We establish inequalities between the Ricci curvature and the squared mean curvature, and also between the k-Ricci curvature and the scalar curvature for a slant, semi-slant, and bi-slant submanifold in a locally conformal almost cosymplectic manifold with arbitrary codimension.

1. Preliminaries

Let $\tilde{\mathcal{M}}$ be a $(2m + 1)$-dimensional almost contact manifold with almost contact structure (φ, ξ, η), that is, a global vector field ξ, a $(1, 1)$ tensor field φ, and a 1-form η on $\tilde{\mathcal{M}}$ such that $\varphi^2 X = -X + \eta(X) \xi$, $\eta(\xi) = 1$ for any vector field X on $\tilde{\mathcal{M}}$. We consider a product manifold $\tilde{\mathcal{M}} \times \mathbb{R}$, where \mathbb{R} denotes a real line. Then a vector field on $\tilde{\mathcal{M}} \times \mathbb{R}$ is given by $(X, f(d/dt))$, where X is a vector field tangent to $\tilde{\mathcal{M}}$, t the coordinate of \mathbb{R}, and f a function on $\tilde{\mathcal{M}} \times \mathbb{R}$. We define a linear map J on the tangent space of $\tilde{\mathcal{M}} \times \mathbb{R}$ by $J(X, f(d/dt)) = (\varphi X - f \xi, \eta(X)(d/dt))$. Then we have $J^2 = -I$, and hence J is an almost complex structure on $\tilde{\mathcal{M}} \times \mathbb{R}$. The manifold $\tilde{\mathcal{M}}$ is said to be normal (see [6]) if the almost complex structure J is integrable (i.e., J arises from a complex structure on $\tilde{\mathcal{M}} \times \mathbb{R}$). Let g be a Riemannian metric on $\tilde{\mathcal{M}}$ compatible with (φ, ξ, η), that is, $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X) \eta(Y)$ for any vector fields X and Y tangent to $\tilde{\mathcal{M}}$. Thus, the manifold $\tilde{\mathcal{M}}$ is almost contact metric, and (φ, ξ, η, g) is its almost contact metric structure. Clearly, we have $\eta(X) = g(X, \xi)$ for any vector field X tangent to $\tilde{\mathcal{M}}$. Let Φ denote the fundamental 2-form of $\tilde{\mathcal{M}}$ defined by $\Phi(X, Y) = g(\varphi X, Y)$ for any vector fields X and Y tangent to $\tilde{\mathcal{M}}$. The manifold $\tilde{\mathcal{M}}$ is said to be almost cosymplectic if the forms η and Φ are closed. That is, $d\eta = 0$ and $d\Phi = 0$, where d is the operator of exterior differentiation. If $\tilde{\mathcal{M}}$ is almost cosymplectic and normal, then it is called cosymplectic (see [1]). It is well known that the almost contact metric manifold is cosymplectic if and only if $\nabla \varphi$ vanishes identically, where ∇ is the Levi-Civita connection on $\tilde{\mathcal{M}}$. An almost contact metric manifold $\tilde{\mathcal{M}}$ is a locally conformal almost cosymplectic manifold if and only if there exists a 1-form ω such that $d\Phi = 2\omega \wedge \Phi$, $d\eta = \omega \wedge \eta$, and $d\omega = 0$.

On the other hand, it is wellknown that the Riemannian curvature tensor \tilde{R} on a locally conformal almost cosymplectic manifold $\tilde{\mathcal{M}}$ ($m \geq 2$) of pointwise constant φ-sectional...
curvature c satisfies (see[6])
\[
g(\tilde{R}(X, Y)Z, W) \\
= \frac{c - 3f^2}{4}\{g(X, W)g(Y, Z) - g(X, Z)g(Y, W)\} \\
+ \frac{c + f^2}{4}\{g(X, \varphi W)g(Y, \varphi Z) - g(X, \varphi Z)g(Y, \varphi W) - 2g(X, \varphi Y)g(Z, \varphi W)\} \\
- \left(\frac{c + f^2}{4} + f'\right)\{g(X, W)\eta(Y)\eta(Z) - g(X, Z)\eta(Y)\eta(W) + g(Y, Z)\eta(X)\eta(W) \\
- g(Y, W)\eta(X)\eta(Z)\}, \quad X, Y, Z, W \in T_p\tilde{M},
\]

(1.1)

where f is the function such that $\omega = f\eta$, $f' = \xi f$.

In [5], Lotta has introduced the following notion of slant submanifolds into almost contact metric manifolds. A submanifold M tangent to ξ in locally conformal almost cosymplectic manifold \tilde{M} is said to be slant if for any $p \in M$ and any $X \in T_pM$, linearly independent of ξ, the angle between φX and T_pM is a constant $\theta \in [0, \pi/2]$, called the slant angle of M in \tilde{M}. Invariant and anti-invariant submanifolds of \tilde{M} are slant submanifolds with slant angles $\theta = 0$ and $\theta = \pi/2$, respectively.

We say that a submanifold M tangent to ξ is a bi-slant submanifold in \tilde{M} if there exist two orthogonal distributions \mathcal{D}_1 and \mathcal{D}_2 on M such that

(1) TM admits the orthogonal direct decomposition $TM = \mathcal{D}_1 \oplus \mathcal{D}_2 \oplus \{\xi\};$

(2) for any $i = 1, 2$, \mathcal{D}_i is slant distribution with slant angle θ_i.

On the other hand, CR-submanifolds of \tilde{M} are bi-slant submanifolds with $\theta_1 = 0$, $\theta_2 = \pi/2$.

Let $2d_1 = \dim \mathcal{D}_1$ and $2d_2 = \dim \mathcal{D}_2$.

Remark 1.1. If either d_1 or d_2 vanishes, the bi-slant submanifold is a slant submanifold. Thus, slant submanifolds are particular cases of bi-slant submanifolds.

A submanifold M tangent to ξ is called a semi-slant submanifold in \tilde{M} if there exist two orthogonal distributions \mathcal{D}_1 and \mathcal{D}_2 on M such that

(1) TM admits the orthogonal direct decomposition $TM = \mathcal{D}_1 \oplus \mathcal{D}_2 \oplus \{\xi\};$

(2) the distribution \mathcal{D}_1 is an invariant distribution, that is, $\varphi(\mathcal{D}_1) = \mathcal{D}_1;$

(3) the distribution \mathcal{D}_2 is slant with angle $\theta \neq 0$.

Remark 1.2. The invariant distribution of a semi-slant submanifold is a slant distribution with zero angle. Thus, it is obvious that, in fact, semi-slant submanifolds are particular cases of bi-slant submanifolds.

(1) If $d_2 = 0$, then M is an invariant submanifold.

(2) If $d_1 = 0$ and $\theta = \pi/2$, then M is an anti-invariant submanifold.

For the other properties and examples of slant, bi-slant, and semi-slant submanifolds in an almost contact metric manifold, we refer to [2, 3].

Let M be an n-dimensional submanifold of a locally conformal almost cosymplectic manifold \tilde{M} equipped with a Riemannian metric g. The Gauss and Weingarten formulas
are given, respectively, by
\[\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \tilde{\nabla}_X N = -A_N X + \nabla^\perp_X N, \] \hspace{1cm} (1.2)
for all \(X, Y \in TM \) and \(N \in T^\perp M \), where \(\tilde{\nabla}, \nabla, \) and \(\nabla^\perp \) are the Riemannian, induced Riemannian, and induced normal connections in \(\tilde{M}, M \), and the normal bundle \(T^\perp M \) of \(M \), respectively, and \(h \) is the second fundamental form related to the shape operator \(A \) by \(g(h(X, Y), N) = g(A_N X, Y) \). Also, let \(R \) be the Riemannian curvature tensor of \(M \). Then the equation of Gauss is given by
\[\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)), \] \hspace{1cm} (1.3)
for any vectors \(X, Y, Z, W \) tangent to \(M \).

For any vector \(X \) tangent to \(M \), we put \(\varphi X = PX + FX \), where \(PX \) and \(FX \) are the tangential and the normal components of \(\varphi X \), respectively. Given an orthonormal basis \(\{e_1, \ldots, e_n\} \) of \(M \), we define the squared norm of \(P \) by
\[\|P\|^2 = \sum_{i,j=1}^{n} g^2(Pe_i, e_j) \] \hspace{1cm} (1.4)
and the mean curvature vector \(H(p) \) at \(p \in M \) is given by \(H = (1/n) \sum_{i=1}^{n} h(e_i, e_i) \).

We put
\[h^r_{ij} = g(h(e_i, e_j), e_r), \quad \|h\|^2 = \sum_{i,j=1}^{n} g(h(e_i, e_j), h(e_i, e_j)), \] \hspace{1cm} (1.5)
where \(\{e_{n+1}, \ldots, e_{2m+1}\} \) is an orthonormal basis of \(T^\perp_p M \) and \(r = n + 1, \ldots, 2m + 1 \). A submanifold \(M \) in \(\tilde{M} \) is called totally geodesic if the second fundamental form vanishes identically and totally umbilical if there is a real number \(\lambda \) such that \(h(X, Y) = \lambda g(X, Y)H \) for any tangent vectors \(X, Y \) on \(M \).

For an \(n \)-dimensional Riemannian manifold \(M \), we denote by \(K(\pi) \) the sectional curvature of \(M \) associated with a plane section \(\pi \subset T_p M, p \in M \). For an orthonormal basis \(\{e_1, \ldots, e_n\} \) of the tangent space \(T_p M \), the scalar curvature \(\tau \) is defined by
\[\tau = \sum_{i<j} K_{ij}, \] \hspace{1cm} (1.6)
where \(K_{ij} \) denotes the sectional curvature of the 2-plane section spanned by \(e_i \) and \(e_j \).

Suppose that \(L \) is a \(k \)-plane section of \(T_p M \) and \(X \) a unit vector in \(L \). We choose an orthonormal basis \(\{e_1, \ldots, e_k\} \) of \(L \) such that \(e_1 = X \). Define the Ricci curvature \(\text{Ric}_L \) of \(L \) at \(X \) by
\[\text{Ric}_L(X) = K_{12} + \cdots + K_{1k}. \] \hspace{1cm} (1.7)
We simply called such a curvature a \(k \)-Ricci curvature. The scalar curvature \(\tau \) of the \(k \)-plane section \(L \) is given by

\[
\tau(L) = \sum_{1 \leq i < j \leq k} K_{ij}.
\]

(1.8)

For each integer \(k, 2 \leq k \leq n \), the Riemannian invariant \(\Theta_k \) on an \(n \)-dimensional Riemannian manifold \(M \) is defined by

\[
\Theta_k(p) = \frac{1}{k-1} \inf_{L, X} \text{Ric}_L(X), \quad p \in M,
\]

(1.9)

where \(L \) runs over all \(k \)-plane sections in \(T_p M \) and \(X \) runs over all unit vectors in \(L \).

Recall that for a submanifold \(M \) in a Riemannian manifold, the relative null space of \(M \) at a point \(p \in M \) is defined by

\[
N_p = \{ X \in T_p M \mid h(X, Y) = 0 \ \forall Y \in T_p M \}.
\]

(1.10)

2. Ricci curvature and squared mean curvature

Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [4]). We prove similar inequalities for slant, bi-slant, and semi-slant submanifolds in a locally conformal almost cosymplectic manifold \(\tilde{M} \). We consider submanifolds \(M \) tangent to \(\xi \).

Theorem 2.1. Let \(M \) be an \(n \)-dimensional \(\theta \)-slant submanifold tangent to \(\xi \) into a \((2m + 1) \)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then, the following hold.

1. For each unit vector \(X \in T_p M \) orthogonal to \(\xi \),

\[
\text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)(c - 3 f^2) + \frac{3}{2} (c + f^2) \cos^2 \theta - 4 \left(\frac{c + f^2}{4} + f' \right) + n^2 \|H\|^2 \right\}.
\]

(2.1)

2. If \(H(p) = 0 \), then a unit tangent vector \(X \) orthogonal to \(\xi \) at \(p \) satisfies the equality case of (2.1) if and only if \(X \in N_p \).

3. The equality case of (2.1) holds identically for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if \(p \) is a totally geodesic point.

Proof. 1. Let \(X \in T_p M \) be a unit tangent vector at \(p \) orthogonal to \(\xi \). We choose an orthonormal basis \(e_1, \ldots, e_n = \xi, e_{n+1}, \ldots, e_{2m+1} \), such that \(e_1, \ldots, e_n \) are tangent to \(M \) at \(p \) with \(e_1 = X \). Then, from the equation of Gauss, we have

\[
n^2 \|H\|^2 = 2\tau + \|h\|^2 - \frac{n(n-1)(c - 3 f^2)}{4} - \frac{3(n-1)(c + f^2)}{4} \cos^2 \theta + 2(n-1) \left(\frac{c + f^2}{4} + f' \right).
\]

(2.2)
From (2.2), we get

\[
n^2 \|H\|^2 = 2\tau + \sum_{r=n+1}^{2m+1} \left[(h'_{11})^2 + (h'_{22} + \cdots + h'_{nn})^2 + 2 \sum_{1 \leq i < j \leq n} (h'_{ij})^2 \right]
- 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} h'_{ij}h'_{jj} - \frac{n(n-1)(c-3f^2)}{4}
- \frac{3(n-1)(c+f^2)}{4} \cos^2 \theta + 2(n-1) \left(\frac{c+f^2}{4} + f' \right)
\]

\[
= 2\tau + \frac{1}{2} \sum_{r=n+1}^{2m+1} \left[(h'_{11} + h'_{22} + \cdots + h'_{nn})^2 + (h'_{11} - h'_{22} - \cdots - h'_{nn})^2 \right]
+ 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} (h'_{ij})^2 - 2 \sum_{r=n+1+2 \leq i < j \leq n} h'_{ii}h'_{jj}
- \frac{n(n-1)(c-3f^2)}{4} - \frac{3(n-1)(c+f^2)}{4} \cos^2 \theta + 2(n-1) \left(\frac{c+f^2}{4} + f' \right).
\]

(2.3)

By using the equation of Gauss, we have

\[
\sum_{2 \leq i < j \leq n} K_{ij} = \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} \left[h'_{ii}h'_{jj} - (h'_{ij})^2 \right] + \frac{(n-1)(n-2)(c-3f^2)}{8}
+ \frac{3(n-2)(c+f^2)}{8} \cos^2 \theta + \frac{1}{2} \left(\frac{c+f^2}{4} + f' \right)(-2n+4).
\]

(2.4)

Substituting (2.4) in (2.3), we get

\[
\frac{1}{2} n^2 \|H\|^2 \geq 2 \text{Ric}(X) - \frac{(n-1)(c-3f^2)}{2} - \frac{3(c+f^2)}{4} \cos^2 \theta + 2 \left(\frac{c+f^2}{4} + f' \right),
\]

(2.5)

or equivalently (2.1).

(2) Assume that \(H(P) = 0 \). Equality holds in (2.1) if and only if

\[
h'_{12} = \cdots = h'_{1n} = 0,

h'_{11} = h'_{22} + \cdots + h'_{nn}, \quad r \in \{n+1, \ldots, 2m+1\}.
\]

(2.6)

Then \(h'_{ij} = 0 \) for all \(j \in \{1, \ldots, n\}, \ r \in \{n+1, \ldots, 2m+1\} \), that is, \(X \in N_p \).

(3) Then equality case of (2.1) holds for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if

\[
h'_{ij} = 0, \quad i \neq j, r \in \{n+1, \ldots, 2m+1\},

h'_{11} + \cdots + h'_{nn} - 2h'_{ii} = 0, \quad i \in \{1, \ldots, n\}, \ r \in \{n+1, \ldots, 2m+1\}.
\]

(2.7)

In this case, it follows that \(p \) is a totally geodesic point. The converse is trivial. \(\square \)
Theorem 2.2. Let M be an n-dimensional bi-slant submanifold satisfying $g(X,\varphi Y) = 0$, for any $X \in \mathcal{D}_1$ and any $Y \in \mathcal{D}_2$, tangent to ξ in a $(2m+1)$-dimensional locally conformal almost cosymplectic manifold \tilde{M}. Then, the following hold.

(1) For each unit vector $X \in T_pM$ orthogonal to ξ and if
 (i) X is tangent to \mathcal{D}_1,
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)(c-3f^2) + \frac{3}{2}(c+f^2) \cos^2 \theta_1 - 4 \left(\frac{c+f^2}{4} + f' \right) + n^2 \|H\|^2 \right\},
 \]
 (2.8)
 and if
 (ii) X is tangent to \mathcal{D}_2,
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)(c-3f^2) + \frac{3}{2}(c+f^2) \cos^2 \theta_2 - 4 \left(\frac{c+f^2}{4} + f' \right) + n^2 \|H\|^2 \right\}.
 \]
 (2.9)

(2) If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.8) and (2.9) if and only if $X \in N_p$.

(3) The equality case of (2.8) and (2.9) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. (1) Let $X \in T_pM$ be a unit tangent vector at p orthogonal to ξ. We choose an othonormal basis $e_1, \ldots, e_n = \xi, e_{n+1}, \ldots, e_{2m+1}$ such that e_1, \ldots, e_n are tangent to M at p with $e_1 = X$. Then, from the equation of Gauss, we have

\[
\begin{align*}
n^2 \|H\|^2 &= 2\tau + \|h\|^2 - \frac{n(n-1)(c-3f^2)}{4} \\
&\quad - \frac{6(c+f^2)}{4} (d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) + 2(n-1) \left(\frac{c+f^2}{4} + f' \right),
\end{align*}
\]
(2.10)

where $2d_1 = \dim \mathcal{D}_1$ and $2d_2 = \dim \mathcal{D}_2$.

From (2.10), we get

\[
\begin{align*}
n^2 \|H\|^2 &= 2\tau + \sum_{r=n+1}^{2m+1} \left[(h_{1r}^r)^2 + (h_{2r}^r)^2 + \cdots + (h_{nr}^r)^2 \right] + 2 \sum_{1 \leq i < j \leq n} (h_{ij}^r)^2 \\
&\quad - 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} h_{ij}^r h_{ji}^r - \frac{n(n-1)(c-3f^2)}{4} \\
&\quad - \frac{6(c+f^2)}{4} (d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) + 2(n-1) \left(\frac{c+f^2}{4} + f' \right)
\end{align*}
\]
Dae Won Yoon 1627

\[\begin{align*}
= 2r + \frac{1}{2} \sum_{r=n+1}^{2m+1} \left[(h''_{11} + h''_{22} + \cdots + h''_{nn})^2 + (h''_{11} - h''_{22} - \cdots - h''_{nn})^2 \right] \\
+ 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} (h''_{ij})^2 - 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} h''_{ij} h''_{ij} - \frac{n(n-1)(c-3f^2)}{4} \\
- \frac{6(c+f^2)}{4} (d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) + 2(n-1) \left(\frac{c+f^2}{4} + f' \right).
\end{align*} \tag{2.11} \]

We distinguish two cases.

(i) If \(X \) is tangent to \(\mathcal{D}_1 \), then we have

\[\begin{align*}
\sum_{2 \leq i < j \leq n} K_{ij} &= \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} \left[h''_{ij} h''_{ij} - (h''_{ij})^2 \right] + \frac{(n-1)(n-2)(c-3f^2)}{8} \\
&+ \frac{c+f^2}{8} \left[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 3 \cos^2 \theta_1 \right] + \frac{1}{2} \left(\frac{c+f^2}{4} + f' \right)(-2n+4).
\end{align*} \tag{2.12} \]

Substituting (2.12) in (2.11), one gets

\[\frac{1}{2} n^2 \|H\|^2 \geq 2 \text{Ric}(X) - \frac{(n-1)(c-3f^2)}{2} - \frac{3(c+f^2)}{4} \cos^2 \theta_1 + 2 \left(\frac{c+f^2}{4} + f' \right), \tag{2.13} \]

which is equivalent to (2.8).

(ii) If \(X \) is tangent to \(\mathcal{D}_2 \), then we have

\[\begin{align*}
\sum_{2 \leq i < j \leq n} K_{ij} &= \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} \left[h''_{ij} h''_{ij} - (h''_{ij})^2 \right] + \frac{(n-1)(n-2)(c-3f^2)}{8} \\
&+ \frac{c+f^2}{8} \left[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 3 \cos^2 \theta_2 \right] + \frac{1}{2} \left(\frac{c+f^2}{4} + f' \right)(-2n+4).
\end{align*} \tag{2.14} \]

Substituting (2.14) in (2.11), one gets

\[\frac{1}{2} n^2 \|H\|^2 \geq 2 \text{Ric}(X) - \frac{(n-1)(c-3f^2)}{2} - \frac{3(c+f^2)}{4} \cos^2 \theta_2 + 2 \left(\frac{c+f^2}{4} + f' \right), \tag{2.15} \]

which is equivalent to (2.9).

(2) Assume that \(H(p) = 0 \). Equality holds in (2.8) and (2.9) if and only if

\[\begin{align*}
h''_{12} &= \cdots = h''_{1n} = 0, \\
h''_{11} &= h''_{22} + \cdots + h''_{nn}, \quad r \in \{n+1, \ldots, 2m+1\}.
\end{align*} \tag{2.16} \]

Then \(h''_{ij} = 0 \) for all \(j \in \{1, \ldots, n\}, r \in \{n+1, \ldots, 2m+1\} \), that is, \(X \in N_p \).
Then equality case of (2.8) and (2.9) holds for all unit tangent vectors orthogonal to ξ at p if and only if

$$
\begin{align*}
&h'_{ij} = 0, \quad i \neq j, \quad r \in \{n + 1, \ldots, 2m + 1\}, \\
h'_{11} + \cdots + h'_{nn} - 2h'_{ii} = 0, \quad i \in \{1, \ldots, n\}, \quad r \in \{n + 1, \ldots, 2m + 1\}.
\end{align*}
$$

(2.17)

In this case, it follows that p is a totally geodesic point. The converse is trivial. \square

Corollary 2.3. Let M be an n-dimensional semi-slant submanifold in a $(2m + 1)$-dimensional locally conformal almost cosymplectic manifold \tilde{M}. Then, the following hold.

1. For each unit vector $X \in T_pM$ orthogonal to ξ and if

 (i) X is tangent to \mathcal{D}_1,

 $$
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n - 1)(c - 3f^2) - 4 \left(\frac{c + f^2}{4} + f' \right) + n^2 \|H\|^2 \right\},
 $$

 (2.18)

 and if

 (ii) X is tangent to \mathcal{D}_2,

 $$
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n - 1)(c - 3f^2) + \frac{3}{2} (c + f^2) \cos^2 \theta - 4 \left(\frac{c + f^2}{4} + f' \right) + n^2 \|H\|^2 \right\},
 $$

 (2.19)

2. If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.18) and (2.19) if and only if $X \in N_p$.

3. The equality case of (2.18) and (2.19) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.4. Let M be an n-dimensional invariant submanifold in a $(2m + 1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, the following hold.

1. For each unit vector $X \in T_pM$ orthogonal to ξ,

 $$
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n - 1)(c - 3f^2) + \frac{3}{2} (c + f^2) - 4 \left(\frac{c + f^2}{4} + f' \right) + n^2 \|H\|^2 \right\},
 $$

 (2.20)

2. If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.20) if and only if $X \in N_p$.

3. The equality case of (2.20) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.5. Let M be an n-dimensional anti-invariant submanifold in a $(2m + 1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, the following hold.

1. For each unit vector $X \in T_pM$ orthogonal to ξ,

 $$
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n - 1)(c - 3f^2) - 4 \left(\frac{c + f^2}{4} + f' \right) + n^2 \|H\|^2 \right\},
 $$

 (2.21)

2. If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.21) if and only if $X \in N_p$.

(3) The equality case of (2.21) holds identically for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if \(p \) is a totally geodesic point.

3. \(k \)-Ricci curvature and squared mean curvature

In this section, we prove relationship between the \(k \)-Ricci curvature and the squared mean curvature for slant, bi-slant, and semi-slant submanifolds in a locally conformal almost cosymplectic manifold \(\tilde{M} \). We state an inequality between the scalar curvature and the squared mean curvature for submanifolds \(M \) tangent to the vector field \(\xi \).

Theorem 3.1. Let \(M \) be an \(n \)-dimensional \(\theta \)-slant submanifold tangent to \(\xi \) into a \((2m + 1) \)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then,

\[
\|H\|^2 \geq \frac{2\tau}{n(n-1)} - \frac{1}{4n} \left[n(c - 3f^2) + 3(c + f^2) \cos^2 \theta - 8 \left(\frac{c + f^2}{4} + f' \right) \right],
\]

equality holding at a point \(p \in M \) if and only if \(p \) is a totally umbilical point.

Proof. Let \(p \) be a point of \(M \). We choose an orthonormal basis \(\{e_1, e_2, \ldots, e_n = \xi\} \) for the tangent space \(T_pM \) and \(\{e_{n+1}, \ldots, e_{2m+1}\} \) for the normal space \(T^\perp_pM \) at \(p \) such that the normal vector \(e_{n+1} \) is in the direction of the mean curvature vector and \(e_1, e_2, \ldots, e_n \) diagonalize the shape operator \(A_{n+1} \). Then, we have

\[
A_{n+1} = \begin{pmatrix}
a_1 & 0 & 0 & \cdots & 0 \\
0 & a_2 & 0 & \cdots & 0 \\
0 & 0 & a_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_n
\end{pmatrix},
\]

\[
A_r = (h_{ij}^r), \quad \sum_{i=1}^{n} h_{ij}^r = 0, \quad n + 2 \leq r \leq 2m + 1.
\]

From the equation of Gauss,

\[
n^2\|H\|^2 = 2\tau + \sum_{i=1}^{n} a_i^2 + \sum_{r=n+2}^{2m+1} \sum_{i,j=1}^{n} (h_{ij}^r)^2 - \frac{n(n-1)(c - 3f^2)}{4} \\
- \frac{3(n-1)(c + f^2)}{4} \cos^2 \theta + 2(n-1) \left(\frac{c + f^2}{4} + f' \right).
\]

(3.3)

On the other hand,

\[
\sum_{i<j} (a_i - a_j)^2 = (n-1) \sum_{i=1}^{n} a_i^2 - 2 \sum_{i<j} a_ia_j.
\]

(3.4)
Therefore, from the above equation, we have

\[n^2 \|H\|^2 = \left(\sum_{i=1}^{n} a_i \right)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{i<j} a_i a_j \leq n \sum_{i=1}^{n} a_i^2. \tag{3.5} \]

Combining (3.3) and (3.5),

\[
n(n-1)\|H\|^2 \geq 2\tau + \frac{2^{m+1}}{n+1} \sum_{r=2}^{n} \sum_{i,j=1}^{n} (h_{ij}^r)^2 - \frac{n(n-1)(c-3f^2)}{4} \\
- \frac{3(n-1)(c+f^2)}{4} \cos^2 \theta + 2(n-1) \left(\frac{c+f^2}{4} + f' \right),
\]

which implies inequality (3.1). If the equality sign of (3.1) holds at a point \(p \in M \), then from (3.4) and (3.6) we get \(A_r = 0 \) \((r = n+2, \ldots, 2m+1) \) and \(a_1 = \cdots = a_n \). Consequently, \(p \) is a totally umbilical point. The converse is trivial. \(\square \)

Theorem 3.2. Let \(M \) be an \(n \)-dimensional bi-slant submanifold satisfying \(g(X, \varphi Y) = 0 \), for any \(X \in T_1 \) and any \(Y \in T_2 \), tangent to \(\xi \) into a \((2m+1)\)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then,

\[
\|H\|^2 \geq \frac{2\tau}{n(n-1)} - \frac{1}{4n(n-1)} \left[n(n-1)(c-3f^2) + 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) (c+f^2) \\
- 8(n-1) \left(\frac{c+f^2}{4} + f' \right) \right],
\]

where \(2d_1 = \dim T_1 \) and \(2d_2 = \dim T_2 \).

Theorem 3.3. Let \(M \) be an \(n \)-dimensional semi-slant submanifold tangent to \(\xi \) into a \((2m+1)\)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then,

\[
\|H\|^2 \geq \frac{2\tau}{n(n-1)} - \frac{1}{4n(n-1)} \left[n(n-1)(c-3f^2) + 6(d_1 + d_2 \cos \theta) (c+f^2) \\
- 8(n-1) \left(\frac{c+f^2}{4} + f' \right) \right],
\]

where \(2d_1 = \dim T_1 \) and \(2d_2 = \dim T_2 \).

Theorem 3.4. Let \(M \) be an \(n \)-dimensional \(\theta \)-slant submanifold tangent to \(\xi \) into a \((2m+1)\)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then, for any integer \(k \) \((2 \leq k \leq n)\) and any point \(p \in M \),

\[
\|H\|^2 \geq \Theta_k(p) - \frac{1}{4n} \left[n(c-3f^2) + 3(c+f^2) \cos^2 \theta - 8 \left(\frac{c+f^2}{4} + f' \right) \right].
\]

(3.9)
Proof. Let \(\{e_1, \ldots, e_n\} \) be an orthonormal basis of \(T_pM \). Denote by \(L_{i_1 \cdots i_k} \) the \(k \)-plane section spanned by \(e_{i_1}, \ldots, e_{i_k} \). It follows from (1.7) and (1.8) that

\[
\tau(L_{i_1 \cdots i_k}) = \frac{1}{2} \sum_{i \in \{i_1, \ldots, i_k\}} \text{Ric}_{L_{i_1 \cdots i_k}}(e_i),
\]

\[
\tau(p) = \frac{1}{\binom{n-2}{k-2}} \sum_{1 \leq i_1 < \cdots < i_k \leq n} \tau(L_{i_1 \cdots i_k}).
\]

Combining (1.9) and (3.10), we obtain

\[
\tau(p) \geq \frac{n(n-1)}{2} \Theta_k(p).
\]

(3.11)

Therefore, by using (3.1) and (3.11), we can obtain the inequality in Theorem 3.4. \(\square\)

Theorem 3.5. Let \(M \) be an \(n \)-dimensional bi-slant submanifold tangent to \(\xi \) into a \((2m + 1)\)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then, for any integer \(k \) \((2 \leq k \leq n)\) and any point \(p \in M \),

\[
\|H\|^2 \geq \Theta_k(p) - \frac{1}{4n(n-1)} \left[n(n-1)(c - 3f^2) + 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2)(c + f^2) \right.
\]

\[
- 8(n-1) \left(\frac{c + f^2}{4} + f' \right),
\]

(3.12)

where \(2d_1 = \dim \mathcal{D}_1 \) and \(2d_2 = \dim \mathcal{D}_2 \).

Theorem 3.6. Let \(M \) be an \(n \)-dimensional semi-slant submanifold tangent to \(\xi \) into a \((2m + 1)\)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then, for any integer \(k \) \((2 \leq k \leq n)\) and any point \(p \in M \),

\[
\|H\|^2 \geq \Theta_k(p) - \frac{1}{4n(n-1)} \left[n(n-1)(c - 3f^2) + 6(d_1 + d_2 \cos^2 \theta)(c + f^2) \right.
\]

\[
- 8(n-1) \left(\frac{c + f^2}{4} + f' \right),
\]

(3.13)

where \(2d_1 = \dim \mathcal{D}_1 \) and \(2d_2 = \dim \mathcal{D}_2 \).

Corollary 3.7. Let \(M \) be an \(n \)-dimensional invariant submanifold tangent to \(\xi \) into a \((2m + 1)\)-dimensional locally conformal almost cosymplectic manifold \(\tilde{M} \). Then, for any integer \(k \) \((2 \leq k \leq n)\) and any point \(p \in M \),

\[
\|H\|^2 \geq \Theta_k(p) - \frac{1}{4n} \left[n(c - 3f^2) + 3(c + f^2) - 8 \left(\frac{c + f^2}{4} + f' \right) \right].
\]

(3.14)
Corollary 3.8. Let M be an n-dimensional anti-invariant submanifold tangent to ξ into a $(2m + 1)$-dimensional locally conformal almost cosymplectic manifold \tilde{M}. Then, for any integer k ($2 \leq k \leq n$) and any point $p \in M$,

$$\|H\|^2 \geq \Theta_k(p) - \frac{1}{4n} \left[n(c - 3f^2) - 8 \left(\frac{c + f^2}{4} + f' \right) \right]. \quad (3.15)$$

Corollary 3.9. Let M be an n-dimensional contact CR-submanifold tangent to ξ into a $(2m + 1)$-dimensional locally conformal almost cosymplectic manifold \tilde{M}. Then, for any integer k ($2 \leq k \leq n$) and any point $p \in M$,

$$\|H\|^2 \geq \Theta_k(p) - \frac{1}{4n(n-1)} \left[n(n-1)(c - 3f^2) + 6d_1(c + f^2) - 8(n-1) \left(\frac{c + f^2}{4} + f' \right) \right]. \quad (3.16)$$

References

Dae Won Yoon: Department of Mathematics Education and Research Institute of Natural Science (RINS), Gyeongsang National University, 900 Gazwa-dong, Jinju 660-701, South Korea

E-mail address: dwyoon@gsnu.ac.kr
Submit your manuscripts at http://www.hindawi.com