UNIFORMLY SUMMING SETS OF OPERATORS ON SPACES OF CONTINUOUS FUNCTIONS

J. M. DELGADO and CÁNDIDO PIÑEIRO

Received 30 March 2004

Let \(X \) and \(Y \) be Banach spaces. A set \(\mathcal{M} \) of 1-summing operators from \(X \) into \(Y \) is said to be \(\textit{uniformly summing} \) if the following holds: given a weakly 1-summing sequence \((x_n) \) in \(X \), the series \(\sum_n \|Tx_n\| \) is uniformly convergent in \(T \in \mathcal{M} \). We study some general properties and obtain a characterization of these sets when \(\mathcal{M} \) is a set of operators defined on spaces of continuous functions.

2000 Mathematics Subject Classification: 47B38, 47B10.

1. Introduction. Throughout this paper, \(X \) and \(Y \) will be Banach spaces. If \(X \) is a Banach space, \(B_X = \{ x \in X : \|x\| \leq 1 \} \) will denote its closed unit ball and \(X^* \) will be the topological dual of \(X \). Given a real number \(p \in [1, \infty) \), a (linear) operator \(T : X \to Y \) is said to be \(p \)-\textit{summing} if there exists a constant \(C > 0 \) such that

\[
\left(\sum_{i=1}^{n} \|Tx_i\|^p \right)^{1/p} \leq C \cdot \sup \left\{ \left(\sum_{i=1}^{n} |\langle x^*, x_i \rangle|^p \right)^{1/p} : x^* \in B_{X^*} \right\},
\]

for every finite set \(\{x_1, \ldots, x_n\} \subset X \). The least \(C \) for which the above inequality always holds is denoted by \(\pi_p(T) \) (the \(p \)-summing norm of \(T \)). The linear space of all \(p \)-summing operators from \(X \) into \(Y \) is denoted by \(\Pi_p(X,Y) \), which is a Banach space endowed with the \(p \)-summing norm.

As usual, \(\ell^p_w(X) \) will be the Banach space of weakly \(p \)-summable sequences in \(X \), that is, the sequences \((x_n) \subset X \) satisfying \(\sum_n |\langle x^*, x_n \rangle|^p \) is convergent for all \(x^* \in X^* \); the norm in \(\ell^p_w(X) \) is \(\epsilon_p(x_n) = \sup \left\{ (\sum_n |\langle x^*, x_n \rangle|^p)^{1/p} : x^* \in B_{X^*} \right\} \). The set of all strongly \(p \)-summable sequences in \(X \) is denoted by \(\ell^p_s(X) \); the norm in this space is \(\pi_p(x_n) = \left(\sum_n \|x_n\|^p \right)^{1/p} \). If \(T \in \Pi_p(X,Y) \), the correspondence \(\hat{T} : (x_n) \mapsto (Tx_n) \) always induces a bounded operator from \(\ell^p_w(X) \) into \(\ell^p_s(Y) \) with \(\|\hat{T}\| = \pi_p(T) \) [5, Proposition 2.1].

Families of operators arise in different applications: equations containing a parameter, homotopies of operators, and so forth. In these applications, it may be very interesting to know that, given a set \(\mathcal{M} \subset \Pi_p(X,Y) \) and \((x_n) \in \ell^p_w(X) \), the series \(\sum_n \|Tx_n\|^p \) is uniformly convergent in \(T \in \mathcal{M} \). The main purpose of this paper is to study \textit{uniformly \(p \)-summing} sets, that is, those sets \(\mathcal{M} \subset \Pi_p(X,Y) \) for which, given \((x_n) \in \ell^p_w(X) \), the series \(\sum_n \|Tx_n\|^p \) is uniformly convergent in \(T \in \mathcal{M} \). These sets also enjoy some properties that justify their study; the next proposition lists some of them.
Proposition 1.1. (a) Let \((T_k)\) be a sequence in \(\Pi_p(X,Y)\). Then, \(\tilde{T}_k\to 0\) pointwise if and only if \(T_k\to 0\) pointwise and \((T_k)\) is uniformly \(p\)-summing.

(b) Let \(\mathcal{M} \subset \Pi_p(X,Y)\) be a uniformly \(p\)-summing set. If \(\mathcal{M}\) is endowed with the strong operator topology, then the map \(T \in \mathcal{M} \rightarrow \sum_n \|Tx_n\|^p \in \mathbb{R}\) is continuous for every \((x_n) \in \ell^p_w(X)\).

A basic argument shows that uniformly \(p\)-summing sets are bounded for the \(p\)-summing norm. In fact, if \(X\) does not contain any copy of \(c_0\), bounded sets and uniformly 1-summing sets are the same. That is the reason for which we only consider operators defined on a \(\mathcal{C}(\Omega)\)-space, \(\Omega\) being a compact Hausdorff space. We recall that every weakly compact operator \(T : \mathcal{C}(\Omega) \rightarrow Y\) has a representing measure \(m_T : \Sigma \rightarrow Y\) defined by \(m_T(B) = T^{**}(\chi_B)\) for all \(B \in \Sigma\), where \(\Sigma\) denotes the Borel \(\sigma\)-field of subsets of \(\Omega\) and \(\chi_B\) denotes the characteristic function of \(B\). The vector measure \(m_T\) is regular and countably additive [6, Theorem VI.2.5 and Corollary VI.2.14]. If we denote by \(\tilde{T}\) the operator \(T^{**}\) restricted to \(B(\Sigma)\) (the space of all bounded Borel-measurable scalar-valued functions defined on \(\Omega\)), then

\[
\tilde{T}\varphi = \int_{\Omega} \varphi \, dm_T,
\]

for all \(\varphi \in B(\Sigma)\) (the integral is the elementary Bartle integral [6, Definition I.1.12]).

It is well known that every \(p\)-summing operator defined on a Banach space \(X\) is weakly compact. In Section 2, we consider 1-summing operators \(T\) defined on \(\mathcal{C}(\Omega)\); these operators are characterized as those with representing measure \(m_T\) having finite variation and \(\pi_1(T) = |m_T| (\Omega)\) [6, Theorem VI.3.3]. We show that a set \(\mathcal{M} \subset \Pi_1(\mathcal{C}(\Omega), Y)\) is uniformly 1-summing if and only if the family of all variation measures \(|m_T| : T \in \mathcal{M}\) is uniformly bounded and there is a countably additive measure \(\mu : \Sigma \rightarrow [0, \infty)\) such that \(|m_T| : T \in \mathcal{M}\) is uniformly \(\mu\)-continuous.

In Section 3, we mention a special class of uniformly \(p\)-summing operators: uniformly dominated sets. The relationship between uniformly summing sets and relatively weak compactness is also studied. Finally, we give some examples and open problems.

2. Uniformly 1-summing sets in \(\Pi_1(\mathcal{C}(\Omega), Y)\).

Before facing our main theorem, we include three results which correspond to the vector measure theory. These results will be usually invoked along the following lines.

Proposition 2.1 [6, Proposition I.1.17]. The following statements about a collection \(\{m_i : i \in I\}\) of \(Y\)-valued measures defined on a \(\sigma\)-field \(\Sigma\) are equivalent:

(a) the set \(\{m_i : i \in I\}\) is uniformly countably additive, that is, if \((E_n)\) is a sequence of pairwise disjoint members of \(\Sigma\), then \(\lim_n \|\sum_{k \geq n} m_i(E_k)\| = 0\) uniformly in \(i \in I\),

(b) the set \(\{\gamma^* \circ m_i : i \in I, \gamma^* \in B_Y^{**}\}\) is uniformly countably additive,

(c) if \((E_n)\) is a sequence of pairwise disjoint members of \(\Sigma\), then \(\lim_n \|m_i(E_n)\| = 0\) uniformly in \(i \in I\),

(d) if \((E_n)\) is a sequence of pairwise disjoint members of \(\Sigma\), then \(\lim_n \|m_i\|(E_n) = 0\) uniformly in \(i \in I\), where \(\|m_i\|\) denotes the semivariation of \(m_i\),

(e) the set \(\{||\gamma^* \circ m_i| : i \in I, \gamma^* \in B_Y^{**}\}\) is uniformly countably additive.
Theorem 2.2 [6, Theorem I.2.4]. Let \(\{m_i : \Sigma \to Y : i \in I\} \) be a uniformly bounded (with respect to the semivariation) family of countably additive vector measures on a \(\sigma \)-field \(\Sigma \). The family \(\{m_i : i \in I\} \) is uniformly countably additive if and only if there exists a positive real-valued countably additive measure \(\mu \) on \(\Sigma \) such that \(\{m_i : i \in I\} \) is uniformly \(\mu \)-continuous, that is,

\[
\lim_{\mu(E) \to 0} \|m_i(E)\| = 0
\]

uniformly in \(i \in I \).

If \(\Omega \) is a compact Hausdorff space and \(\Sigma \) denotes the \(\sigma \)-field of the Borel subsets of \(\Omega \), a vector measure \(m \) on \(\Sigma \) is regular if for each Borel set \(E \) and \(\varepsilon > 0 \) there exists a compact set \(K \) and an open set \(O \) such that \(K \subset E \subset O \) and \(\|m|| (O \setminus K) < \varepsilon \).

Proposition 2.3 [6, Lemma VI.2.13]. Let \(\mathcal{K} \) be a family of regular (countably additive) scalar measures defined on \(\Sigma \). Each of the following statements implies all the others:

(a) for each pairwise disjoint sequence \((O_n) \) of open subsets of \(\Omega \), \(\lim_{n} \mu(O_n) = 0 \) uniformly in \(\mu \in \mathcal{K} \),

(b) for each pairwise disjoint sequence \((O_n) \) of open subsets of \(\Omega \), \(\lim_{n} |\mu|(O_n) = 0 \) uniformly in \(\mu \in \mathcal{K} \),

(c) \(\mathcal{K} \) is uniformly countably additive,

(d) \(\mathcal{K} \) is uniformly regular, that is, if \(E \in \Sigma \) and \(\varepsilon > 0 \), then there exists a compact set \(K \) and an open set \(O \) such that \(K \subset E \subset O \) and \(\sup_{\mu \in \mathcal{K}} |\mu|(O \setminus K) < \varepsilon \).

Now, we are able to show our main result. In the proof, we will use the fact that \(|m_T|\) is regular when \(T : \mathcal{E}(\Omega) \to Y \) is 1-summing [7, Proposition 15.21].

Theorem 2.4. Let \(\mathcal{M} \subset \Pi_1 (\mathcal{E}(\Omega), Y) \) be a bounded set. The following statements are equivalent:

(a) \(\mathcal{M} \) is uniformly 1-summing,

(b) the family of nonnegative measures \(\{|m_T| : T \in \mathcal{M}\} \) is uniformly countably additive,

(c) given \(\varepsilon > 0 \) and a disjoint sequence \((E_n) \) of Borel subsets of \(\Omega \), there exists \(n_0 \in \mathbb{N} \) such that

\[
\sum_{n \geq n_0} ||m_T(E_n)|| < \varepsilon,
\]

for all \(T \in \mathcal{M} \).

Proof. (a) \(\Rightarrow \) (b). According to [6, Lemma VI.2.13], it suffices to show that \(\lim_{n \to \infty} |m_T|(O_n) = 0 \) uniformly in \(T \in \mathcal{M} \), for all disjoint sequences \((O_n) \) of open subsets of \(\Omega \). By contradiction, suppose that there exists \(\varepsilon > 0 \), a sequence \((T_n) \) in \(\mathcal{M} \), and a strictly increasing sequence \((k_n) \) of natural numbers such that

\[
|m_{T_n}|(O_{k_n}) > 2 \varepsilon, \quad \forall n \in \mathbb{N}.
\]
Now we consider the operators $S_n : \mathcal{C}(\Omega, O_{k_n}) \to Y$ defined by

$$S_n \varphi = \int_{O_{k_n}} \varphi \, dm_{T_n},$$

for all $\varphi \in \mathcal{C}(\Omega, O_{k_n})$, where $\mathcal{C}(\Omega, O_{k_n})$ is the closed subspace of $\mathcal{C}(\Omega)$ formed by all continuous functions φ on Ω such that φ vanishes in $\Omega \setminus O_{k_n}$. It is known that $\pi_1(S_n) = |m_{T_n}|(O_{k_n})$, for all $n \in \mathbb{N}$ [7, Theorem 19.3]. For each $n \in \mathbb{N}$, we can choose a finite set $\{\varphi_1^n, \ldots, \varphi_{p_n}^n\} \subset \mathcal{C}(\Omega, O_{k_n})$ satisfying $\sum_{i=1}^{p_n} \|S_n \varphi_i^n\| > \pi_1(S_n) - \varepsilon$. (2.5)

Since the open sets O_{k_n} are disjoint, it follows that the sequence $(\varphi_1^1, \ldots, \varphi_{p_1}^1, \varphi_2^1, \ldots, \varphi_{p_2}^1, \ldots)$ belongs to $\ell^1_w(\mathcal{C}(\Omega))$. Nevertheless, for all $n \in \mathbb{N}$, we have

$$\sum_{m \geq n} \sum_{i=1}^{p_m} \|T_n \varphi_i^m\| \geq \sum_{i=1}^{p_n} \|T_n \varphi_i^n\| = \sum_{i=1}^{p_n} \|S_n \varphi_i^n\| > \pi_1(S_n) - \varepsilon = |m_{T_n}|(O_{k_n}) - \varepsilon > \varepsilon. \quad (2.6)$$

This denies (a) and proves that (a) implies (b).

(b)⇒(c). Again we proceed by contradiction. Suppose (E_n) is a disjoint sequence of Borel subsets of Ω for which there exists $\varepsilon > 0$, a sequence (T_n) in \mathcal{M}, and a strictly increasing sequence (k_n) of natural numbers so that

$$\sum_{i=k_n+1}^{k_{n+1}} \|m_{T_n}(E_i)\| > \varepsilon, \quad \forall n \in \mathbb{N}. \quad (2.7)$$

If we put $B_n = \bigsqcup_{i=k_n+1}^{k_{n+1}} E_i$, the above inequality yields $|m_{T_n}|(B_n) > \varepsilon$. So, in view of [6, Proposition I.1.17], the family $\{|m_T| : T \in \mathcal{M}\}$ is not uniformly countably additive.

(c)⇒(b). We need to prove

$$\lim_{n \to \infty} |m_T|(E_n) = 0 \quad \text{uniformly in } T \in \mathcal{M}, \quad (2.8)$$

for all disjoint sequences (E_n) of Borel subsets of Ω. Suppose (b) fails. Then, there exists $\varepsilon > 0$, a sequence (T_n) in \mathcal{M}, and a strictly increasing sequence (k_n) of natural numbers satisfying

$$|m_{T_n}|(E_{k_n}) > \varepsilon, \quad \forall n \in \mathbb{N}. \quad (2.9)$$

For each $n \in \mathbb{N}$, we choose a finite partition $\{E_1^n, \ldots, E_{p_n}^n\}$ of E_{k_n} for which

$$\sum_{i=1}^{p_n} \|m_{T_n}(E_i^n)\| > \varepsilon. \quad (2.10)$$

Then, the disjoint sequence $(E_1^1, E_2^1, E_1^2, \ldots, E_{p_2}^2, \ldots)$ does not satisfy (c).
(b)⇒(a). According to [6, Theorem I.2.4] there exists a countably additive measure $\mu : \Sigma \rightarrow [0, \infty)$ so that

$$\lim_{\mu(E) \to 0} |m_T|(E) = 0 \quad \text{uniformly in } T \in \mathcal{M}. \quad (2.11)$$

Hence, given $\varepsilon > 0$, there exists $\delta > 0$ such that, if $E \in \Sigma$ verifies $\mu(E) < \delta$, then $|m_T|(E) < \varepsilon/2$, for all $T \in \mathcal{M}$.

Next, given $(\varphi_n) \in \ell^1_w(\mathcal{E}(\Omega))$ with $\varepsilon_1(\varphi_n) \leq 1$, notice that the series $\sum_{n=1}^{\infty} |\varphi_n(t)|$ is convergent for all $t \in \Omega$. Put $f_n(t) = \sum_{k=1}^{n} |\varphi_k(t)|$ and $f(t) = \lim_{n \to \infty} f_n(t)$. By Egorov’s theorem, the sequence (f_n) is quasi-uniformly convergent to f. Then, there exists $E \in \Sigma$ such that $\mu(E) < \delta$ and

$$f_n|_{\Omega \setminus E} \rightharpoonup f|_{\Omega \setminus E} \quad (2.12)$$

uniformly. If $C = \sup \{|m_T|(\Omega) : T \in \mathcal{M}\}$, there exists $n_0 \in \mathbb{N}$ so that

$$\sum_{n \geq n_0} |\varphi_n(t)| < \frac{\varepsilon}{2C}, \quad \forall t \in \Omega \setminus E. \quad (2.13)$$

Now,

$$\begin{align*}
\sum_{n \geq n_0} \|T \varphi_n\| &= \sum_{n \geq n_0} \left\| \int_{\Omega} \varphi_n(t) \, dm_T \right\| \\
&\leq \sum_{n \geq n_0} \left\| \int_{E} \varphi_n(t) \, dm_T \right\| + \sum_{n \geq n_0} \left\| \int_{\Omega \setminus E} \varphi_n(t) \, dm_T \right\| \\
&\leq \sum_{n \geq n_0} \int_{E} \| \varphi_n(t) \| \, dm_T + \sum_{n \geq n_0} \int_{\Omega \setminus E} \| \varphi_n(t) \| \, dm_T \\
&= \int_{E} \left(\sum_{n \geq n_0} |\varphi_n(t)| \right) \, dm_T + \int_{\Omega \setminus E} \left(\sum_{n \geq n_0} |\varphi_n(t)| \right) \, dm_T \\
&\leq |m_T|(E) + \frac{\varepsilon}{2C} |m_T|(\Omega \setminus E) \\
&< \varepsilon. \quad \square
\end{align*} \quad (2.14)$$

We denote by $\mathcal{V}(X,Y)$ the class of completely continuous operators from X into Y, that is, the class of operators which map weakly convergent sequences in X into norm-convergent sequences in Y. A set $\mathcal{M} \subset \mathcal{V}(X,Y)$ is said to be uniformly completely continuous if, given a weakly convergent sequence (x_n) in X, (Tx_n) is norm convergent uniformly in $T \in \mathcal{M}$. The following result gives some characterizations of uniformly completely continuous sets in $\mathcal{V}(\mathcal{E}(\Omega), Y)$. Recall that an operator T defined on $\mathcal{E}(\Omega)$ is completely continuous if and only if T is weakly compact [6, Corollary VI.2.17], so m_T is countably additive and regular, too.

Theorem 2.5. Let $\mathcal{M} \subset \mathcal{V}(\mathcal{E}(\Omega), Y)$ be a bounded set for the operator norm. The following statements are equivalent:

(a) \mathcal{M} is uniformly completely continuous,

(b) the family $\{m_T : T \in \mathcal{M}\}$ is uniformly countably additive,
(c) $\mathcal{M}^* = \{T^* : T \in \mathcal{M}\}$ is collectively weakly compact, that is, the set $\bigcup_{T \in \mathcal{M}} T^*(B_{Y^*})$ is relatively weakly compact in $\mathcal{C}(\Omega)^*$.

Proof. (a)\Rightarrow(b). By [6, Proposition I.1.17], the family $\{m_T : T \in \mathcal{M}\}$ is uniformly countably additive if and only if $\mathcal{N} = \{y^* \circ m_T : T \in \mathcal{M}, y^* \in B_{Y^*}\}$ is. According to [6, Lemma VI.1.13], we have to prove that

$$\lim_{n \to \infty} y^* \circ m_T(O_n) = 0 \text{ uniformly in } \mathcal{N},$$

for all disjoint sequences (O_n) of open subsets of Ω. By contradiction, suppose there exists such a sequence (O_n) for which $\lim_{n \to \infty} y^* \circ m_T(O_n) = 0$ but not uniformly in \mathcal{N}. Then, there exists $\varepsilon > 0$ and sequences $(y^*_n) \subset B_{Y^*}$, $(T_n) \in \mathcal{M}$, and $(O_{kn}) \subset (O_n)$ such that

$$|y^*_n \circ m_{T_n}(O_{kn})| > \varepsilon, \quad \forall n \in \mathbb{N}. \quad (2.16)$$

Now, using the regularity of each m_{T_n}, we can find a sequence of compact sets (H_n) with $H_n \subset O_{kn}$ and

$$\|m_{T_n}\|(O_{kn} \setminus H_n) < \frac{\varepsilon}{2}, \quad \forall n \in \mathbb{N}, \quad (2.17)$$

($\|m\|$ denotes the semivariation of m, that is, $\|m\|(E) = \sup\{|y^* \circ m|(E) : y^* \in B_{Y^*}\}$). By Urysohn’s lemma, for every $n \in \mathbb{N}$ there exists a continuous function $\varphi_n : \Omega \to [0,1]$ such that $\varphi_n(H_n) = 1$ and $\varphi_n(\Omega \setminus O_{kn}) = 0$. Obviously, the series $\sum_{n=1}^{\infty} \varphi_n$ is unconditionally convergent in $\mathcal{C}(\Omega)$. Since \mathcal{M} is uniformly completely continuous, there exists $n_0 \in \mathbb{N}$ such that

$$\|T \varphi_n\| < \frac{\varepsilon}{2}, \quad \forall n \geq n_0, \forall T \in \mathcal{M}. \quad (2.18)$$

Then, we have

$$\|m_{T_n}(O_{kn})\| \leq \|m_{T_n}(O_{kn}) - T_n \varphi_n\| + \|T_n \varphi_n\|$$

$$= \left| \int_{O_{kn}} \chi_{O_{kn}} \, dm_{T_n} - \int_{O_{kn}} \varphi_n \, dm_{T_n} \right| + \|T_n \varphi_n\|$$

$$= \left| \int_{O_{kn}} (1 - \varphi_n) \, dm_{T_n} \right| + \|T_n \varphi_n\|$$

$$= \left| \int_{O_{kn} \setminus H_n} (1 - \varphi_n) \, dm_{T_n} \right| + \|T_n \varphi_n\|$$

$$\leq \|m_{T_n}\|(O_{kn} \setminus H_n) + \|T_n \varphi_n\|$$

$$< \varepsilon,$$

for all $n \geq n_0$. This is in contradiction with (2.16).

(b)\Rightarrow(a). By [6, Theorem I.2.4], there exists a scalar countably additive measure $\mu : \Sigma \to [0,\infty)$ such that $\{m_T : T \in \mathcal{M}\}$ is uniformly μ-continuous. Then, if (φ_n) is a sequence
that tends to zero weakly in \(\ell(\Omega) \), it is obvious that zero is the pointwise limit of the sequence \((\varphi_n(t))\). Now, using Egorov’s theorem and proceeding along similar lines as the proof of (b)\(\Rightarrow\)(a) in \textbf{Theorem 2.4}, the proof concludes.

(b)\(\Leftrightarrow\)(c). The set \(\bigcup_{T \in \mathcal{H}} T^*(B_{Y^*}) = \{y^* \circ m_T : T \in \mathcal{M}, \ y^* \in B_{Y^*}\} \subset \ell(\Omega)^* \) is relatively weakly compact if and only if it is bounded and uniformly countably additive [4, \textit{Theorem VII.13}]. A call to [6, \textit{Proposition I.1.17}] makes clear that \(\bigcup_{T \in \mathcal{H}} T^*(B_{Y^*}) \) is uniformly countably additive if and only if condition (b) is satisfied.

\textbf{Corollary 2.6.} If \(\mathcal{M} \subset \Pi_1(\ell(\Omega), Y) \) is uniformly 1-summing, then \(\mathcal{M} \) is uniformly completely continuous.

The converse of the last result is not true in general.

\textbf{Proposition 2.7.} Suppose that the cardinal of \(\Omega \) is infinite. The following statements are equivalent:

(a) each subset of \(\Pi_1(\ell(\Omega), Y) \) uniformly completely continuous is uniformly 1-summing,

(b) \(Y \) is finite-dimensional.

\textbf{Proof.} (a)\(\Rightarrow\)(b). By contradiction, suppose there is an unconditionally summable serie \(\sum_k y_k \) in \(Y \) such that \(\sum_k \|y_k\| = \infty \). Let \((\omega_k) \) be a sequence in \(\Omega \) with \(\omega_k \neq \omega_l \) when \(k \neq l \). For each \(m \in \mathbb{N} \) consider the operator \(T_m : \ell(\Omega) \to Y \) defined by

\[T_m\varphi = \sum_{k=1}^{m} \varphi(\omega_k)y_k. \quad (2.20) \]

It is not difficult to show that \(\mathcal{M} = (T_m) \) is uniformly completely continuous. Nevertheless,

\[\pi_1(T_m) = \sum_{k=1}^{m} \|y_k\| \to \infty, \quad (2.21) \]

so \(\mathcal{M} \) cannot be uniformly 1-summing because it is not \(\pi_1 \)-bounded.

(b)\(\Rightarrow\)(a). This follows easily in view of conditions (b) in \textit{Theorems 2.4 and 2.5}. \(\square\)

We have showed that the converse of \textbf{Corollary 2.6} is not true in general. However, a direct argument using \textit{Theorems 2.4} and 2.5 leads up to conclude that every uniformly completely continuous set \(\mathcal{M} \subset \Pi_1(\ell(\Omega), Y) \) verifying the following condition is uniformly 1-summing:

(i) given \(T \in \mathcal{M} \) and a finite subset \(\{(\varphi_1, y_1^*), \ldots, (\varphi_m, y_m^*)\} \) of \(\ell(\Omega) \times B_{Y^*} \), there exist \(S \in \mathcal{M} \) and \(z^* \in B_{Y^*} \) such that \(|\langle y_n^*, T\varphi_n \rangle| \leq |\langle z^*, S\varphi_n \rangle|, \ n = 1, \ldots, m. \)

\textbf{3. Final notes and examples.} The Grothendieck-Pietsch domination theorem states that an operator \(T : X \to Y \) is \(p \)-summing if and only if there exists a positive Radon measure \(\mu \) defined on the (weak\(^*\)) compact space \(B_{X^*} \) such that

\[\|Tx\|^p \leq \int_{B_{X^*}} |\langle x^*, x \rangle|^p \ d\mu(x^*), \quad (3.1) \]
for all \(x \in X\) [5, Theorem 2.12]. Since the appearance of this theorem, there is a great interest in finding out the structure of uniformly \(p\)-dominated sets. A subset \(\mathcal{M}\) of \(\Pi_p(X,Y)\) is uniformly \(p\)-dominated if there exists a positive Radon measure \(\mu\) such that the inequality (3.1) holds for all \(x \in X\) and all \(T \in \mathcal{M}\). In [3, 8, 9], the reader can find some of the most recent steps given on this subject. Now we are going to show that these sets are uniformly \(p\)-summing.

Proposition 3.1. If \(\mathcal{M} \subset \Pi_p(X,Y)\) is a uniformly \(p\)-dominated set, then \(\mathcal{M}^{**} = \{T^{**}: T \in \mathcal{M}\}\) is uniformly \(p\)-summing.

Proof. Let \(\mu\) be a measure for which \(\mathcal{M}\) is uniformly \(p\)-dominated. In a similar way as in the Pietsch factorization theorem [5, Theorem 2.13], we can obtain, for all \(T \in \mathcal{M}\), operators \(U_T: L_p(\mu) \to \ell_\infty(B_Y^{**})\), \(\|U_T\| \leq \mu(B_X^{**})^{1/p}\), and an operator \(V: X \to L_\infty(\mu)\) such that the following diagram is commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow V & & \downarrow i_Y \\
L_\infty(\mu) & \xrightarrow{i_p} & L_p(\mu) \\
\end{array}
\]

Here, \(i_p\) is the canonical injection from \(L_\infty(\mu)\) into \(L_p(\mu)\) and \(i_Y\) is the isometry from \(Y\) into \(\ell_\infty(B_Y^{**})\) defined by \(i_Y(y) = ((y^*, y))_{y^* \in B_Y^*}\). Notice that \(i_p^{**}\) can be viewed as \(i_p\) composed with the canonical projection \(P: L_\infty(\mu)^{**} \to L_\infty(\mu)\) which is simply the adjoint of the usual embedding \(L_1(\mu) \to L_\infty(\mu)\). By weak compactness, we may and do consider \(T^{**}\) as a map from \(X^{**}\) into \(Y\) for which

\[
i_Y \circ T^{**} = U_T \circ i_p \circ P \circ V^{**}.
\]

Given \(\varepsilon > 0\) and \((x_n^{**}) \in \ell_p^w(X^{**})\), we can choose \(n_0 \in \mathbb{N}\) so that

\[
\sum_{n \geq n_0} \|i_p \circ P \circ V^{**} (x_n^{**})\|^p < \frac{\varepsilon}{\mu(B_X^{**})},
\]

because \(i_p \circ P \circ V^{**}\) is \(p\)-summing. Then, we have

\[
\sum_{n \geq n_0} \|T^{**}x_n^{**}\|^p = \sum_{n \geq n_0} \|i_Y \circ T^{**} (x_n^{**})\|^p = \sum_{n \geq n_0} \|U_T \circ i_p \circ P \circ V^{**} (x_n^{**})\|^p
\]

\[
\leq \mu(B_X^{**}) \sum_{n \geq n_0} \|i_p \circ P \circ V^{**} (x_n^{**})\|^p < \varepsilon,
\]

for all \(T \in \mathcal{M}\). So, \(\mathcal{M}^{**}\) is uniformly \(p\)-summing. \(\square\)
It is easy to show that the study of uniformly \(p \)-summing sets can be reduced to the behavior of its sequences. Indeed, a bounded set \(\mathcal{M} \) in \(\Pi_p(X,Y) \) is uniformly \(p \)-summing if and only if every sequence \((T_n) \) in \(\mathcal{M} \) admits a uniformly \(p \)-summing subsequence. Thus, it seems to be interesting to make clear the relationship between uniformly \(p \)-summing sets and relatively weakly compact sets. For \(p = 1 \), we have the following result.

Proposition 3.2. Every relatively weakly compact set in \(\Pi_1(X,Y) \) is uniformly 1-summing.

Proof. Let \(\mathcal{M} \) be a relatively weakly compact set in \(\Pi_1(X,Y) \). Given \(\hat{x} = (x_n) \in \ell^1_w(X) \), consider the (weak-weak) continuous operator \(U_{\hat{x}} : \Pi_1(X,Y) \to \ell^1_a(Y) \) defined by \(U_{\hat{x}}(T) = (Tx_n) \). Then, \(U_{\hat{x}}(\mathcal{M}) \) is relatively weakly compact in \(\ell^1_a(Y) \); according to [2, Theorem 2], we can conclude that \(\mathcal{M} \) is uniformly 1-summing. \(\square \)

Proposition 3.2 does not remain true if \(p = 2 \). For example, for each \(\beta = (\beta_n) \in \ell^2 \), consider the operator \(T_\beta : c_0 \to \ell^2 \) defined by \(T(\alpha_n) = (\alpha_n \cdot \beta_n) \) and put \(\mathcal{M} = \{ T_\beta : \beta \in \ell_2 \} \subset \Pi_2(c_0,\ell^2) \) [5, Theorem 3.5]. If we consider \(\ell^2 \) as a subspace of \(\Pi_2(c_0,\ell^2) \), the set \(\mathcal{M} = \ell_2 \) is relatively weakly compact. Nevertheless, no matter how we choose \(k \in \mathbb{N} \),

\[
\sum_{n \geq k} \| T_{\hat{x}_k} e_n \|^2 = 1, \tag{3.6}
\]

so \(\mathcal{M} \) cannot be uniformly 2-summing.

Now we show that there are uniformly \(p \)-summing sets failing to be relatively weakly compact.

Proposition 3.3. If every uniformly \(p \)-summing set is relatively weakly compact in \(\Pi_p(X,Y) \), then \(Y \) is reflexive.

Proof. Fixing \(x_0^* \in X^* \) with \(\| x_0^* \| = 1 \), the isometry \(y \in Y \to x_0^* \otimes y \in x_0^* \otimes Y \) allows us to see \(Y \) as a subspace of \(\Pi_p(X,Y) \). If \(\varepsilon > 0 \) and \((x_n) \in \ell^p_w(X) \), there exists \(n_0 \in \mathbb{N} \) so that

\[
\sum_{n \geq n_0} | \langle x_0^*, x_n \rangle |^p < \varepsilon; \tag{3.7}
\]

hence, for every \(y \in B_Y \),

\[
\sum_{n \geq n_0} \| (x_0^* \otimes y)(x_n) \|^p = \sum_{n \geq n_0} | \langle x_0^*, x_n \rangle |^p \| y \|^p < \varepsilon. \tag{3.8}
\]

This yields that \(B_Y \) is uniformly \(p \)-summing and, by hypothesis, weakly compact. \(\square \)

The converse of Proposition 3.3 is not always true. By contradiction, suppose every uniformly 1-summing set in \(\Pi_1(\ell_1,\ell_2) \) is relatively weakly compact. Because \(\ell_1 \) does not contain any copy of \(c_0 \), every bounded set in \(\Pi_1(\ell_1,\ell_2) \) is relatively weakly compact. Then, we conclude that \(\Pi_1(\ell_1,\ell_2) \) is reflexive, which is not possible since \(\ell_1^* \), viewed as a subspace of \(\Pi_1(\ell_1,\ell_2) \), is not.

However, if \(p = 1 \) and \(X = \ell^1(\Omega) \), the reflexivity of \(Y \) is a sufficient condition for a uniformly 1-summing set to be relatively weakly compact. Indeed, if \(r b v c a(\Sigma, Y) \) denotes
the set of all regular, countably additive, Y-valued measures m on Σ with bounded variation, recall that relatively weakly compact sets \mathcal{M} in $rbvca(\Sigma, Y)$ are those verifying the following conditions: (i) \mathcal{M} is bounded; (ii) the family of nonnegative measures $\{m| : m \in \mathcal{M}\}$ is uniformly countably additive; and (iii) for each $E \in \Sigma$, the set $\{m(E) : m \in \mathcal{M}\}$ is relatively weakly compact in Y [6, Theorem IV.2.5]. Having in mind the identification between $\Pi_1(\ell^1(\Omega), Y)$ and $rbvca(\Sigma, Y)$, and making use of the characterization of uniformly 1-summing sets obtained in Theorem 2.4, we conclude the next characterization.

Corollary 3.4. The following statements are equivalent:

(a) Y is reflexive,

(b) every set \mathcal{M} in $\Pi_1(\ell^1(\Omega), Y)$ is uniformly 1-summing if and only if \mathcal{M} is relatively weakly compact.

It is well known that a linear operator T is 1-summing if and only if T^{**} is. So, it is natural to ask if a set \mathcal{M} is uniformly 1-summing whenever $\mathcal{M}^{**} = \{T^{**} : T \in \mathcal{M}\}$ is. Unfortunately, we are going to show that this is not true in general. It suffices to take X as the separable L_∞-space of Bourgain and Delbaen [1]. This space has the Radon-Nikodym property, so it does not contain any copy of c_0. Nevertheless, X^* is isomorphic to ℓ_1 and, therefore, X^{**} contains a copy of c_0. Let (e_n) be the canonical basis of ℓ_1 and $J : \ell_1 \to X^*$ an isomorphism. Put $T_n = Je_n \in \Pi_1(X, \mathbb{R})$; the set $\mathcal{M} = \{T_n : n \in \mathbb{N}\}$ is uniformly 1-summing since it is bounded and X does not contain any copy of c_0. Notice that the elements of \mathcal{M}^{**} are the linear forms $x^{**} \in X^{**} \to (x^{**}, Je_n) \in \mathbb{R}$, for all $n \in \mathbb{N}$. If (e^*_n) is the canonical basis of c_0, then $((J^*)^{-1}(e^*_n)) \in \ell_1^1(X^{**})$; hence, no matter how we choose $k \in \mathbb{N}$, it turns out that

$$\sum_{n=k} \left| T_n^{**} ((J^*)^{-1}(e^*_n)) \right| = \sum_{n=k} \left| \langle (J^*)^{-1}(e^*_n), Je_k \rangle \right| = \sum_{n=k} |\langle e^*_n, e_k \rangle| = 1,$$

and \mathcal{M}^{**} cannot be uniformly 1-summing.

Nevertheless, if \mathcal{M} is a set of operators defined on c_0, then it is true that \mathcal{M} is uniformly 1-summing if and only if \mathcal{M}^{**} is too. To see this, notice that for a 1-summing operator $T : (\alpha_n) \in c_0 \to \sum_{n=1}^\infty \alpha_n x_n \in X$, the second adjoint $T^{**} : \ell_\infty \to X$ is defined by $T^{**}(\beta_n) = \sum_{n=1}^\infty \beta_n x_n$, for all $(\beta_n) \in \ell_\infty$.

When \mathcal{M} is a set of operators defined on a $\ell^1(\Omega)$-space, we do not know whether \mathcal{M}^{**} inherits the property or not. Anyway, we are going to prove the following weaker result.

We inject isometrically $B(\Sigma)$ into $\ell^1(\Omega)^{**}$ in the natural way.

Proposition 3.5. If $\mathcal{M} \subset \Pi_1(\ell^1(\Omega), X)$ is uniformly 1-summing, then $\tilde{\mathcal{M}} = \{\tilde{T} : B(\Sigma) \to X : T \in \mathcal{M}\}$ is uniformly 1-summing too.

Proof. The argument is similar to the one used in the proof of (b)\Rightarrow(a) in Theorem 2.4.

Finally, we give an example to show that Corollary 2.6 is not true if $\ell^1(\Omega)$ is replaced by a general Banach space X. It suffices to take $X = \ell_2$ and $\mathcal{M} = \{e^*_n : n \in \mathbb{N}\}$, where (e^*_n) is the unit basis of $\ell_2^\perp \cong \ell_2$. The set \mathcal{M} is bounded in $\Pi_1(\ell_2, \mathbb{R})$ and, therefore, uniformly 1-summing but it is not uniformly completely continuous.
References

J. M. Delgado: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus Universitario del Carmen, Avda. de las Fuerzas Armadas, 21071 Huelva, Spain
E-mail address: jmdelga@uhu.es

Cándido Piñeiro: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus Universitario del Carmen, Avda. de las Fuerzas Armadas, 21071 Huelva, Spain
E-mail address: candido@uhu.es