ON A HIGHER-ORDER EVOLUTION EQUATION
WITH A STEPA诺V-BOUNDED SOLUTION

ARIBINDI SATYANARAYAN RAO

Received 12 June 2003 and in revised form 5 August 2004

We study strong solutions \(u : \mathbb{R} \to X \), a Banach space \(X \), of the \(n \)-th-order evolution equation

\[
 u^{(n)} - A u^{(n-1)} = f,
\]

an infinitesimal generator of a strongly continuous group \(A : D(A) \subseteq X \to X \), and a given forcing term \(f : \mathbb{R} \to X \). It is shown that if \(X \) is reflexive, \(u \) and \(u^{(n-1)} \) are Stepaνov-bounded, and \(f \) is Stepaνov almost periodic, then \(u \) and all derivatives \(u', \ldots, u^{(n-1)} \) are strongly almost periodic. In the case of a general Banach space \(X \), a corresponding result is obtained, proving weak almost periodicity of \(u, u', \ldots, u^{(n-1)} \).

2000 Mathematics Subject Classification: 34G10, 34C27, 47D03.

1. Introduction. In this paper, we are concerned with an \(n \)-th-order evolution equation of the form

\[
 u^{(n)} - A u^{(n-1)} = f.
\]

Here \(A : D(A) \subseteq X \to X \) is an infinitesimal generator of a strongly continuous group, \(f : \mathbb{R} \to X \) a given forcing term, \(X \) a Banach space with scalar field \(\mathbb{C} \), \(n \) a positive integer, and \(\mathbb{R} \) denotes the set of reals. We will give suitable assumptions to ensure that almost periodicity of the forcing term \(f \) carries over to the solution \(u \) and its derivatives up to order \((n-1) \).

The reason for studying this rather special evolution equation may be classified as a first pilot study of the issue of higher-order evolution equations, which probably has not been studied before.

We first recall the relevant concepts. A continuous function \(f : \mathbb{R} \to X \) is said to be strongly (or Bochner) almost periodic if, for every given \(\varepsilon > 0 \), there is an \(r > 0 \) such that any interval in \(\mathbb{R} \) of length \(r \) contains a point \(\tau \) for which

\[
 \sup_{t \in \mathbb{R}} \| f(t + \tau) - f(t) \| \leq \varepsilon.
\]

Here \(\| \cdot \| \) denotes the norm in \(X \).

A function \(f : \mathbb{R} \to X \) is called weakly almost periodic if \(x^* f(\cdot) : \mathbb{R} \to \mathbb{C} \) is continuous and almost periodic for every \(x^* \) in the dual space \(X^* \) of \(X \).

We will call a function \(f \in L^1_{loc}(\mathbb{R}, X) \) Stepaνov-bounded or briefly \(S \)-bounded if

\[
 \| f \|_S := \sup_{t \in \mathbb{R}} \int_t^{t+1} \| f(s) \| ds < \infty.
\]
We will call a function $f \in L^{1}_{\text{loc}}(\mathbb{R}, X)$ Stepanov almost periodic or briefly S-almost periodic if, for every given $\varepsilon > 0$, there is an $r > 0$ such that any interval in \mathbb{R} of length r contains a point τ for which
\[
\sup_{t \in \mathbb{R}} \int_{t}^{t+1} ||f(s + \tau) - f(s)||ds \leq \varepsilon.
\]
(1.4)

We denote by $L(X, X)$ the set of all bounded linear operators on X into itself. An operator-valued function $T : \mathbb{R} \rightarrow L(X, X)$ will be called a strongly continuous group if
\[
T(t_1 + t_2) = T(t_1)T(t_2) \quad \forall t_1, t_2 \in \mathbb{R},
\]
(1.5)
\[
T(0) = I = \text{the identity operator on } X,
\]
(1.6)
\[
T(\cdot)x : \mathbb{R} \rightarrow X \text{ is continuous for every } x \in X.
\]
(1.7)

We recall (e.g., from Dunford and Schwartz [4]) that the infinitesimal generator $A : D(A) \subseteq X \rightarrow X$ of a strongly continuous group $T : \mathbb{R} \rightarrow L(X, X)$ is a densely defined, closed linear operator.

An operator-valued function $T : \mathbb{R} \rightarrow L(X, X)$ is said to be strongly (weakly) almost periodic if $T(\cdot)x : \mathbb{R} \rightarrow X$ is strongly (weakly) almost periodic for every $x \in X$.

Suppose $A : D(A) \subseteq X \rightarrow X$ is a densely defined, closed linear operator, and $f : \mathbb{R} \rightarrow X$ is a continuous function. Then a strong solution of the evolution equation
\[
u^{(n)}(t) - Au^{(n-1)}(t) = f(t) \quad \text{a.e. for } t \in \mathbb{R}
\]
(1.8)
is an n times strongly differentiable function $u : \mathbb{R} \rightarrow X$ with $u^{(n-1)}(t) \in D(A)$ for all $t \in \mathbb{R}$, and satisfies problem (1.8).

Our first result is as follows (see Zaidman [7, 8] for first-order evolution equations).

Theorem 1.1. Let X be reflexive, $f : \mathbb{R} \rightarrow X$ continuous, S-almost periodic, A an infinitesimal generator of a strongly almost periodic group $T : \mathbb{R} \rightarrow L(X, X)$. In this case, if, for the strong solution $u : \mathbb{R} \rightarrow X$ of problem (1.8), both u and $u^{(n-1)}$ are S-bounded on \mathbb{R}, then $u, u', \ldots, u^{(n-1)}$ are all strongly almost periodic.

Our second result refers to a weak variant of our first theorem in the case of a general—not necessarily reflexive—Banach space X.

Theorem 1.2. Suppose $f : \mathbb{R} \rightarrow X$ is an S-almost periodic (or a weakly almost periodic) continuous function, A an infinitesimal generator of a strongly continuous group $T : \mathbb{R} \rightarrow L(X, X)$ such that the conjugate operator group $T^* : \mathbb{R} \rightarrow L(X^*, X^*)$ is strongly almost periodic. If, for the strong solution $u : \mathbb{R} \rightarrow X$ of problem (1.8), both u and $u^{(n-1)}$ are S-bounded on \mathbb{R}, then $u, u', \ldots, u^{(n-1)}$ are all weakly almost periodic.

Remark 1.3. For some examples of first-order and higher-order evolution equations with strongly almost periodic solutions, the reader may wish to consult Cooke [3] and Zaidman [9].
2. Lemmas

Lemma 2.1. If A is the infinitesimal generator of a strongly continuous group $G : \mathbb{R} \to L(X,X)$, then the $(n-1)$th derivative of any solution of (1.8) has the representation

$$u^{(n-1)}(t) = G(t)u^{(n-1)}(0) + \int_0^t G(t-s)f(s)ds \quad \text{for } t \in \mathbb{R}. \tag{2.1}$$

Proof. For an arbitrary but fixed $t \in \mathbb{R}$, we have

$$\frac{d}{ds} [G(t-s)u^{(n-1)}(s)] = G(t-s)[u^{(n)}(s) - Au^{(n-1)}(s)]$$

$$= G(t-s)f(s) \quad \text{a.e. for } s \in \mathbb{R}, \text{ by (1.8)}. \tag{2.2}$$

Now, integrating (2.2) from 0 to t, we obtain

$$\int_0^t \frac{d}{ds} [G(t-s)u^{(n-1)}(s)] ds = \int_0^t G(t-s)f(s)ds,$$

which gives the desired representation, by (1.6). \hfill \Box

Lemma 2.2. If $g : \mathbb{R} \to X$ is a strongly almost periodic function, and $G : \mathbb{R} \to L(X,X)$ is a strongly (weakly) almost periodic operator-valued function, then $G(\cdot)g(\cdot) : \mathbb{R} \to X$ is a strongly (weakly) almost periodic function.

For the proof of Lemma 2.2, see [6, Theorem 1] for weak almost periodicity.

Lemma 2.3. If $g : \mathbb{R} \to X$ is an S-almost periodic continuous function, and $G : \mathbb{R} \to L(X,X)$ is a weakly almost periodic operator-valued function, then $x^*G(\cdot)g(\cdot) : \mathbb{R} \to C$ is an S-almost periodic continuous function for every $x^* \in X^*$.

Proof. By our assumption, for an arbitrary but fixed $x^* \in X^*$, the function $x^*G(\cdot)x : \mathbb{R} \to C$ is almost periodic, and so is bounded on \mathbb{R}, for every $x \in X$. Hence, by the uniform-boundedness principle,

$$\sup_{t \in \mathbb{R}} \|x^*G(t)\| = K < \infty. \tag{2.4}$$

We note that the function $x^*G(\cdot)g(\cdot)$ is continuous on \mathbb{R} (see [6, proof of Theorem 1]).

Consider the functions g_η given by

$$g_\eta(t) = \frac{1}{\eta} \int_0^\eta g(t+s)ds \quad \text{for } \eta > 0, \ t \in \mathbb{R}. \tag{2.5}$$

Since g is S-almost periodic from \mathbb{R} to X, g_η is strongly almost periodic from \mathbb{R} to X for every fixed $\eta > 0$. Further, as shown for C-valued functions in [2, pages 80-81], we can prove that $g_\eta \to g$ as $\eta \to 0^+$ in the S-sense, that is,

$$\sup_{t \in \mathbb{R}} \int_t^{t+1} \|g(s) - g_\eta(s)\|ds \to 0 \quad \text{as } \eta \to 0^+. \tag{2.6}$$

Now we have

$$x^*G(s)g(s) = x^*G(s)[g(s) - g_\eta(s)] + x^*G(s)g_\eta(s) \quad \text{for } s \in \mathbb{R}, \tag{2.7}$$
and, by (2.4) and (2.6),
\[
\sup_{t \in \mathbb{R}} \int_{t}^{t+1} \left| x^* G(s) [g(s) - g_{\eta}(s)] \right| ds \\
\leq K \sup_{t \in \mathbb{R}} \int_{t}^{t+1} \left\| g(s) - g_{\eta}(s) \right\| ds \to 0 \quad \text{as } \eta \to 0^+.
\] (2.8)

By Lemma 2.2, the functions \(x^* G(\cdot) g_{\eta}(\cdot) \) are almost periodic from \(\mathbb{R} \) to \(C \). Therefore, it follows from (2.7)-(2.8) that \(x^* G(\cdot) g(\cdot) \) is \(S \)-almost periodic from \(\mathbb{R} \) to \(C \).

Lemma 2.4. If \(g : \mathbb{R} \to X \) is an \(S \)-almost periodic continuous function, and \(G : \mathbb{R} \to L(X,X) \) is a strongly almost periodic operator-valued function, then \(G(\cdot) g(\cdot) : \mathbb{R} \to X \) is an \(S \)-almost periodic continuous function.

The proof of this lemma parallels that of Lemma 2.3 and may therefore be safely omitted.

Lemma 2.5. In a reflexive space \(X \), assume \(h : \mathbb{R} \to X \) is an \(S \)-almost periodic continuous function, and
\[
H(t) = \int_{0}^{t} h(s) ds \quad \text{for } t \in \mathbb{R}.
\] (2.9)
If \(H \) is \(S \)-bounded, then it is strongly almost periodic from \(\mathbb{R} \) to \(X \).

For the proof of Lemma 2.5, see [5, Notes (ii)].

Lemma 2.6. For an operator-valued function \(G : \mathbb{R} \to L(X,X) \), suppose \(G^*(t) \) is the conjugate (adjoint) of the operator \(G(t) \) for \(t \in \mathbb{R} \). If \(G^* : \mathbb{R} \to L(X^*,X^*) \) is strongly almost periodic, and \(g : \mathbb{R} \to X \) is weakly almost periodic, then \(G(\cdot) g(\cdot) : \mathbb{R} \to X \) is weakly almost periodic.

For the proof of Lemma 2.6, see [6, Remarks (iii)].

3. Proof of Theorem 1.1. By (2.1), we have
\[
T(-t) u^{(n-1)}(t) = u^{(n-1)}(0) + \int_{0}^{t} T(-s) f(s) ds \quad \text{for } t \in \mathbb{R}.
\] (3.1)
Evidently, \(T(\cdot) : \mathbb{R} \to L(X,X) \) is a strongly almost periodic group. Therefore, \(T(\cdot) x : \mathbb{R} \to X \) is strongly almost periodic, and so is bounded on \(\mathbb{R} \), for every \(x \in X \). Hence, by the uniform-boundedness principle,
\[
\sup_{t \in \mathbb{R}} \| T(-t) \| < \infty.
\] (3.2)
Consequently, \(T(\cdot) u^{(n-1)}(\cdot) \) is \(S \)-bounded on \(\mathbb{R} \) (by our assumption, \(u^{(n-1)} \) is \(S \)-bounded on \(\mathbb{R} \)).

Moreover, by Lemma 2.4, \(T(\cdot) f(\cdot) : \mathbb{R} \to X \) is an \(S \)-almost periodic continuous function. So, by Lemma 2.5, \(T(\cdot) u^{(n-1)}(\cdot) \) is strongly almost periodic from \(\mathbb{R} \) to \(X \). Hence, by Lemma 2.2, \(u^{(n-1)}(\cdot) = T(\cdot) [T(\cdot) u^{(n-1)}(\cdot)] \) is strongly almost periodic from \(\mathbb{R} \) to \(X \).
Now consider a sequence \((\alpha_k)_{k=1,2,...}\) of infinitely differentiable nonnegative functions on \(\mathbb{R}\) such that
\[
\alpha_k(t) = 0 \quad \text{for} \ |t| \geq \frac{1}{k}, \quad \int_{-1/k}^{1/k} \alpha_k(t) \, dt = 1. \tag{3.3}
\]
The convolution of \(u\) and \(\alpha_k\) is defined by
\[
(u * \alpha_k)(t) = \int_{\mathbb{R}} u(t-s) \alpha_k(s) \, ds = \int_{\mathbb{R}} u(s) \alpha_k(t-s) \, ds \quad \text{for} \ t \in \mathbb{R}. \tag{3.4}
\]
We set
\[
C_{\alpha_k} = \max_{|t| \leq 1/k} \alpha_k(t). \tag{3.5}
\]
Then we have
\[
\| (u * \alpha_k)(t) \| = \left\| \int_{-1}^{1} u(t-s) \alpha_k(s) \, ds \right\| \leq C_{\alpha_k} \int_{-1}^{1} \| u(\rho) \| \, d\rho \leq 2C_{\alpha_k} \| u \|_{S} \quad \text{for} \ t \in \mathbb{R}, \text{by (1.3)}. \tag{3.6}
\]
That is, \(u * \alpha_k\) is bounded on \(\mathbb{R}\).

We note that, for \(m = 1,2,\ldots,n-1\) and \(k = 1,2,\ldots\),
\[
(u * \alpha_k)^{(m)}(t) = (u^{(m)} * \alpha_k)(t) \quad \text{for} \ t \in \mathbb{R}. \tag{3.7}
\]
Further, since \(u^{(n-1)}\) is strongly almost periodic from \(\mathbb{R}\) to \(X\), \((u * \alpha_k)^{(n-1)} = (u^{(n-1)} * \alpha_k)\) is strongly almost periodic from \(\mathbb{R}\) to \(X\). Consequently, by [3, corollary to Lemma 5], \(u * \alpha_k, u' * \alpha_k, \ldots, u^{(n-2)} * \alpha_k\) are all strongly almost periodic from \(\mathbb{R}\) to \(X\).

With \(u^{(n-1)}\) being bounded on \(\mathbb{R}\), \(u^{(n-2)}\) is uniformly continuous on \(\mathbb{R}\). Therefore, the sequence of convolutions \((u^{(n-2)} * \alpha_k)(t) - u^{(n-2)}(t)\) as \(k \to \infty\), uniformly for \(t \in \mathbb{R}\). Hence \(u^{(n-2)}\) is strongly almost periodic from \(\mathbb{R}\) to \(X\). We thus conclude successively that \(u^{(n-2)}, \ldots, u', u\) are all strongly almost periodic from \(\mathbb{R}\) to \(X\), completing the proof of the theorem.

4. Proof of Theorem 1.2. By our assumption, for an arbitrary but fixed \(x^* \in X^*\), \(x^* T(\cdot) = T^*(\cdot)x^* : \mathbb{R} \to X^*\) is strongly almost periodic, and so \(x^* T(\cdot)x : \mathbb{R} \to C\) is almost periodic for every \(x \in X\). Therefore, it follows that \(T : \mathbb{R} \to L(X;X)\) is a weakly almost periodic group.

By (3.1), we have
\[
x^* T(\cdot) u^{(n-1)}(t) = x^* u^{(n-1)}(0) + \int_{0}^{t} x^* T(-s) f(s) \, ds \quad \text{for} \ t \in \mathbb{R}. \tag{4.1}
\]
By Lemma 2.3, \(x^* T(\cdot) f(\cdot) : \mathbb{R} \to C\) is an \(S\)-almost periodic continuous function. By (2.4), \(x^* T(\cdot) u^{(n-1)}(\cdot)\) is \(S\)-bounded on \(\mathbb{R}\), and so, by Lemma 2.5, is almost periodic from \(\mathbb{R}\) to \(C\). That is, \(T(\cdot) u^{(n-1)}(\cdot)\) is weakly almost periodic from \(\mathbb{R}\) to \(X\). Consequently, by Lemma 2.6, \(u^{(n-1)}(\cdot) = T(\cdot)[T(\cdot) u^{(n-1)}(\cdot)]\) is weakly almost periodic from \(\mathbb{R}\) to \(X\).
For the sequence \((\alpha_k)_{k=1,2,...}\) defined by (3.3), \((x^* u^* \alpha_k) = x^*(u^* \alpha_k)\) is bounded on \(\mathbb{R}\) (by (3.6)). Further, for \(m = 1,2,...,n-1\) and \(k = 1,2,...\), we have

\[
(x^* u^* \alpha_k)^{(m)}(t) = (x^* u^{(m)} \alpha_k)(t) \quad \text{for } t \in \mathbb{R}.
\]

(4.2)

Now the rest of the proof is obvious.

If \(f : \mathbb{R} \to X\) is weakly almost periodic, then by Lemma 2.6, \(T(\cdots f(\cdot)) : \mathbb{R} \to X\) is weakly almost periodic.

Remark 4.1. If \(T(t) \equiv I\) for \(t \in \mathbb{R}\), and so \(A = 0\), then problem (1.8) reduces to

\[
u^{(n)}(t) = f(t) \quad \text{a.e. for } t \in \mathbb{R}.
\]

(4.3)

(i) In a reflexive space \(X\), suppose \(f\) is defined as in Theorem 1.1. If \(u : \mathbb{R} \to X\) is an \(S\)-bounded strong solution of problem (4.3), then \(u,u',...,u^{(n-1)}\) are all strongly almost periodic from \(\mathbb{R}\) to \(X\).

(ii) Assume \(f : \mathbb{R} \to X\) is a weakly almost periodic continuous function. If \(u : \mathbb{R} \to X\) is an \(S\)-bounded strong solution of problem (4.3), then \(u,u',...,u^{(n-1)}\) are all weakly almost periodic from \(\mathbb{R}\) to \(X\).

These states are clearly special cases of Theorems 1.1 and 1.2 if we take into account that the assumption \(u^{(n-1)} \text{ is } S\)-bounded can be omitted, since, by (4.3), \(u^{(n)}\) is \(S\)-almost periodic, and so \(u^{(n-1)}\) is strongly (weakly) uniformly continuous on \(\mathbb{R}\) (by Amerio and Prouse [1, Theorem 8, page 79]).

References

