The well-known Bailey’s transform is extended. Using the extended transform, we derive hitherto undiscovered ordinary and \(q \)-hypergeometric identities and discuss their particular cases of importance, namely, two new \(q \)-sums for Saalschützian \(4\Phi_3 \), new double series Rogers-Ramanujan-type identities of modulo 81, discrete extension of the \(q \)-analogs of two quadratic transformations of \(_2F_1 \), and two new quadratic-cubic transformations of \(_3F_2 \).

1. Introduction

The well-known transform was discovered by Bailey [12] in 1947 and is being used, since then, to obtain various ordinary and \(q \)-hypergeometric identities and Rogers-Ramanujan-type identities.

It states that if

\[
\alpha_n = \sum_{r=0}^{n} \alpha_r u_{n-r} v_{r+n},
\]

\[
\gamma_n = \sum_{r=n}^{\infty} \delta_r u_{r-n} v_{r+n},
\]

then, subject to convergence conditions,

\[
\sum_{n=0}^{\infty} \alpha_n y_n = \sum_{n=0}^{\infty} \beta_n \delta_n.
\]

Making use of this remarkably simple transformation, Bailey [12, 13] outlined a technique for obtaining transformations of both ordinary and \(q \)-hypergeometric series. He also used these transformations to obtain a number of identities of Rogers-Ramanujan type. Subsequently, Slater [27, 28] gave a very exhaustive list of 130 identities of the Rogers-Ramanujan type derived by her, using (1.2). For further details on (1.2), see [29].
Andrews [4, 5, 10] exploited Bailey’s transform in the form of Bailey pair and Bailey chains to show that all of the 130 identities given by Slater [27, 28] can be embedded in infinite families of multiple-series Rogers-Ramanujan-type identities.

Using (1.2), Bressoud [14] found finite forms of Rogers-Ramanujan type identities and further, recently, Bressoud et al. [15] introduced the concept of change of base in Bailey pairs and derived many new multiple-series Rogers-Ramanujan-type identities.

Verma and Jain [31, 32] and Jain [20, 22] also used (1.2) to derive a number of \(q\)-hypergeometric transformations and identities.

In brief, after Bailey and Slater, a large number of mathematicians have used Bailey’s transform (1.2) to make applications in the theory of generalized hypergeometric series, number theory, partition theory, combinatorics, physics, and computer algebra (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 20, 25, 26, 31, 32]).

In this paper, we extend such a fundamental and useful transform of Bailey. The extensions are discussed in Section 2 as Theorems 2.1 and 2.2. Using the extended Bailey’s transform, we derive five new \(q\)-hypergeometric identities in Section 3. The identities (3.1) and (3.3) both convert a Saalschützian \(4\Phi_3\) of base \(q^2\) into a Saalschützian \(4\Phi_5\) of base \(q\), like Singh’s quadratic transformation, [19, Appendix, III.21]. The identity (3.2) converts a \(4\Phi_5\) of base \(q^2\) into a \(4\Phi_9\) of base \(q\). The identity (3.4) provides a transformation of a very well-poised \(12\Phi_{11}\) with base \(q^2\) into a very well-poised \(10\Phi_9\) with base \(q\). The identity (3.5) is a transformation of a very well-poised \(12\Phi_{11}\) with base \(q^3\) into a Saalschützian \(6\Phi_5\) with base \(q\).

In Section 4, seven new and interesting ordinary hypergeometric identities (4.1) to (4.7) are derived. An interesting fact about these identities is that they will have no exact \(q\)-analsogs, unlike other results of ordinary hypergeometric series, until the required sums of \(q\)-hypergeometric series, having parameters of different bases and needed arguments, are investigated. This fact is illustrated for the result (4.1) in Section 5. In this way, an open problem of investigating the \(q\)-analogs of (4.1) to (4.7), by any other method, arises naturally in the study of extended Bailey’s transform.

The particular cases and applications of some of the results of Sections 3 and 4 are discussed in Section 6. They include two new \(q\)-sums for Saalschützian \(4\Phi_3\), derivations of double-series Rogers-Ramanujan-type identities of modulo 81, discrete extensions of the \(q\)-analogs of two quadratic transformations of \(2F_1(z)\), and derivations of two new quadratic-cubic transformations for \(3F_2(z)\).

We have followed the definitions and notations from [19, 29].

2. Extended Bailey’s transform

Theorem 2.1. If

\[
\begin{align*}
\beta_n &= \sum_{r=0}^{[n/p]} \alpha_r u_{n-pr} v_{n+r} t_{n-r} w_{n+pr}, \\
\gamma_n &= \sum_{r=pn}^{\infty} \delta_r u_{r-pr} v_{r+n} t_{r-n} w_{r+pn},
\end{align*}
\]
then, subject to convergence conditions,

\[\sum_{n=0}^{\infty} \alpha_n y_n = \sum_{n=0}^{\infty} \beta_n \delta_n, \quad (2.2) \]

where \(p \) is any integer and \(\alpha_r, \delta_r, u_r, v_r, t_r, \) and \(w_r \) are any functions of \(r \) only. Obviously, the \(p = 1 \) case is the original Bailey’s transform.

Proof. Observe that

\[\sum_{n=0}^{\infty} \alpha_n y_n = \sum_{r=0}^{\infty} \sum_{n=0}^{\infty} \alpha_n \delta_r u_{r-pn} v_{r+n} t_{r-n} w_{r+pn}. \quad (2.3) \]

If this double series is convergent, then using [30, page 10, Lemma 3], namely,

\[\sum_{r=0}^{\infty} \sum_{n=0}^{\infty} A(r,n) = \sum_{r=0}^{\infty} \sum_{n=0}^{\infty} A(r-np,n), \quad (2.4) \]

in (2.3) after the replacement of \(r \) by \(r + pn \), we get

\[\sum_{n=0}^{\infty} \alpha_n y_n = \sum_{r=0}^{\infty} \sum_{n=0}^{\infty} \alpha_n \delta_r u_{r-pn} v_{r+n} t_{r-n} w_{r+pn} = \sum_{r=0}^{\infty} \beta_r \delta_r. \quad (2.5) \]

\[\square \]

Theorem 2.2. If

\[\beta_n = \sum_{r=0}^{n} \alpha_r u_{r-n} v_{r+n} t_{r+2n} w_{r-pn} z_{p'n+r}, \quad (2.6) \]

\[y_n = \sum_{r=n}^{\infty} \delta_r u_{r-n} v_{r+n} t_{r+2n} w_{pr-n} z_{p'r+n}, \]

then, subject to convergence conditions,

\[\sum_{n=0}^{\infty} \alpha_n y_n = \sum_{n=0}^{\infty} \beta_n \delta_n, \quad (2.7) \]

where, \(\alpha_r, \delta_r, u_r, v_r, t_r, w_r, \) and \(z_r \) are any functions of \(r \) only, and \(p \) and \(p' \) are any integers. Obviously, when \(t_r = 1 \) and \(p = p' = 1 \), it will yield the original Bailey’s transform.

Proof. Proceeding as in the proof of Theorem 2.1 and using [24, page 56, Lemma 10] in place of (2.4), we get (2.7). \[\square \]

Here, it may be noted that Theorems 2.1 and 2.2 convert into original Bailey’s transform when \(p = 1 \) and \(t_r = 1, p = p' = 1 \), respectively. Hence, only those cases in which the choice for parameters \(\alpha_r, u_r, p, p' \), and so forth does not involve the conditions, \(p = 1 \) for Theorem 2.1 and \(t_r = 1, p = p' = 1 \) for Theorem 2.2, will be the cases not contained
in original Bailey’s transform. In fact, Theorems 2.1 and 2.2 can be combined to form a single theorem, but such a presentation has been avoided for easier visualization of the extensions and application process.

The two theorems suggest that various new sequences of other combinations of involved summation indices may be introduced in their \(\beta_n \) and \(\gamma_n \). Further, it may be possible in many cases to decide the new expressions for \(\alpha_r, \delta_r, u_r, v_r, t_r, w_r, \) and \(z_r \), which yield closed forms for \(\beta_n \) and \(\gamma_n \), using one or two of the known summation theorems. Thus, many more new results may be discovered. But we have discussed certain cases which use the well-known classical summation theorems [19, Appendix, II.5,6,12,21,22] and their ordinary hypergeometric analogs only. It may be emphasized that there may be other various appropriate cases to have the closed forms for \(\beta_n \) and \(\gamma_n \) in Theorems 2.1 and 2.2.

3. New \(q \)-hypergeometric identities

In the extensions of Bailey’s transform, discussed in the previous section as Theorems 2.1 and 2.2, we observed five expressions for \(\alpha_r, \delta_r, u_r, v_r, t_r, w_r \), and \(z_r \), which yield closed forms for \(\beta_n \) and \(\gamma_n \) and lead to five new \(q \)-hypergeometric identities. The identities are as follows:

\[
4\Phi_3 \left[\begin{array}{c} a^2, b^2, q^{-N+1}, q^{-N} \\ a^2 b^2 q, c^2, q^{2-2N} ; q^2, q^2 \end{array} \right] = \frac{(ac,-c/a;q)_N}{(c^2; q^2)_N} \cdot 4\Phi_3 \left[\begin{array}{c} a^2, ab, -ab, q^{-N} \\ a^2 b^2, ac, -aq^{1-N} ; q, q \end{array} \right], \tag{3.1}
\]

\[
4\Phi_3 \left[\begin{array}{c} a, aq, q^{-N+1}, q^{-N} \\ b^2 q, \frac{aq^{-N+1}}{c}, \frac{aq^{-N+2}}{c} ; q^2, q^2 \end{array} \right] = \frac{(c; q)_N}{(c/a; q)_N} \cdot 4\Phi_2 \left[\begin{array}{c} a, b, -b, q^{-N} \\ b^2, c, q, -cq^{-N} ; q, -a \end{array} \right], \tag{3.2}
\]

\[
4\Phi_3 \left[\begin{array}{c} a, b, -q^{-N}, q^{-N} \\ -ab, c, q^{1-2N} ; q, q \end{array} \right] = \frac{(caq, c/a; q^2)_N}{(c; q)_{2N}} \cdot 4\Phi_3 \left[\begin{array}{c} a^2, ab, abq, q^{-2N} \\ acq, a^2 b^2, \frac{aq^{-2N}}{c} ; q^2, q^2 \end{array} \right], \tag{3.3}
\]

\[
12\ W_{11} \left(a; a^2/b^2, c, cq, d, dq, abq^{1+N}/cd, abq^{2+N}/cd, q^{-N+1}, q^{-N}, q^2, q^2 \right)
= \frac{(aq,bq/c,bq/d,aq/cd; q)_N}{(bq,aq/c,aq/d,bq/cd; q)_N} \cdot 10\ W_9 \left(b; c, d, a/b, b\sqrt{\frac{q}{a}} - b\sqrt{\frac{q}{a}}, abq^{1+N}/cd, q^{-N}, q, \frac{bq}{a} \right) \tag{3.4}
\]

\[
12\ W_{11} \left(a^3; b, bq, bq^2, c, cq, cq^2, q^{-N+2}, q^{-N+1}, q^{-N}, q^3, \left(\frac{a^4 q^{1+N}}{bc} \right)^3 \right)
= \frac{(a^3 q, a^3 q/bc; q)_N}{(a^3 q/b,a^3 q/c; q)_N} \cdot 6\Phi_5 \left[\begin{array}{c} a, aw, aw^2, b, c, q^{-N} \\ a^{3/2} \sqrt{q}, -a^{3/2} \sqrt{q}, a^{3/2}, -a^{3/2}, bqc^{-N}/a^3q, q \end{array} \right], \tag{3.5}
\]

where \(\omega \) is the cube root of unity.
Proof of (3.1). Choosing
\[
\alpha_r = \frac{(b^2;q^2)_r}{(a^2b^2q,q^2)_r}, \quad u_r = \frac{q^r}{(q;q)_r}, \quad t_r = (a^2;q^2)_r,
\]
\[
\delta_r = \frac{(q^{-N};q)_r}{(ac,-aq^{1-N}/c;q)_r},
\]
\[\nu_r = w_r = 1, \quad \rho = 2 \text{ in (2.1), and making use of the } q\text{-Pfaff-Saalschütz sum \cite[Appendix, II.12]{19}}, \]
we get
\[
\beta_n = \frac{(a^2b^2;q^2)_n(a^2; q)_nq^n}{(a^2b^2; q)_n(q;q)_n},
\]
\[
\gamma_n = \frac{(c^2; q^2)_N(a^2; q^2)_n(q^{-N};q)_n q^{-n^2}}{(ac, -c/a; q)_N(c^2; q^2)_n(q^{2-2N}/c^2; q^2)_n(-a^2)^n}.
\]
Putting these values in (2.2), we obtain the result (3.1). \hfill \Box

Proof of (3.2). Choosing
\[
\alpha_r = \frac{q^{(1+2N)r-r^2}(c/a)^{2r}}{(b^2; q^2)_r(q^2; q^2)_r}, \quad u_r = \frac{q^{N_2+2r}(c/a)^r}{(q;q)_r}, \quad t_r = q^{-r^2},
\]
\[
\delta_r = \frac{(a, q^{-N}; q)_r}{(c; q)_r},
\]
\[\nu_r = w_r = 1, \quad \rho = 2 \text{ in (2.1), and making use of the } q\text{-Chu-Vandermonde sums \cite[Appendix, II.6,7]{19}}, \]
we get
\[
\beta_n = \frac{(b^2; q^2)_n q^{-n(n-1)/2}(cq^N/a)_n}{(b^2; q)_n(q;q)_n},
\]
\[
\gamma_n = \frac{(c/a; q)_N(a, q^{-N};q)_n q^{n^2+n(1-2N)}}{(c; q)_N(aq^{-N+1}/c; q)_n}. \hfill \Box
\]

Proof of (3.3). Choosing
\[
\alpha_r = \frac{(b; q)_r q^{r^2+3r^2/2} a^r}{(-ab; q)_r(q;q)_r}, \quad u_r = \frac{q^r}{(q^2; q^2)_r}, \quad w_r = (a; q)_r,
\]
\[
\delta_r = \frac{(q^{-2N}; q^2)_r}{(acq, aq^{2-2N}/c; q^2)_r},
\]
ν_r = t_r = z_r = 1, and p = 2 in (2.6), and making use of the q-Pfaff-Saalschütz sum [19, Appendix, II.12], we get
\[
\beta_n = \frac{(a^2;q^2)_n(bq/a)_n}{(a^2b^2;q^2)_n}, \quad \gamma_n = \frac{(c;q)_{2N}(a;q)_n(q^{-2N};q^2)_nq^{-n(n+1)/2}}{(acq/c;a;q^2)_N(c;q)_n(q^{1-2N}/c;q^2)_n(a^n)}. \tag{3.11}
\]
Putting these values in (2.7), we obtain the result (3.3). □

Proof of (3.4). Choosing
\[
\alpha_r = \frac{(a,q^2\sqrt{a},-q^2\sqrt{a},a^2/b^2;q^2)_r(q^2/b/a)_r}{(\sqrt{a},-\sqrt{a},q^2b^2/a^2;q^2)_r}, \quad u_r = \frac{(b/a;q)_r}{(q;q)_r}, \quad w_r = \frac{(b;q)_r}{(aq;q)_r},
\]
\[
\delta_r = \frac{(q\sqrt{b},-q\sqrt{b},c,d,abq^{1+N}/cd,q^{-N};q)_r}{(\sqrt{b},-\sqrt{b},qb/c,qb/d,cdq^{-N}/a,bq^{1+N};q)_r}, \tag{3.12}
\]
ν_r = t_r = 1, and p = 2 in (2.1), and making use of the Jackson’s 8₅Φ₇ sum [19, Appendix, II.22], we get
\[
\beta_n = \frac{(a^2/b^2,q)_n(b^2q/a;q^2)_2n(bq/a)_n}{(aq;q^2)_n(qb^2/a,q;q^2)_n}, \quad \gamma_n = \frac{(bq,aq/c,aq/d,bq/cd,q^{1+N}/cd,q^{-N};q)_2n}{(a^2q,bq/c,bq/d,a^2q/cd;q)_N(qq^2/c,aq^2/d,cdq^{-N}/a,bq^{1+N}/q)_2n}(a/b)^{2n}. \tag{3.13}
\]
Putting these values in (2.2), we obtain the result (3.4). □

Proof of (3.5). Choosing
\[
\alpha_r = \frac{(a^3,q^3\sqrt{a^3},-q^3\sqrt{a^3};q^3)_rq^{3(3r+1)/2}(-a^3)^r}{(\sqrt{a^3},-\sqrt{a^3},q^3;q^3)_r}, \quad u_r = \frac{q^r}{(q;q)_r}, \quad w_r = \frac{1}{(a^3;q)_r},
\]
\[
\delta_r = \frac{(b,c,q^{-N};q)_r}{(bcq^{-N}/a^3;q)_r}, \tag{3.14}
\]
ν_r = t_r = 1, and p = 3 in (2.1), and making use of the 6₅Φ₅ sum and q-Pfaff-Saalschütz sum [19, Appendix, II.20,12], respectively, we get
\[
\beta_n = \frac{(a^3;q^3)_nq^n}{(a^3;q)_n}, \quad \gamma_n = \frac{(a^3/b,a^3q/c;q)_N(b,c,q^{-N};q)_3nq^{-3n(3n-1)/2}(-1)^n}{(a^3q/b,a^3q/c,a^3q^{1+N};q)_3n}(a^3q^{3n}/bc). \tag{3.15}
\]
Putting these values in (2.2), we obtain the result (3.5). □
4. New ordinary hypergeometric identities

In this section, seven new and interesting ordinary hypergeometric identities are obtained, from the extended Bailey’s transform quoted in Section 2. The seven transformations are as follows:

\[
\begin{align*}
\text{4. New ordinary hypergeometric identities} \\
\text{In this section, seven new and interesting ordinary hypergeometric identities are obtained, from the extended Bailey’s transform quoted in Section 2. The seven transformations are as follows:}

\[\begin{align*}
\text{4. New ordinary hypergeometric identities} \\
\text{In this section, seven new and interesting ordinary hypergeometric identities are obtained, from the extended Bailey’s transform quoted in Section 2. The seven transformations are as follows:}
\end{align*}\]
\[
\begin{align*}
&\begin{bmatrix}
a,1+\frac{a}{2},b,1&+2a-d,d-a,1+3a-d+N, \\
\frac{a}{2},1+a-b,1&+b+d-a,1+2a-d,d-2a-N,
\end{bmatrix} \\
&\begin{bmatrix}
\triangle (3;d), & \triangle (2;-N) \\
\triangle (3;1+3a-d), & \triangle (2;1+2a+N);-1
\end{bmatrix}
\end{align*}
\]
\begin{equation}
(4.6)
\end{equation}

\[
= \frac{(1+2a) N(1+3a-2d) N}{(1+2a-d) N(1+3a-d) N} \cdot 5F4 \begin{bmatrix}
b,b+d-a,1&+a-b,2d-2a,-N \\
\frac{1}{2}+a,1+2a-2b,2d+b-2a,2d-3a-N
\end{bmatrix};1,
\end{equation}
\begin{equation}
(4.7)
\end{equation}

Proof of (4.1). Choosing \(\alpha_r = (-1/4')/(d)_r(3/2+3a-d)_r r! \), \(u_r = 1/r! \), \(\delta_r = (-N)_r/(c)_r \), \(t_r = (3a)_r \), and \(v_r = w_r = z_r = 1 \) in (2.6), and using the Vandermonde and Saalschütz sum [29, Appendix, III.4.2] to simplify the \(\gamma_n \) and \(\beta_n \), and putting these in (2.7), we obtain (4.1).

Proof of (4.2). Choosing \(\alpha_r = (a)_r(f-w-a)_r(1/4')/(r')! \), \(u_r = (1/4')/(r')! \), \(v_r = 1/(f')_r \), \(w_r = (w)_r \), \(\delta_r = t_r = z_r = 1 \) and \(p = 2 \) in (2.6), and using the Saalschütz and the Gauss sum [29, Appendix, III.2.3] to simplify the \(\gamma_n \) and \(\beta_n \), and putting these in (2.7), we obtain (4.2).

Proof of (4.3). Choosing \(\alpha_r = (1+v-2w)/(r')! \), \(u_r = 1/r! \), \(\delta_r = (1+v/2)_r(d)/(1/2+2v-w-d+N)_r(-N)_r/(v/2)_r(1+v-d)_r(1/2-v+w+d-N)_r(1+v+N)_r \), \(w_r = (w)_r \), \(v_r = (v)_r \), \(z_r = 1/(1+2v-w)_r \), \(t_r = 1 \), and \(p = p' = 2 \) in (2.6), and using the Saalschütz and Dougall sum [29, Appendix, III.2.14] to simplify the \(\gamma_n \) and \(\beta_n \), and putting these in (2.7), we obtain (4.3).

Proof of (4.4). Choosing \(\alpha_r = (1/4')/(r')! \), \(u_r = 1/r! \), \(\delta_r = (d)/(r)(-N)_r \), \(v_r = 1/(f+1/2)_r \), \(t_r = w_r = 1 \) and \(p = 2 \) in (2.1), and using the Vandermonde sum [29, Appendix, III.4] to simplify the \(\gamma_n \) and \(\beta_n \), and putting these in (2.2), we obtain (4.4).

Proof of (4.5). Choosing \(\alpha_r = (1/4')/(r)(3/2+v-h)_r r! \), \(u_r = 1/r! \), \(\delta_r = (-N)_r \), \(v_r = (v)_r \), \(t_r = w_r = 1 \), and \(p = 2 \) in (2.1), and using the Saalschütz and Vandermonde sum [29, Appendix, III.2.4] to simplify the \(\gamma_n \) and \(\beta_n \), and putting these in (2.2), we obtain (4.5).
Proof of (4.6). Choosing \(\alpha_r = (a)_r(1 + a/2)(b)_r(1/2 + 2a - b - d)_r/(a/2)_r(1 + a - b), (1/2 - a + b + d)_r, \) \(u_r = 1/r!, \) \(\delta_r = (-N)_r/(2d - 3a - N)_r, \) \(\nu_r = (d)_r, \) \(t_r = (d - a)_r, \) \(w_r = 1/(1 + 2a)_r, \) and \(p = 2 \) in (2.1), and using the Dougall and Vandermonde sum [29, Appendix, III.14,4] to simplify the \(\gamma_n \) and \(\beta_n, \) and putting these in (2.2), we obtain (4.6).

Proof of (4.7). Choosing \(\alpha_r = (1/27)^r/(a)_r, \) \(u_r = 1/r!, \) \(\delta_r = (-N)_r/(b)_r, \) \(t_r = (a)_r, \) \(\nu_r = w_r = 1, \) and \(p = 3 \) in (2.1), and using the Saalschütz and Vandermonde sum [29, Appendix, III.2,4] to simplify the \(\gamma_n \) and \(\beta_n, \) and putting these in (2.2), we obtain (4.7).

5. A note on \(q \)-analogues of (4.1) to (4.7)

As mentioned in introduction, now we will illustrate the fact about \(q \)-analogs of (4.1).

We choose

\[
\alpha_r = \frac{q^{(r^2+3r)/2}(-1)^r}{(a^6q^3/d^2,d^2,q^2;q^2)_r}, \quad u_r = \frac{q^r}{(q;q)_r}, \quad \delta_r = \frac{(q^{-N};q)_r}{(c;q)_r}, \quad t_r = (a^3;q)_r
\]

(5.1)

and \(\nu_r = w_r = z_r = 1. \) Using these in (2.6), we get

\[
\beta_n = \sum_{r=0}^{n} \frac{(a^3;q)_{2r+n}(q^{-n};q)_r}{(a^6q^3/d^2,d^2,q^2)_r(c;q)_n},
\]

(5.2)

\[
y_n = \sum_{r=0}^{N} \frac{(a^3;q)_{3n+r}(q^{-N};q)_{n+r}q^r}{(c;q)_{n+r}(q;q)_r}.
\]

Now \(y_n \) can be simplified by the Vandermonde sum, but to simplify \(\beta_n, \) we will have to sum the following \(\psi \Phi_3 \) \(q \)-hypergeometric series, having one parameter of base \(q \) and remaining parameters of base \(q^2 \) with a special argument, namely,

\[
\sum_{r=0}^{n} \frac{(a^3q;q)_r(a^3q^{n+1};q^2)_r(q^{-n};q)_{n+r}(q^{nr+r})}{(a^6q^3/d^2,d^2,q^2;q^2)_r},
\]

(5.3)

which is not possible from available summation theorems. Similar difficulty arises with all the other choices of \(\alpha_r, \delta_r, u_r, \nu_r, \) and so forth, selected in order to obtain the \(q \)-analogs of identities (4.1) to (4.7).

6. Particular cases and applications of investigated identities

(i) As \(q - 1 \) in (3.1) to (3.5), one obtains corresponding new ordinary hypergeometric identities (6.1) to (6.5), noted as below:

\[
\psi \Phi_3 \left[\begin{array}{c} a, b, \delta (2; -N) \\ \frac{1}{2} + a + b, c, 1 - c - N \end{array} \right] = \frac{(a + c)_N}{(c)_N} \cdot \psi \Phi_2 \left[\begin{array}{c} a + b, 2a - N \\ 2(a + b), a + c \end{array} \right],
\]

(6.1)
Extensions of Bailey’s transform and applications

\[
\begin{align*}
&\text{1918 Extensions of Bailey’s transform and applications} \\
&\frac{\Delta(2;a), \Delta(2;-N)}{1 + b, \Delta(2;1 + a - c - N)}; 1 = \frac{(c)_N}{(c - a)_N} \cdot \frac{3F_2}{3F_2} \left[a, b, -N \quad 2b, c ; 2 \right], \\
&\quad \text{for } a + b + c + d = 1, \quad c + d = 1. \\
&\quad \text{for } a + b + c + d = 1, \quad c + d = 1. \\
&\quad \text{for } a + b + c + d = 1, \quad c + d = 1. \\
\end{align*}
\]

(ii) When \(b = 1/\sqrt{q} \) in (3.1), the \(4F_3(q^2) \) on the left becomes \(3\Phi_2 \) and can be summed by \(q \)-Pfaff-Saalschütz sum [19, Appendix, II.2] to have

\[
\begin{align*}
&\text{with } \frac{a}{\sqrt{q}}, -\frac{a}{\sqrt{q}}, a^2, q^{-N} \quad \text{and } \frac{a^2}{q}, ac, -\frac{aq}{c}^{1-N} ; q, q \\
&\quad \text{on the left becomes } \frac{a}{\sqrt{q}}, -\frac{a}{\sqrt{q}}, a^2, q^{-N} \quad \text{and } \frac{a^2}{q}, ac, -\frac{aq}{c}^{1-N} ; q, q. \\
\end{align*}
\]
And when \(c = b/q \) in (3.3), the \(4\Phi_3(q^2) \) on the right gets converted into \(3\Phi_2 \) and can be summed by \(q \)-Pfaff-Saalschütz sum [19, Appendix, II.2] to have

\[
4\Phi_3 \left[\frac{a,b,-q^{-N},q^{-N}}{ab, b - q^{-2N}; q, q} \right] = \frac{(ab,ab/q,b^2;q^2)_N}{(b,b/q,a^2b^2;q^2)_N}. \tag{6.7}
\]

Equations (6.6) and (6.7) provide two new \(q \)-summation theorems for a Saalschützian \(4\Phi_3 \). Further, by applying Sear’s \(4\Phi_3 \) transformation [19, Appendix, III.15] and Watson’s \(8\Phi_7 \) transformation [19, Appendix, III.17], on the \(4\Phi_3 \)’s of (6.6) and (6.7), one can develop a number of summation formulae.

(iii) In this section we will obtain the new double-series Rogers-Ramanujan-type identities of modulo 81, from our investigated \(q \)-hypergeometric transformation (3.5), which connect a very well-poised \(12\Phi_{11} \) of base \(q^4 \) with a Saalschützian \(6\Phi_5 \) of base \(q^6 \).

Jain [22] also derived such double-series Rogers-Ramanujan-type identities of other moduli using his own investigated \(q \)-hypergeometric transformation connecting a \(4\Phi_3 \) of base \(q^4 \) and the classical Bailey’s transform. However, we will derive our identities on the line of Jain [22] but will make use of the \(q \)-hypergeometric transformation (3.5) and the extended Bailey’s transform given in Theorem 2.1 of this paper. Incidently, the investigation of these identities matches with the intuitive feelings of Agarwal mentioned in a presidential address [1, page 7].

First, we will derive a transformation (6.8) using (3.5) and Theorem 2.1. This transformation (6.8) on specialization yields the double-series Rogers-Ramanujan-type identities of modulo 81:

\[
(a^9 q^3; q^3)^\infty \sum_{N=0}^{[N/3]} \sum_{k=0}^{[N/3]} \frac{(a^3 q^3) \left[(a^3 q^3) k (q^{-3N}; q^3)_k q^{3(N+1)+3N(1-p)+k} a^{9N} \right]}{(q^3 q^3)_N (a^9 q^3 q^3)_{2N} (a^3 q^3)^2 (q^{-3N}/a^3 q^3)_k (q^3 q^3)_k (1+3p+3q^6+18N+3r/2+3s/2+81N^2/2−3N/2−9N)}
\]

\[
= \sum_{N=0}^p \frac{(a^3 q^3)_N (1−a^3 q^6N) (q^{-3N}; q^3) a^{9N+9S} q^{18N+3r/2+3s/2+81N^2/2−3N/2−9N}}{(q^3 q^3)_N (1−a^3) (q^3 q^3)_S (−1)^{N+S}} \tag{6.8}
\]

Proof of (6.8). Setting \(b = \omega q^{-N}, c = \omega^2 q^{-N} \) in (3.5), we get

\[
\sum_{k=0}^{[N/3]} \frac{(a^3 q^3)_k (1−a^3 q^6k) a^{27k} q^{27k^2/2−3k/2} \left(1−a^3 (a^9 q^3 q^3)_{N+3k} (q^3 q^3)_{N−3k} \right)}{(a^3 q^3)_{3N} (a^9 q^3 q^3)_{2N} (a^3 q^3)^2 (q^{-3N}/a^3 q^3)_k (q^3 q^3)_k (q^3 q^3)_k k^k} \tag{6.9}
\]
Now in extended Bailey's transform, that is, Theorem 2.1, choosing
\[
u_k = \frac{1}{(q^3;q^3)_k}, \quad w_k = \frac{1}{(a^9q^3)_k}, \quad \alpha_k = \frac{(a^3;q^3)_k(1 - a^3q^{6k})q^{12k}q^{27k^2/2 - 3k/2}}{(q^3;q^3)_k(1 - a^3)},
\]
\[\delta_k = \frac{(x;q^3)_k(y;q^3)_ka^9q^{3k(1-p)}}{x^k y^k}
\]
and evaluating \(\beta_N \) and \(\gamma_N \) by using (6.9) and the following transformation formula [22, equation (3.11)]
\[
\Phi \left[\frac{a, b, c}{e, ab; q} \right] = \frac{(e/a, e/b; q)_\infty}{(e, e/ab; q)_\infty} 3\Phi_2 \left[\frac{a, b, c}{abq/e, 0; q, q} \right]
\] (6.11)

(where, either \(a, b, \) or \(c \) is of the form \(q^{-p} \), \(p \) a nonnegative integer. In case only \(c \) is of the form \(q^{-p} \) then (6.11) is valid only if \(| ec/ab | < 1 \), we get (6.8) on letting \(x, y \to \infty \)).

6.1. The double series Rogers-Ramanujan type identities of modulo 81. Now (6.8) for \(a = 1, \ p = 0 \) yields
\[
(q^3;q^3)_\infty \sum_{N,k=0}^{\infty} \frac{(q;q)_{3N+8k}q^{3N^2+18Nk+28k}}{(q^2; q^2)_{2k-1}(q^3; q^3)^N q^{2k}(1 - q^{3k})(q^3; q^3)^{2N+6k}}
\]
\[= \prod_{N=1}^{\infty} (1 - q^{81N-42})(1 - q^{81N})(1 - q^{81N-39})
\]
(6.12)

But (6.8), for \(a = 1, \ p = 1 \), gives
\[
(q^3;q^3)_\infty \sum_{N,k=0}^{\infty} \frac{(q;q)_{3N+8k}q^{3N^2+18Nk+28k^2-3N-9k}}{(q^2; q^2)_{2k-1}(q^3; q^3)^N q^{2k}(1 - q^{3k})(q^3; q^3)^{2N+6k}}
\]
\[= \prod_{N=1}^{\infty} (1 - q^{81N-51})(1 - q^{81N})(1 - q^{81N-30})
\] + \[\prod_{N=1}^{\infty} (1 - q^{81N-48})(1 - q^{81N})(1 - q^{81N-33})
\]
(6.13)

On the other hand, (6.8), for \(a = q, \ p = 0 \), reduces to
\[
(q^{12}; q^3)_\infty \sum_{N,k=0}^{\infty} \frac{(q^4;q)_{3N+8k}q^{3N^2+18Nk+28k^2+9N+27k}}{(q^3; q^2)_{2k}(q^3; q^3)^N q^{12k}(q^3; q^3)^{2N+6k}}
\]
\[= \prod_{N=1}^{\infty} (1 - q^{81N-3})(1 - q^{81N})(1 - q^{81N-78})
\]
(6.14)

The Rogers-Ramanujan-type identities of modulo 27 [29, equations (7.3.1.20), (7.3.1.17)] also follow directly from our cubic \(q \)-transformation (3.5) by letting \(b \to \infty, \ c \to \infty, \ N \to \infty \) in it and using Jacobi triple product identity, after setting \(a = 1 \) and \(a = q \).
(iv) When in (3.1), we replace \(c \) by \(ax \), it becomes (6.15) and when in (3.2), we select \(c = ax \), it becomes (6.16) as given below:

\[
\begin{align*}
4\Phi_3\left[\begin{array}{c}
 a^2, b^2, q^{-N+1}, q^{-N} \\
 a^2 b^2 q, a^2 x^2, \frac{q^{2-2N}}{a^2 x^2}
\end{array} ; q^2, q^2 \right] & = \left(\frac{-a^2 x, x; q}{(a^2 x^2; q^2)_N} \right) \cdot 4\Phi_3\left[\begin{array}{c}
 a^2, ab, -ab, q^{-N} \\
 a^2 b^2, a^2 x, -q^{1-N} / x
\end{array} ; x, q \right] \\
\begin{aligned}
4\Phi_3\left[\begin{array}{c}
 a, aq, q^{-N+1}, q^{-N} \\
 b^2 q, q^{-N+1}, \frac{q^{-N+2}}{x}, q^2, q^2
\end{array} ; q, x \right] & = \left(\frac{ax; q}{(x; q)_N} \right) \cdot 4\Phi_2\left[\begin{array}{c}
 a, b, -b, q^{-N} \\
 b^2, ax, \frac{q}{x}, xq^{-N}
\end{array} ; q \right].
\end{aligned}
\end{align*}
\]

(6.15) (6.16)

The results (6.15) and (6.16) provide generalizations or discrete extensions of the results of Jain [20, equation (3.7.1.3)] and [18, equation (3.7.1.5), page 88], which are the \(q \)-analog of the quadratic transformations of Gauss for \(2F_1 \).

The identity (4.1) is a discrete extension of Bailey’s cubic transformation for a \(3F_2(z) \) [17, page 190, equation (2)], which follows from (4.1), on replacing \(N \) by \(Nz \) and \(c \) by \(-N\) and letting \(Nz \to +\infty \) through integer values of \(Nz \) with \(z \) fixed and \(0 < z < 1 \), and then using analytic continuation with respect to \(z \). Further, in the same way, two of our ordinary hypergeometric identities (4.5) and (4.7) lead to two new quadratic-cubic transformations (6.17) and (6.18), respectively, as described below.

Let \(v = a, h = b + (1/2), \) replace \(N \) by \(Nz \) and \(g \) by \(-N \) in (4.5), and then letting \(Nz \to +\infty \) through integer values of \(Nz \) with \(z \) fixed and \(0 < z < 1 \), and then using analytic continuation with respect to \(z \), we get

\[
(1 - z)^{-a} 3F_2\left[\begin{array}{c}
 a, a + 1, a + 2 \\
 3, 3, 3
\end{array} ; \frac{27z^2}{b + \frac{1}{2}, 1 + a - b} / 4(1 - z)^3 \right] = 3F_2\left[\begin{array}{c}
 a, b, \frac{1}{2} + a - b \\
 2b, 1 + 2a - 2b / 4z
\end{array} ; 4z \right]. \tag{6.17}
\]

Similarly, replacing \(N \) by \(Nz \) and \(b \) by \(-N \) in (4.7), and letting \(Nz \to +\infty \) through integer values of \(Nz \), and proceeding as above, we get

\[
(1 - z)^{-a} 2F_1\left[\begin{array}{c}
 a, a + 1 \\
 2, 2
\end{array} ; \frac{4z^3}{27(1 - z)^2} \right] = 3F_2\left[\begin{array}{c}
 a, \frac{3a}{2} - 1, \frac{3a - 3}{2} \\
 a - 1, 3a - 2 / z^3 \right]. \tag{6.18}
\]

Further, (6.18) may be used, with an algebraic expression for a particular \(2F_1 \) [24, page 70, Example 10], to have an algebraic expression for a particular \(3F_2 \) as below:

\[
3F_2\left[\begin{array}{c}
 a, 3a - 1, 3a - 3/2 \\
 2a - 1, 6a - 2
\end{array} ; y \right] = \frac{1}{(1 - y)\sqrt{1 - 4y}} \cdot \frac{2}{1 - 3y + (1 - y)\sqrt{1 - 4y}}^{2a-1}. \tag{6.19}
\]
Extensions of Bailey’s transform and applications

Equation (6.19) would be as useful in obtaining generating functions as the formula in [24, page 70, Example 10], see [24, page 137] and also [23, page 85–88].

7. Conclusion

In conclusion, this paper illustrates the concept of extensions of Bailey’s transform and its use in obtaining hitherto undiscovered ordinary and q-hypergeometric identities with their particular cases of interests. This is not the end because these extensions will, certainly, explore many more new and useful results. For example, the study of these extensions on the line of Andrews [10] and Bressoud et al. [15] and, further, additional results from these extensions will form the subject matter of our subsequent communications.

Acknowledgments

It is a pleasure to thank Professor G. E. Andrews for the very useful comments that helped to bring out the paper in its present form. Yashoverdhan Vyas expresses his sincere thanks to the Council of Scientific and Industrial Research, New Delhi, India for providing the Senior Research Fellowship.

References

C. M. Joshi: 106 Arihant Nagar, Kalka Mata Road, Udaipur-313 001, Rajasthan, India

Yashoverdhan Vyas: Department of Mathematics and Statistics, Maharana Bhupal College of Science, Mohanlal Sukhadia University, Udaipur-313 001, Rajasthan, India

E-mail address: yashoverdhan@rediffmail.com
Submit your manuscripts at http://www.hindawi.com