a right H^*-Galois and Hirata separable extension of B^H. Then B is characterized in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H)\#H$. A sufficient condition is also given for B to be an H^*-Galois Azumaya extension of B^H.

2000 Mathematics Subject Classification: 16W30, 16H05.

1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, and B a right H^*-Galois extension of B^H. In [3], the class of H^*-Galois Azumaya extensions was investigated and in [8], it was shown that B is a Hirata separable extension of B^H if and only if the commutator subring $V_B(B^H)$ of B^H in B is a left H-Galois extension of C, where C is the center of B (see [8, Lemma 2.1, Theorem 2.6]). The purpose of the present paper is to characterize a right H^*-Galois and Hirata separable extension B of B^H in terms of the commutator subring $V_B(B^H)$ and the smash product $V_B(B^H)\#H$. Let B be a right H^*-Galois extension of B^H such that $B^H = B^H^*$. Then the following statements are equivalent:

1. B is a Hirata separable extension of B^H,
2. $V_B(B^H)$ is an Azumaya C-algebra and $V_B(V_B(B^H)) = B^H$,
3. $V_B(B^H)$ is a right H^*-Galois extension of C and a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$-bimodule,
4. $V_B(B^H)$ is a right H^*-Galois extension of C and $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

Moreover, an equivalent condition is given for a right H^*-Galois and Hirata separable extension B of B^H to be an H^*-Galois Azumaya extension which was studied in [3, 7]. Also, let B be a right H^*-Galois and Hirata separable extension of B^H and A a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A containing A as a direct summand as an A-bimodule. Then $V_{B^H}(A)$ is a separable subalgebra of B^H over C, and there exists an H-submodule algebra D in B which is separable over C such that $D^H = V_{B^H}(A)$ and $D \cong V_{B^H}(A) \otimes_Z F$ as Azumaya Z-algebras, where Z is the center of D and F is an Azumaya Z-algebra in D.
2. Basic definitions and notations. Throughout, H denotes a finite-dimensional Hopf algebra over a field k with comultiplication Δ and counit ε, H^* the dual Hopf algebra of H, B a left H-module algebra, C the center of B, $B^H = \{ b \in B \mid hb = \varepsilon(h)b \text{ for all } h \in H \}$ which is called the H-invariants of B, and $B \# H$ the smash product of B with H, where $B \# H = B \otimes_k H$ such that for all $b \# h$ and $b' \# h'$ in $B \# H$, $(b \# h)(b' \# h') = \sum b(h_1b')\# h_2h'$, where $\Delta(h) = \sum h_1 \otimes h_2$. The ring B is called a right H^*-Galois extension of B^H if B is a right H^*-comodule algebra with structure map $\rho : B \rightarrow B \otimes_k H^*$ such that $\beta : B \otimes B^H B \rightarrow B \otimes B^H$ is a bijection, where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$.

For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. We call B a separable extension of A if there exist $\{a_i, b_i\}$ in B, $i = 1, 2, \ldots, m$, for some integer m such that $\sum a_i b_i = 1$ and $\sum b a_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B, where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. A right H^*-Galois extension B is called an H^*-Galois Azumaya extension if B is separable over B^H which is an Azumaya algebra over C^H. A right H^*-Galois extension B of B^H is called an H^*-Galois Hirata extension if B is also a Hirata separable extension of B^H. Throughout, an H^*-Galois extension means a right H^*-Galois extension unless it is stated otherwise.

3. The H^*-Galois Hirata extensions. In this section, we will characterize an H^*-Galois Hirata extension B of B^H in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H) \# H$. A relationship between an H^*-Galois Hirata extension and an H^*-Galois Azumaya extension is also given. We begin with some properties of an H^*-Galois Hirata extension B of B^H. Throughout, we assume $B^H = B^{H^*}$.

Lemma 3.1. If A_1 and A_2 are H^*-Galois extensions such that $A_1^H = A_2^H$ and $A_1 \subset A_2$, then $A_1 = A_2$.

Proof. By [3, Theorem 5.1], there exist $\{x_i, y_i \in A_1 \mid i = 1, 2, \ldots, n\}$ for some integer n such that, for all $h \in H$, $\sum x_i(h y_i) = T(h)1_{A_1}$, where $T \in \mathcal{I}_{H^*}$, the set of right integrals in H^*. Let $t \in \mathcal{I}_H$, the set of left integrals in H, such that $T(t) = 1$, then $\{x_i, f_i = t(y_i-1) \mid i = 1, 2, \ldots, n\}$ is a dual basis of the finitely generated and projective right module A_1 over A_1^H. Since $A_1 \subset A_2$ such that $A_1^H = A_2^H$, $\{x_i, f_i \mid i = 1, 2, \ldots, n\}$ is also a dual basis of the finitely generated and projective right module A_2 over A_2^H. This implies that $A_1 = A_2$. \hfill \Box

Lemma 3.2. If B is an H^*-Galois Hirata extension of B^H, then B^H is a direct summand of B as a B^H-bimodule.

Proof. We use the argument as given in [2]. Since B is an H^*-Galois and a Hirata separable extension of B^H, $V_B(B^H)$ is a left H-Galois extension of C (see [8, Lemma 2.1, Theorem 2.6]). Hence, $V_B(B^H)$ is a finitely generated and
projective module over C (see [3, Theorem 2.2]). Let $\Omega = \text{Hom}_C(V_B(B^H), V_B(B^H))$. Since C is commutative, $V_B(B^H)$ is a progenerator of C. Thus, B is a right Ω-module such that $B \cong V_B(B^H) \otimes_C \text{Hom}_\Omega(V_B(B^H), B) \cong V_B(B^H) \otimes_C B^H$ as C-algebras, where $f(1) \in B^H$ for each $f \in \text{Hom}_\Omega(V_B(B^H), B)$ by the proof of [2, Lemma 2.8]. But $V_B(V_B(B^H)) = B^H$ (see [2, Lemma 2.5]), so $B \cong V_B(B^H) \otimes_C B^H$. This implies that $V_B(B^H)$ is an H^*-Galois extension of C (see [2, Lemma 2.8]); and so C is a direct summand of $V_B(B^H)$ as a C-bimodule (see [2, Corollaries 1.9 and 1.10]). Therefore, B^H is a direct summand of B as a B^H-bimodule.

By the proof of Lemma 3.2, $V_B(B^H)$ is an H^*-Galois extension of C.

Corollary 3.3. If B is an H^*-Galois Hirata extension of B^H, then $V_B(B^H)$ is an H^*-Galois extension of C.

Corollary 3.4. If B is an H^*-Galois Hirata extension of B^H, then $V_B(B^H) = B^H \cdot V_B(B^H)$ and the centers of B, B^H, and $V_B(B^H)$ are the same C.

Proof. By Corollary 3.3, $V_B(B^H)$ is an H^*-Galois extension of C, so $B^H \cdot V_B(B^H)$ is also an H^*-Galois extension of $B^H (= (B^H \cdot V_B(B^H))^H)$ with the same Galois system as $V_B(B^H)$ (see [3, Theorem 5.1]). Noting that $B^H \cdot V_B(B^H) \subseteq B$, we conclude that $B = B^H \cdot V_B(B^H)$ by Lemma 3.1. Moreover, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]), so the centers of B^H, $V_B(B^H)$, and B are the same C.

Theorem 3.5. Let B be an H^*-Galois extension of B^H. The following statements are equivalent:

1. B is a Hirata separable extension of B^H,
2. $V_B(B^H)$ is an H^*-Galois extension of C and a direct summand of $V_B(B^H)^H$ as a $V_B(B^H)$-bimodule,
3. $V_B(B^H)$ is an Azumaya C-algebra and $V_B(V_B(B^H)) = B^H$,
4. $V_B(B^H)$ is an H^*-Galois extension of C and $V_B(B^H)^H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

Proof. (1)\Rightarrow(3). Since B is an H^*-Galois and a Hirata separable extension of B^H, by Lemma 3.2, B^H is a direct summand of B as a B^H-bimodule. Thus, $V_B(V_B(B^H)) = B^H$ and $V_B(B^H)$ is a separable C-algebra (see [4, Propositions 1.3 and 1.4]). But the center of $V_B(B^H)$ is C by Corollary 3.4, so $V_B(B^H)$ is an Azumaya C-algebra.

(3)\Rightarrow(1). Since $V_B(B^H)$ is an Azumaya C-algebra and B is a bimodule over $V_B(B^H)$, $B \cong V_B(B^H) \otimes_C V_B(V_B(B^H)) = V_B(B^H) \otimes_C B^H$ as a bimodule over $V_B(B^H)$ (see [1, Corollary 3.6, page 54]). Noting that $B \cong V_B(B^H) \otimes_C B^H$ is also an isomorphism as C-algebras and that $V_B(B^H)$ is an Azumaya C-algebra, we conclude that $V_B(B^H) \otimes_C B^H$ is a Hirata separable extension of B^H; and so B is a Hirata separable extension of B^H.

(3)\Rightarrow(2). By the proof of (3)\Rightarrow(1), $B \cong V_B(B^H) \otimes_C B^H$ such that $V_B(B^H)$ is a finitely generated and projective module over C, so $V_B(B^H)$ is an H^*-Galois extension of C (see [2, Lemma 2.8]). Moreover, since $V_B(B^H)$ is an Azumaya
C-algebra, \(V_B(B^H) \) is a direct summand of \(V_B(B^H) \otimes_C (V_B(B^H))^* \) as a \(V_B(B^H) \)-bimodule, where \((V_B(B^H))^* \) is the opposite algebra of \(V_B(B^H) \). But \(V_B(B^H) \otimes_C (V_B(B^H))^* \equiv \text{Hom}_C(V_B(B^H), V_B(B^H)) \equiv V_B(B^H)^H \) (see [3, Theorem 2.2]), so \(V_B(B^H) \) is a direct summand of \(V_B(B^H)^H \) as a \(V_B(B^H) \)-bimodule.

(2) \(\Rightarrow \) (3). Since \(V_B(B^H) \) is an \(H^* \)-Galois extension of \(C, B^H \cdot V_B(B^H) \) is an \(H^* \)-Galois extension of \((B^H \cdot V_B(B^H))^H \). But \((B^H \cdot V_B(B^H))^H = B^H \), so \(B^H = V_B(B^H) \) and \(B \) are \(H^* \)-Galois extensions of \(B^H \) such that \(B^H \cdot V_B(B^H) \subset B \). Hence, \(B^H \cdot V_B(B^H) = B \) by Lemma 3.1. Thus, the centers of \(B \) and \(V_B(B^H) \) are the same. Moreover, \(V_B(B^H) \) is a direct summand of \(V_B(B^H)^H \) as a \(V_B(B^H) \)-bimodule by hypothesis, so it is a separable \(C \)-algebra (see [3, Theorem 2.3]). Thus, \(V_B(B^H) \) is an Azumaya \(C \)-algebra. But then \(B \equiv V_B(B^H) \otimes_C V_B(V_B(B^H)) \). On the other hand, by hypothesis, \(V_B(B^H) \) is an \(H^* \)-Galois extension of \(C \), so \(B \equiv V_B(B^H) \otimes_C B \) (see [2, Lemma 2.8]). Therefore, \(V_B(V_B(B^H)) = B^H \).

(3) \(\Leftrightarrow \) (4). Since \(V_B(B^H) \) is an \(H^* \)-Galois extension of \(C \), it is a finitely generated and projective module over \(C \) and \(\text{Hom}_C(V_B(B^H), V_B(B^H)) \equiv V_B(B^H)^H \) (see [3, Theorem 2.2]). But then \(V_B(B^H) \) is a Hirata separable extension of \(C \) if and only if \(V_B(B^H)^H \) is a direct summand of a finite direct sum of \(V_B(B^H) \) as a bimodule over \(V_B(B^H) \) (see [5, Corollary 3]). Thus, \(V_B(B^H) \) is an Azumaya \(C \)-algebra if and only if \(V_B(B^H) \) is an \(H^* \)-Galois extension of \(C \) and \(V_B(B^H)^H \) is a direct summand of a finite direct sum of \(V_B(B^H) \) as a bimodule over \(V_B(B^H) \).

By Theorem 3.5, we can obtain a relationship between the class of \(H^* \)-Galois Hirata extensions and the class of \(H^* \)-Galois Azumaya extensions which were studied in [3, 7].

Corollary 3.6. Let \(B \) be an \(H^* \)-Galois Azumaya extension of \(B^H \). Then \(B \) is an \(H^* \)-Galois Hirata extension of \(B^H \) if and only if \(C = C^H \).

Proof. (\(\Rightarrow \)) Since \(B \) is an \(H^* \)-Galois Hirata extension of \(B^H \), \(V_B(B^H) \) is an Azumaya algebra over \(C \) and a left \(H \)-Galois extension of \(C \) (see [8, Theorem 2.6]). Hence, \(V_B(V_B(B^H)) = B^H \) (see [8, Lemma 2.5]). Thus, \(C \subset B^H \); and so \(C = C^H \).

(\(\Leftarrow \)) Since \(B \) is an \(H^* \)-Galois Azumaya extension of \(B^H \), \(V_B(B^H) \) is separable over \(C^H \) (see [3, Lemma 4.1]). Since \(B \) is an \(H^* \)-Galois Azumaya extension of \(B^H \) again, \(V_B(B^H) \) is an \(H^* \)-Galois extension of \((V_B(B^H))^H \) (see [3, Lemma 4.1]), so both \(B^H \cdot V_B(B^H) \) and \(B \) are \(H^* \)-Galois extensions of \(B^H \) such that \(B^H \cdot V_B(B^H) \subset B \). Hence, \(B^H \cdot V_B(B^H) = B \) by Lemma 3.1. This implies that the center of \(V_B(B^H) \) is \(C \). But by hypothesis, \(C = C^H \), so \(V_B(B^H) \) is an Azumaya \(C \)-algebra. Hence, \(V_B(B^H) \) is a Hirata separable extension of \(C \). But \(B = B^H \cdot V_B(B^H) \equiv B^H \otimes_C V_B(B^H) \) as Azumaya \(C \)-algebras, so \(B \) is a Hirata separable extension of \(B^H \). Thus, \(B \) is an \(H^* \)-Galois Hirata extension of \(B^H \).

Corollary 3.7. Let \(B \) be an \(H^* \)-Galois Azumaya extension of \(B^H \). Then \(B \) is an \(H^* \)-Galois Azumaya extension of \(B^H \) if and only if \(B \) is an Azumaya \(C^H \)-algebra.
Proof. (\Rightarrow) Since B is an H^*-Galois Azumaya extension of B^H, B^H is an Azumaya C^H-algebra and B is separable over B^H (see [3, Theorem 3.4]). Hence, B is separable over C^H by the transitivity of separable extensions. But B is an H^*-Galois Azumaya extension of B^H and an H^*-Galois Hirata extension of B^H by hypothesis, so $C = C^H$ by Corollary 3.6. This implies that B is an Azumaya C^H-algebra.

(\Leftarrow) By hypothesis, B is an Azumaya C^H-algebra. Hence, $C = C^H$. But B is an H^*-Galois Hirata extension of B^H again, B is a Hirata separable extension of B^H and a finitely generated and projective module over B^H. Thus, $V^H_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]); and so $B^H (= V^H_B(V_B(B^H)))$ is an Azumaya subalgebra of B over C^H by the commutator theorem for Azumaya algebras (see [1, Theorem 4.3, page 57]). This proves that B is an H^*-Galois Azumaya extension of B^H. \(\square \)

4. Invariant subalgebras. For an H^*-Galois Hirata extension B as given in Theorem 3.5, let A be a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule. In this section, we show that $V^H_B(A)$ is the H-invariant subalgebra of a separable subalgebra D in B over C, that is, $D^H = V^H_B(A)$. We denote by \mathcal{H} the set $\{A \mid A$ is a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule}.

Lemma 4.1. Let B be an H^*-Galois Hirata extension of B^H. For any $A \in \mathcal{H}$, $V_B(A)$ is an H-submodule algebra of B and separable over C, and $(V_B(A))^H = V_B^H(A)$ which is a separable C-algebra.

Proof. Since $A \in \mathcal{H}$, B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule. But B is an H^*-Galois Hirata extension of B^H, so B is a projective Hirata separable extension of B^H. Hence, by the transitivity property of projective Hirata separable extensions, B is a projective Hirata separable extension of A. Also B^H is a direct summand of B as a B^H-bimodule by Lemma 3.2, so A is a direct summand of B as an A-bimodule. Thus, $V_B(A)$ is a separable algebra over C (see [6, Theorem 1]). Moreover, it is clear that $(V_B(A))^H = V_B^H(A)$, so $V_B^H(A)$ is a separable C-algebra (see Corollary 3.4 and [6, Theorem 1]). \(\square \)

Next we want to show which separable subalgebra of B^H over C is an H-invariant subring of an H-submodule algebra in B. Let $\mathcal{I} = \{E \subset B \mid E$ is a separable C-subalgebra of B^H and satisfies the double centralizer property in B^H such that $V_B^H(E) \in \mathcal{H}\}$. Next we show that for any $E \in \mathcal{I}$, E is the H-invariant subring of an H-submodule algebra D in B which is separable over C.

Theorem 4.2. Let E be in \mathcal{I}. Then there exists an H-submodule algebra D in B which is separable over C such that $D^H = E$.

Proof. Since E is in \mathcal{F}, $V_{BH}(E)$ is in \mathcal{F} such that $V_{BH}(V_{BH}(E)) = E$. Now by Lemma 4.1, $V_{B}(V_{BH}(E))$ is an H-submodule algebra of B and separable over C such that $(V_{B}(V_{BH}(E)))^{H} = V_{BH}(V_{BH}(E))$. But $V_{BH}(V_{BH}(E)) = E$, so
\[
(V_{B}(V_{BH}(E)))^{H} = E. \tag{4.1}
\]
Let $D = V_{B}(V_{BH}(E))$. Then D satisfies the theorem.

By Theorem 4.2, we obtain an expression for the separable H-submodule algebra D for a given E in \mathcal{F}.

Corollary 4.3. By keeping the notations as given in Theorem 4.2, let Z be the center of E. Then $D \cong E \otimes_{Z} V_{D}(E)$ as Azumaya Z-algebras.

Proof. Since E satisfies the double centralizer property in B^{H}, $V_{BH}(V_{BH}(E)) = E$. Hence, the centers of E and $V_{B}(E)$ are the same Z. Similarly as given in the proof of Lemma 4.1, since $V_{BH}(E)$ is in \mathcal{F}, $B (= B^{H} \cdot V_{B}(B^{H}))$ is a projective Hirata separable extension of $V_{BH}(E)$ and contains $V_{BH}(E)$ as a direct summand as a $V_{BH}(E)$-bimodule by the transitivity property of projective Hirata separable extensions and the direct summand conditions. Thus, $V_{BH}(E)$ satisfies the double centralizer property in B, that is, $V_{B}(V_{B}(V_{BH}(E))) = V_{BH}(E)$. This implies that the centers of $V_{BH}(E)$ and $V_{B}(V_{BH}(E))$ are the same. Therefore, D and E have the same center Z. Noting that D and E are separable C-algebras by Theorem 4.2, we conclude that $E (= D^{H})$ is an Azumaya subalgebra of D over Z; and so $D \cong E \otimes_{Z} V_{D}(E)$ as Azumaya Z-algebras (see [1, Theorem 4.3, page 57]).

Remark 4.4. When B is an H^{*}-Galois Azumaya extension of B^{H}, the correspondence $A \rightarrow V_{B}(A)$ as given in Lemma 4.1 recovers the one-to-one correspondence between the set of separable subalgebras of B^{H} and the set of H^{*}-Galois extensions in B containing $V_{B}(B^{H})$ as given in [3].

Acknowledgments. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu
Submit your manuscripts at http://www.hindawi.com