STABILITY OF MULTIPLIERS ON BANACH ALGEBRAS

TAKESHI MIURA, GO HIRASAWA, and SIN-EI TAKAHASI

Received 2 February 2004

Suppose A is a Banach algebra without order. We show that an approximate multiplier $T : A \rightarrow A$ is an exact multiplier. We also consider an approximate multiplier T on a Banach algebra which need not be without order. If, in addition, T is approximately additive, then we prove the Hyers-Ulam-Rassias stability of T.

2000 Mathematics Subject Classification: 46J10.

1. Introduction and statement of results. It seems that the stability problem of functional equations had been first raised by Ulam (cf. [5, Chapter VI] and [6]): for what metric groups G is it true that a ε-automorphism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E_1 and E_2 are two real Banach spaces and $f : E_1 \rightarrow E_2$ is a mapping. If there exist $\delta \geq 0$ and $p \geq 0, p \neq 1$, such that

$$||f(x + y) - f(x) - f(y)|| \leq \varepsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$, then there is a unique additive mapping $T : E_1 \rightarrow E_2$ such that $||f(x) - T(x)|| \leq 2\varepsilon||x||^p / |2 - 2^p|$ for every $x \in E_1$. This result is called the Hyers-Ulam-Rassias stability of the additive Cauchy equation $g(x + y) = g(x) + g(y)$. Indeed, Hyers [2] obtained the result for $p = 0$. Then Rassias [3] generalized the above result of Hyers to the case where $0 \leq p < 1$. Gajda [1] solved the problem for $1 < p$, which was raised by Rassias. In the same paper, Gajda also gave an example that a similar result does not hold for $p = 1$. We can also find another example in [4]. If $p < 0$, then $||x||^p$ is meaningless for $x = 0$. In this case, if we assume that $||0||^p$ means ∞, then the proof given in [3] shows the existence of a mapping $T : E_1 \setminus \{0\} \rightarrow E_2$ such that $||f(x) - T(x)|| \leq 2\varepsilon||x||^p / |2 - 2^p|$ for every $x \in E_1 \setminus \{0\}$. Moreover, if we define $T(0) = 0$, then we see that the extended mapping, denoted by the same letter T, is additive. The last inequality is valid for $x = 0$ since we assume $||0||^p = \infty$. Thus, the Hyers-Ulam-Rassias stability holds for $p \in \mathbb{R} \setminus \{1\}$, where \mathbb{R} denotes the real number field.

Suppose A is a Banach algebra. We say that a mapping $T : A \rightarrow A$ is a multiplier if $a(Tb) = (Ta)b$ for all $a, b \in A$. Recall that a Banach algebra A is not without order if there exist $x_0, y_0 \in A \setminus \{0\}$ such that $x_0A = Ay_0 = \{0\}$. Therefore, A is without order if and only if for all $x \in A, xA = \{0\}$ implies $x = 0$, or, for all $x \in A, Ax = \{0\}$ implies $x = 0$. We first prove the superstability of multipliers on a Banach algebra without order; that is, each approximate multiplier is an exact multiplier.
We first show that T is homogeneous, that is, $T(\lambda a) = \lambda T a$ for all $\lambda \in \mathbb{C}$ and $a \in A$. To do this, pick $\lambda \in \mathbb{C}$, $a \in A$ and fix $x \in A$ arbitrarily. Put $s = (1 - p)/|1 - p|$. For each $n \in \mathbb{N}$, it follows from (1.2) that

\begin{align*}
||n^s x [T(\lambda a) - \lambda T a]| &\leq ||n^s x[T(\lambda a) - T(n^s x)](\lambda a)|| \\
&+ ||[T(n^s x)](\lambda a) - n^s x(\lambda T a)|| \\
&\leq \varepsilon ||n^s x||^p ||\lambda a||^p + |\lambda| \varepsilon ||n^s x||^p ||a||^p \\
&\leq n^s p \varepsilon (|\lambda|^p + |\lambda|) ||x||^p ||a||^p,
\end{align*}

for some $\varepsilon > 0$, $p \geq 0$, $p \neq 1$, and $a \in A$. Therefore, T is a multiplier.
and hence
\[\| x [T(\lambda a) - \lambda Ta] \| \leq n^{s(p-1)} \varepsilon (|\lambda|^p + |\lambda|) \| x \|^p \| a \|^p \] (2.2)
for all \(n \in \mathbb{N} \). Since \(s(p-1) < 0 \), we obtain by letting \(n \to \infty \) in (2.2) that \(x [T(\lambda a) - \lambda Ta] = 0 \). Similarly to the argument above, we can also get \([T(\lambda a) - \lambda Ta] x = 0 \). Since \(A \) is without order, we conclude that \(T(\lambda a) = \lambda Ta \), which implies the homogeneity of \(T \).

Now we are ready to prove that \(T \) is a multiplier. Since \(T \) is homogeneous, \(T(a) = n^{-s} T(n^s a) \) for all \(n \in \mathbb{N} \). Recall that, by definition, \(s(p-1) < 0 \). We thus obtain for all \(a,b \in A \),
\[\| a(Tb) - (Ta)b \| = n^{-s} \| n^s a(Tb) - T(n^s a)b \| \leq n^{-s} \varepsilon \| n^s a \|^p \| b \|^p = n^{s(p-1)} \varepsilon \| a \|^p \| b \|^p \] (2.3)
\[\to 0 \quad \text{as} \quad n \to \infty. \]
Hence \(a(Tb) = (Ta)b \), proving \(T \) is a multiplier. \(\square \)

Proof of Theorem 1.2. Since \(T(0) = 0 \), it suffices to show that \(a(Tb) = (Ta)b \) for all \(a,b \in A \setminus \{0\} \). So, fix \(a,b \in A \setminus \{0\} \) arbitrarily. In this case, inequalities (2.1) and (2.2) are also valid for \(p < 0 \). Recall that we assume \(\|0\|^p = \infty \), and hence
\[x [T(\lambda a) - \lambda Ta] = 0, \quad [T(\lambda a) - \lambda Ta] x = 0, \] (2.4)
for \(\lambda \in \mathbb{C} \setminus \{0\} \) and \(x \in A \setminus \{0\} \). Note that (2.4) is also true for \(x = 0 \). Since \(A \) is without order, we thus obtain \(T(\lambda a) = \lambda Ta \) for all \(\lambda \in \mathbb{C} \setminus \{0\} \). An argument similar to (2.3) shows \(a(Tb) = (Ta)b \), and the proof is complete. \(\square \)

Remark 2.1. A result similar to Theorem 1.1 need not be true for \(p = 1 \), that is, there exists an approximate multiplier which is not an exact multiplier. More explicitly, to each \(\varepsilon > 0 \) there corresponds a function \(f : \mathbb{C} \to \mathbb{C} \) which is not a multiplier such that
\[|z_1 f(z_2) - f(z_1)z_2| \leq \varepsilon |z_1| |z_2| \] (2.5)
for all \(z_1,z_2 \in \mathbb{C} \). Fix \(\varepsilon > 0 \) arbitrarily. By the continuity of the function \(t \mapsto e^{it} \), there corresponds a \(\delta \) with \(0 < \delta < 1 \) such that \(|t| < 2\pi(1 - \delta) \) implies \(|e^{it} - 1| < \varepsilon \). With this \(\delta \), we define the mapping \(f : \mathbb{C} \to \mathbb{C} \) by
\[f(z) = \begin{cases} 0 & \text{if } z = 0, \\ |z| e^{i\delta \theta} & \text{if } z \in \mathbb{C} \setminus \{0\}, \end{cases} \] (2.6)
where \(\theta \in [0,2\pi) \) denotes the argument of \(z \). Then we see that \(f \) satisfies inequality (2.5) for all \(z_1,z_2 \in \mathbb{C} \). Since the case where \(z_1 = 0 \) or \(z_2 = 0 \) is trivial, we only consider \(z_1,z_2 \in \mathbb{C} \setminus \{0\} \). If \(z_j = |z_j| e^{i\theta_j} \) for \(j = 1,2 \), then we get
\[|z_1 f(z_2) - f(z_1)z_2| = |z_1| |z_2| |e^{i(1-\delta)(\theta_1 - \theta_2)} - 1|. \] (2.7)
Note that \(|\theta_1 - \theta_2| < 2\pi \). By the definition of \(\delta \), we obtain (2.5), which implies that \(f \) is an approximate multiplier. Moreover, \(f \) is not an exact multiplier, and hence Theorem 1.1 does not hold for \(p = 1 \) in general.
Remark 2.2. Suppose A is a unital commutative Banach algebra. If $f : A \to A$ is a mapping such that
\[
\|af(b) - f(a)b\| \leq \varepsilon \|a\|\|b\| \quad (a, b \in A)
\] (2.8)
for some $\varepsilon \geq 0$, then there is an exact multiplier $T : A \to A$ such that
\[
\|f(a) - Ta\| \leq \varepsilon \|a\| \quad (a \in A).
\] (2.9)
Indeed, let $e \in A$ be a unit element. Taking $b = e$ in (2.8), we obtain
\[
\|af(e) - f(a)\| \leq \varepsilon \|a\| \quad (a \in A).
\] (2.10)
If we consider the mapping $T : A \to A$ defined by
\[
Ta = af(e) \quad (a \in A),
\] (2.11)
then T is a multiplier such that $\|f(a) - Ta\| \leq \varepsilon \|a\|$ for all $a \in A$.

Proof of Theorem 1.3. Suppose $p \neq 1$. By (1.3), it follows from a theorem of Rassias [3] and Gajda [1] that there exists a unique additive mapping $T : A \to A$ such that (1.5) holds. So, we need to show that $a(Tb) = (Ta)b$ for all $a, b \in A$. Since T is additive, $T(0) = 0$, and hence it is enough to consider $a, b \in A \setminus \{0\}$. Put $s = (1 - p)/|1 - p|$ and fix $a, b \in A \setminus \{0\}$ arbitrarily. Since T is additive, we see that $Ta = n^{-s}T(n^s a)$ for each $n \in \mathbb{N}$. Now it follows from (1.5) that
\[
\|n^{-s}f(n^s b) - Tb\| \leq n^{-s} \frac{2\varepsilon}{|2 - 2^p|} \|n^s b\|^p = n^{s(p-1)} \frac{2\varepsilon}{|2 - 2^p|} \|b\|^p
\] (2.12)
for all $n \in \mathbb{N}$, and hence
\[
\|n^{-s}f(n^s b) - Tb\| \to 0 \quad \text{as } n \to \infty.
\] (2.13)
Since f is an approximate multiplier, we get
\[
\|n^{-s}af(n^s b) - f(a)b\| = n^{-s} |af(n^s b) - f(a)n^s b| \\
\leq n^{-s} \varepsilon \|a\|^p \|n^s b\|^p \\
= n^{s(p-1)} \varepsilon \|a\|^p \|b\|^p
\] (2.14)
for all $n \in \mathbb{N}$. Hence,
\[
\|n^{-s}af(n^s b) - f(a)b\| \to 0 \quad \text{as } n \to \infty.
\] (2.15)
Now it follows from (2.13) and (2.15) that
\[
\|a(Tb) - (Ta)b\| \\
\leq \|a\|\|Tb - n^{-s}f(n^s b)\| + \|n^{-s}af(n^s b) - f(a)b\| + \|f(a)b - (Ta)b\| \\
\to \|f(a)b - (Ta)b\| \quad \text{as } n \to \infty.
\] (2.16)
By (1.5), we obtain
\[\|a(Tb) - (Ta)b\| \leq \frac{2\varepsilon}{|2 - 2^p|} \|a\|_p \|b\|. \quad (2.17) \]

An argument similar to (2.3) implies \(\|a(Tb) - (Ta)b\| = 0 \), proving \(T \) is a multiplier.

\[\square \]

REFERENCES

Takeshi Miura: Department of Basic Technology, Yamagata University, Yonezawa 992-8510, Japan
E-mail address: miura@yz.yamagata-u.ac.jp

Go Hirasawa: Department of Mathematics, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
E-mail address: hirasawal@muh.biglobe.ne.jp

Sin-Ei Takahasi: Department of Basic Technology, Yamagata University, Yonezawa 992-8510, Japan
E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp
Submit your manuscripts at http://www.hindawi.com