We present a family of congruences which hold if and only if a natural number \(n \) is prime.

2000 Mathematics Subject Classification: 11A51, 11A07.

The subject of primality testing has been in the mathematical and general news recently, with the announcement [1] that there exists a polynomial-time algorithm to determine whether an integer \(p \) is prime or not.

There are older deterministic primality tests which are less efficient; the classical example is Wilson’s theorem, that

\[
(n-1)! \equiv -1 \mod n
\]

if and only if \(n \) is prime. Although this is a deterministic algorithm, it does not provide a workable primality test because it requires much more calculation than trial division.

This note provides another family of congruences satisfied by primes and only by primes; it is a generalization of previous work. They could be used as examples of primality tests for students studying elementary number theory.

In Guy [3, Problem A17], the following result due to Vantieghem [4] is quoted as follows.

Theorem 1 (Vantieghem [4]). Let \(n \) be a natural number greater than 1. Then \(n \) is prime if and only if

\[
\prod_{d=1}^{n-1} (1-2^d) \equiv n \mod (2^n - 1).
\]

In this note, we will generalize this result to obtain the following theorem.

Theorem 2. Let \(m \) and \(n \) be natural numbers greater than 1. Then \(n \) is prime if and only if

\[
\prod_{d=1}^{n-1} (1-m^d) \equiv n \mod \frac{m^n - 1}{m - 1}.
\]

We note that these congruences are also much less efficient than trial division.

Proof. We follow the method of Vantieghem, using a congruence satisfied by cyclotomic polynomials.
Lemma 3 (Vantieghem). Let m be a natural number greater than 1 and let $\Phi_m(X)$ be the mth cyclotomic polynomial. Then

$$\prod_{d=1}^{m} (X - Y^d) \equiv \Phi_m(X) \mod \Phi_m(Y) \text{ in } \mathbb{Z}[X,Y]. \tag{4}$$

Proof of Lemma 3. We can write

$$\prod_{d=1}^{m} (X - Y^d) - \Phi_m(X) = f_0(Y) + f_1(Y)X + f_2(Y)X^2 + \cdots. \tag{5}$$

(Here the f_i are polynomials over \mathbb{Z}.)

Let ζ be a primitive mth root of unity. Now, if $Y = \zeta$, then we see that the left-hand side of this expression is identically 0 in X.

This implies that the f_i are zero at every ζ and every i. Therefore, we have $f_i(Y) \equiv 0 \mod \Phi_m(Y)$, which is enough to prove the lemma.

Suppose that the natural number n in Theorem 2 is prime. Let $p := n$. We have that $\Phi_p(X) = X^{p-1} + X^{p-2} + \cdots + X + 1$. Therefore, if we set $m = p$ in Lemma 3, we find that

$$\prod_{d=1}^{p-1} (X - Y^d) \equiv X^{p-1} + X^{p-2} + \cdots + X + 1 \mod (Y^{p-1} + \cdots + 1). \tag{6}$$

We now set $X = 1$ and $Y = m$, to get

$$\prod_{d=1}^{p-1} (1 - m^d) \equiv p \mod \frac{m^p - 1}{m - 1}. \tag{7}$$

This proves that if p is prime, then the congruence holds.

We now prove the converse, by supposing that the congruence (3) holds, and that p is not prime. Therefore p is composite, and hence has a smallest prime factor q. We write $p = q \cdot a$; now $q \leq a$, and also $p \leq a^2$.

Now we have that $m^a - 1$ divides $m^p - 1$ and $m^a - 1$ divides the product $\prod_{d=1}^{p-1} (m^d - 1)$. By combining this with the congruence (3) in Theorem 2, this implies that $(m^a - 1)/(m - 1)$ divides p. Therefore we have

$$2^a - 1 \leq \frac{m^a - 1}{m - 1} \leq p \leq a^2. \tag{8}$$

The inequality $2^a - 1 \leq a^2$ forces a to be either 2 or 3; this means that $p \in \{4, 6, 9\}$ and $m \in \{2, 3\}$; one can check by hand that the congruence does not hold in this case, so we have proved Theorem 2.

Guy also asks if there is a relationship between the congruence given by Vantieghem and Wilson’s theorem. The following theorem gives an elementary congruence similar to that of Vantieghem between a product over integers and a cyclotomic polynomial. It is in fact equivalent to Wilson’s theorem.
Theorem 4. Let \(m \) be a natural number greater than 2. Define the product \(F(X) \) by

\[
F(X) := \prod_{i=1 \atop (i,m)=1}^{m-1} (X - i - 1) + 1. \tag{9}
\]

Then \(m \) is prime if and only if

\[
\Phi_m(X) \equiv F(X) \mod m. \tag{10}
\]

Proof of Theorem 4. Firstly, we prove that if \(m \) is not prime, the congruence (10) in Theorem 4 does not hold.

Recall that \(\phi(m) \) is defined to be Euler's totient function; the number of integers in the set \(\{1, \ldots, m\} \) which are coprime to \(m \).

The coefficient of \(X^{\phi(m)-1} \) in \(F(X) \) is given by the sum

\[
- \sum_{i=1 \atop (i,m)=1}^{m-1} (i + 1) = -\phi(m) - \sum_{i=1 \atop (i,m)=1}^{m-1} i. \tag{11}
\]

We find that the following congruence holds:

\[
-\phi(m) - \sum_{i=1 \atop (i,m)=1}^{m-1} i \equiv -\phi(m) \mod m. \tag{12}
\]

This follows from the following identity:

\[
\sum_{i=1 \atop (i,m)=1}^{m-1} i = \frac{m\phi(m)}{2}. \tag{13}
\]

Because \(m > 2 \), \(\phi(m) \) is divisible by 2, the sum on the left-hand side of (12) is a multiple of \(m \). We now use some theorems to be found in a paper by Gallot [2, Theorems 1.1 and 1.4].

Theorem 5. Let \(p \) be a prime and \(m \) a natural number.

1. The following relations between cyclotomic polynomials hold:

\[
\Phi_{pm}(x) = \begin{cases}
\Phi_m(x^p) & \text{if } p \mid m, \\
\Phi_m(x) & \text{if } p \nmid m.
\end{cases} \tag{14}
\]

2. If \(m > 1 \), then

\[
\Phi_n(1) = \begin{cases}
p & \text{if } n \text{ is a power of a prime } p, \\
1 & \text{otherwise.}
\end{cases} \tag{15}
\]
From these results, we see that if \(m \) is not a prime power, we then have \(\Phi_n(1) \equiv 1 \mod m \), and \(F(1) \) is given by

\[
1 + \prod_{i=1 \atop (i,m)=1}^{m-1} (-i). \tag{16}
\]

We see that this is not congruent to \(1 \mod m \) because the product is over those \(i \) which are coprime to \(m \), so the product does not vanish modulo \(m \).

If \(m \) is a prime power \(p^n \), then we see from Theorem 5 that \(\Phi_{p^n}(x) = \Phi_p(x^{p^n-1}) \); in particular, we see that the coefficient of \(x^{\phi(p^n)-1} \) is 0, which differs from the coefficient of \(x^{\phi(p^n)-1} \) in \(F(X) \).

Therefore, if \(m \) is not prime, then the congruence does not hold. We now show that if \(m \) is prime, the congruence holds.

If \(m \) is prime, then \(\Phi_m(x) = x^{m-1} + x^{m-2} + \cdots + x + 1 \). We consider the polynomials \(\Phi_m(X+1) \) and \(F(X+1) \). Now, modulo \(m \) we have

\[
\Phi_m(X+1) = X^{m-1}, \quad F(X+1) = \prod_{i=1 \atop (i,m)=1}^{m-1} (X - i) + 1. \tag{17}
\]

Now if \(x \neq 0 \mod m \), then we see that \(\Phi_m(x+1) \equiv 1 \) and that \(F(x+1) \equiv 1 \), because the product vanishes.

And if we have \(x = 0 \), then \(\Phi_m(x) = 0 \) and, by Wilson’s theorem, \(F(0) \equiv (m-1)! + 1 \equiv 0 \mod m \).

Therefore we have proved Theorem 4. \(\square \)

REFERENCES

