THE INCIDENCE CHROMATIC NUMBER OF SOME GRAPH

LIU XIKUI AND LI YAN

Received 1 April 2003 and in revised form 5 December 2003

The concept of the incidence chromatic number of a graph was introduced by Brualdi and Massey (1993). They conjectured that every graph G can be incidence colored with $\Delta(G) + 2$ colors. In this paper, we calculate the incidence chromatic numbers of the complete k-partite graphs and give the incidence chromatic number of three infinite families of graphs.

1. Introduction

Throughout the paper, all graphs dealt with are finite, simple, undirected, and loopless. Let G be a graph, and let $V(G)$, $E(G)$, $\Delta(G)$, respectively, denote vertex set, edge set, and maximum degree of G. In 1993, Brualdi and Massey [3] introduced the concept of incidence coloring. The order of G is the cardinality $|v(G)|$. The size of G is the cardinality $|E(G)|$. Let

$$I(G) = \{(v,e) \mid v \in V, e \in E, v \text{ is incident with } e\} \quad (1.1)$$

be the set of incidences of G. We say that two incidences (v,e) and (w,f) are adjacent provided one of the following holds:

(i) $v = w$;
(ii) $e = f$;
(iii) the edge $vw = e$ or $vw = f$.

Figure 1.1 shows three cases of two incidences being adjacent.

An incidence coloring σ of G is a mapping from $I(G)$ to a set C such that no two adjacent incidences of G have the same image. If $\sigma : I(G) \rightarrow C$ is an incidence coloring of G and $|C| = k$, k is a positive integer, then we say that G is k-incidence colorable.
The minimum cardinality of C for which there exists an incidence coloring $\sigma : I(G) \to C$ is called the incidence chromatic number of G, and is denoted by $\text{inc}(G)$. A partition $\{I_1, I_2, \ldots, I_k\}$ of $I(G)$ is called an independence partition of $I(G)$ if each I_i is independent in $I(G)$ (i.e., no two incidences of I_i are adjacent in $I(G)$). Clearly, for $k' \geq \text{inc}(G)$, G is k'-incidence colorable.

We may consider G as a digraph by splitting each edge uv into two opposite arcs (u, v) and (v, u). Let $e = uv$. We identify (u, e) with the arc (u, v). So $I(G)$ may be identified with the set of all arcs $A(G)$. Two distinct arcs (incidences) (u, v) and (x, y) are adjacent if one of the following holds (see Figure 1.2):

1. $u = x$;
2. $u = y$ and $v = x$;
3. $v = x$.

This concept was first developed by Brualdi and Massey [3] in 1993. They posed the incidence coloring conjecture (ICC), which states that for every graph G, $\text{inc}(G) \leq \Delta + 2$. In 1997, Guiduli [5] showed that incidence coloring is a special case of directed star arboricity, introduced by Algor and Alon [1]. They pointed out that the ICC was solved in the negative following an example in [1]. Following the analysis in [1], they showed that $\text{inc}(G) \geq \Delta + \Omega(\log \Delta)$, where $\Omega = 1/8 - o(1)$. Making use of a tight upper bound for directed star arboricity, they obtained the upper bound $\text{inc}(G) \leq \Delta + O(\log \Delta)$.

Brualdi and Massey determined the incidence chromatic numbers of trees, complete graphs, and complete bipartite graphs [3]; Chen, Liu, and Wang determined the incidence chromatic numbers of paths, cycles, fans, wheels, adding-edge wheels, and complete 3-partite graphs [4].

In this paper, we will consider the incidence chromatic number for complete k-partite graphs. We will give the incidence chromatic number of complete k-partite graphs, and also give the incidence chromatic number of three infinite families of graphs. Let k be a positive integer, put $[k] = 1, 2, \ldots, k$. We state first the following definitions.

Definition 1.1. For a graph $G(V, E)$ with vertex set V and edge set E, the incidence graph $I(G)$ of G is defined as the graph with vertex set $V(I(G))$ and edge set $E(I(G))$.

Definitions not given here may be found in [2].
2. Some useful lemmas and properties of incidence chromatic number

Lemma 2.1. Let T be a tree of order $n \geq 2$ with maximum degree Δ. Then $\text{inc}(T) = \Delta + 1$.

Lemma 2.2. A graph G is k-incidence colorable if and only if its incidence graph $I(G)$ is k-vertex colorable, that is, $\chi(I(G)) = k$.

Let $M = \{(ue, ve) \mid e = uv \in E(G), (ue, ve) \in E(I(G))\}$, then M forms a perfect matching of incidence graph $I(G)$. The following lemmas are obvious.

Lemma 2.3. The incidence graph $I(G)$ of a graph G is a graph with a perfect matching.

Lemma 2.4. For a graph G, $v \in V(G)$, let $B_v = \{(u, uv) \mid uv \in E(G), u \in V(G)\}$, $A_v = \{(v, vu) \mid uv \in E(G), u \in V(G)\}$, then $\{B_v\}$ is an independence-partition of incidence graph $I(G)$, and the induced subgraph $G[A_v]$ of $I(G)$ is a clique graph.

By the definition of incidence graph, it is easy to give the proof.

Lemma 2.5. Let Δ be the maximum degree of graph G, $I(G)$ the incidence graph, then complete graph $K_{\Delta+1}$ is a subgraph of $I(G)$.

Proof. Let $d(u) = \Delta$, $p = \Delta$, and $e_1 = uv_1, e_2 = uv_2, \ldots, e_p = uv_1$ be the edges of G. p incidences in $I_\Delta = \{(u, e_1), (u, e_2), \ldots, (u, e_p)\}$ are adjacent to each other. For an incidence in $I_v = \{(v, u) \mid uv_i \in E(G), 1 \leq i \leq p\}$, (v, u) is adjacent to all incidences in I_Δ. Since $p + 1$ incidences $(u, e_2), \ldots, (u, e_p)$ are vertices of $I(G)$, by the definition of incidence graph, we can complete the proof. \qed

Lemma 2.6. For a simple graph G with order n, $\text{inc}(G) = n = \Delta(G) + 1$, when $\Delta(G) = n - 1$.

Proof. Let $|V(G)| = \Delta + 1 = v(G)$, by Lemma 2.4, B_v is an independence-partition of incidence graph $I(G)$, then $\chi(I(G)) \leq v(G)$. By Lemma 2.5, $K_{\Delta+1}$ is the subgraph of $I(G)$, thus $\chi(I(G)) \geq v(G)$, then $\text{inc}(G) = \chi(I(G)) = \Delta + 1$, as required. \qed

The following corollaries can be easily verified.

Corollary 2.7. Let G be a graph with order $n (n \geq 2)$, then $\text{inc}(G) \leq \Delta + 2$, when $\Delta(G) = n - 2$.

![Figure 1.2. Cases of two arcs (incidences) are adjacent.](image)
In fact, for graphs G with order n, we can give each incidence in $I(G)$ proper incidence coloring as follows. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ be the vertex set and $C = \{1, 2, \ldots, n\}$ the color set. For $i, j = 1, 2, \ldots, n$, we let $\sigma(v_i, v_j) = j$. It is easy to see that the coloring above is an incidence coloring of G only with n colors. That is, $\text{inc}(G) \leq \Delta + 2$, when $\Delta \geq n - 2$.

Corollary 2.8. Let W_n be the wheel graph with order $n + 1$. Then $\text{inc}(W_n) = n + 1$.

Lemma 2.9. Let H be a subgraph of G, then $\text{inc}(H) \leq G$.

Lemma 2.10. Let G be union of disjoint graphs G_1, G_2, \ldots, G_t. If G_i has an m-incidence coloring for all $i = 1, 2, \ldots, t$, then G has an m-incidence coloring. That is $\text{inc}(G) = \max\{\text{inc}(G_i) \mid i = 1, 2, \ldots, t\}$.

Proof. To prove this lemma, we only need to prove that $G_1 \cup G_2$ has an m-incidence coloring. Let $\{I_1, I_2, \ldots, I_m\}$ be an independence partition of $I(G_1)$, and $\{I'_1, I'_2, \ldots, I'_m\}$ an independence partition of $I(G_2)$. Then $\{I_1 \cup I'_1, I_2 \cup I'_2, \ldots, I_m \cup I'_m\}$ forms an independence-partition of $I(G_1) \cup I(G_2)$. Hence G has an m-incidence coloring. The proof of the lemma is complete.

Theorem 2.11. Let G be a graph with maximum degree $\Delta(G) = n - 2$ and minimum degree $\delta(G) \leq \lceil n/2 \rceil - 1$, then $\text{inc}(G) = n - 1 = \Delta(G) + 1$.

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$, $d(v_1) = \delta(G)$, and $u \notin V(G)$. Consider the auxiliary graph G' with vertex set $V(G') = V(G) \cup \{u\}$ and edge set $E(G') = E(G) \cup \{uv_i \mid i = 2, 3, \ldots, n\}$. It follows that $\Delta(G') = n - 1$. Let $G'' = G' - \{v_1\}$, then $\Delta(G'') = n - 1$, by Lemma 2.5, $\text{inc}(G'') = n$. For color set $C = \{1, 2, \ldots, n\}$, suppose that σ' is the n-incidence coloring of G'' with color set C. Without loss of generality, let $\sigma'(v_i, v_iv_j) = j (v_i, v_j \in E(G))$ and $\sigma'(v_i, v_iu) = 1 (i = 2, 3, \ldots, n)$, $\sigma'(u, uv_i) = i (i = 2, 3, \ldots, n)$. In incidence set $I(G)$, incidences $(v_i, v_iv_j) (i, j = 2, 3, \ldots, n, i \neq j)$ are all adjacent to (v_i, v_iu) and (v_j, v_iu), thus the color n cannot be used to color any incidence in $I(G'' - \{u\})$. Denote by $N(v_1) = \{v_1, v_2, \ldots, v_i\}$ the vertices adjacent to v_1. The incidence coloring σ' of graph G' may be extended to an incidence coloring σ of graph G. For $x, y \notin \{v_1\} \cup N(v_1)$, let $\sigma(x, xy) = \sigma'(x, xy)$. Because $\Delta(G) = n - 2$, for vertex $v_k (k = 1, 2, \ldots, \delta)$, there exists a vertex $v_k \in V(G)$ such that $v_kv_k \notin E(G)$. Let $\sigma(v_k, v_kv_1) = t_k$. At last, we give incidences $(v_1, v_1v_k) \in I(G) (k = 1, 2, \ldots, \delta)$ the color used to color incidence $(u, uv_1) \in I(G'') (i = 2, 3, \ldots, n)$. Since $d(v_1) = \delta \leq \lceil n/2 \rceil - 1$, then $2d(v_1) \leq 2\lceil n/2 \rceil - 2 \leq n - 2$, that is, $d(v_1) \leq n - 2 - d(v_1)$, thus we can select $d(v_1)$ colors to incidence color, thus σ is a proper n-incidence coloring of G. The proof is completed.

For the general case, using the way similar to Theorem 2.11, we can give a stronger result.

Theorem 2.12. For graph G with order n and maximum degree $\Delta(G) = n - k$, $\text{inc}(G) = n - k + 1 = \Delta(G) + 1$, when minimum degree $\delta(G) \leq \lceil (n - k + 2)/2 \rceil - 1$.

For a graph G, if there exists two vertices $u, v \in V(G) \setminus v_1$ such that $d(u) = n - 3, d(v) \leq n - 4$, and $uv \notin E(G)$, we say that G is with the property P.
Theorem 2.13. For graph G with order n and maximum degree $\Delta(G) = n - 3$, inc(G) $\leq \Delta(G) + 2(n \geq 4)$, when minimum degree $\delta(G) \leq \lfloor n/2 \rfloor - 1$.

Proof. By $V_n = \{v_1, v_2, \ldots, v_n\}$ we denote a labeling of the vertices of G and let $d(v_1) = \delta(G)$. For $n = 4, 5$, the desired result follows from Lemma 2.1. For the case $n \geq 6$, the proof can be divided into two cases.

Case 1. G is with the property P. Consider the auxiliary graph $G' = G + uv$. Since $\Delta(G') = n - 2$ and $\delta(G') \leq \lfloor n/2 \rfloor - 1$, by Theorem 2.11, inc($G'$) = $n - 1 = \Delta(G') + 1$. Thus inc(G) \leq inc(G') = $\Delta(G) + 2$.

Case 2. G not with the property P. For two vertices $u, v \in V(G) \backslash v_1$, let $V_1(G) = \{v \in V(G) \mid d_G(v) = n - 3\}$ and $V_2(G) = (V(G) \backslash \{V_1(G) \cup \{v_1\})$.

Subcase 1. $V_2(G) = \emptyset$. Let $w \notin V(G)$ and $G' = G + w + \{vw \mid v \in V_1(G)\}$, then $\Delta(G') = n - 1$ and $\delta(G') \leq \lfloor n/2 \rfloor - 1$. By Theorem 2.11, using similar methods as in the proof of Theorem 2.11, we can prove the desired result inc(G) $\leq n - 1$.

Subcase 2. $V_2(G) \neq \emptyset$. Let x be the arbitrary vertex in $V_1(G)$, then $N(x) = V_2(G)$. For arbitrary vertex $v \in V_2(G)$, since $d(v) \leq n - 4$, then $|V_2(G)| \geq 3$, and there exists two vertices u_1, v_1 in $V_2(G)$ such that $u_1, v_1 \notin E(G)$. Let $G_1 = G + u_1v_1$. If G_1 is with the property P, then inc(G) \leq inc(G_1) $\leq n - 1$. Otherwise let $V_1(G_1) = \{v \in V(G_1) \mid d_{G_1}(v) = n - 3\}$ and $V_2(G_1) = V(G_1) \backslash \{V_1(G_1) \cup \{v_1\}\}$. If $V_2(G_1) = \emptyset$, then inc(G_1) $\leq \Delta(G_1) + 2$. If $V_2(G_1) \neq \emptyset$, then $|V_2(G_1)| \geq 3$; there exists two vertices u_1', v_1' in $V_2(G_1)$ such that $u_1', v_1' \notin E(G_1)$.

Let $G_2 = G_1 + u_1'v_1'$. If G_2 is not with the property P, then $|V_2(G_2)| \geq 3$ when $V_2(G_2) \neq \emptyset$. We can also construct graph G_3 that is not with the property P. In that way, we can obtain a serial of graphs $G_1, G_2, \ldots, G_k, \ldots$ such that all the graphs are not with the property P and $|V_2(G_k)| \geq 3$. Let $D(G) = \sum_{v \in G} d(v)$, then $D(G) \leq D(G_1) \leq D(G_2) \leq \cdots \leq D(G_k) \leq \cdots$. Because G is the finite graph, there exists a graph G_k such that $|V_2(G_k)| = 3$. Suppose that $V_2(G_k) = \{u_1, u_2, u_3\}$ and $v' \in V_1(G_k)$, then $V_2(G_k) = N(v')$. Thus $d_{G_k}(u_1) = d_{G_k}(u_2) = d_{G_k}(u_3) = n - 4$, and u_1, u_2, u_3 are without edge and adjacent to each other. Let $\hat{G} = G_k + u_1u_2$, then $u_1, u_2 \in \hat{G \backslash v_1}$, $d(u_1) = n - 3$, $d(u_3) \leq n - 4$, and $u_1u_3 \notin E(\hat{G})$, then \hat{G} is with the property P, thus inc(G) \leq inc(G_1) \leq inc(G_2) $\leq \cdots \leq$ inc(G_k) \leq inc(\hat{G}) $\leq n - 1$. The proof is complete.

Theorem 2.14. Let $u, v \in V(G)$ such that $uv \notin E(G)$ and $N_G(u) = N_G(v)$, then inc(G) $\geq \Delta + 2$.

Proof. The proof is by contradiction. Suppose that the graph G has an $(\Delta + 1)$-incidence coloring with color set $C = \{1, 2, \ldots, \Delta + 1\}$. Let $N_G(u) = \{x_1, x_2, \ldots, x_\Delta\}$ and $N_G(v) = \{y_1, y_2, \ldots, y_\Delta\}$. Then each of the incidences $(x_i, x_iu) (1 \leq i \leq \Delta)$ is colored the same, as are the incidences (y_i, y_iv).

Without loss of generality, suppose k the color that (y_i, y_iv) has. Because $N_G(u) = N_G(v)$ and (u, x_1x_1) is adjacent to (y_1, y_1v), then (u, ux_1) has a color other than k. Because (u, ux_2) is adjacent to $(y_2, y_2v), \ldots, (u, ux_\Delta)$ which is adjacent to (y_Δ, y_\Deltav), then $(u, ux_2), \ldots, (u, ux_\Delta)$ also has a color other than k, respectively. Further, the Δ incidences $(u, ux_i) (1 \leq i \leq \Delta)$ have different colors, so the color k is different from that of incidences (u, ux_i). On the other hand, (y_1, y_1v) and (x_1, x_1u) are neighborly incidences, so the color k is different from that of (x_1, x_1u). Thus $k \notin C$, this gives a contradiction! Hence inc(G) $\geq \Delta + 2$. □
3. The incidence chromatic number of complete \(k \)-partite graph

Theorem 3.1. Let \(G = K_{n_1,n_2,...,n_k} \) be a complete \(k \)-partite graph \((k \geq 2)\). Then

\[
\text{inc}(G) = \begin{cases}
\Delta + 1, & \Delta(G) = n - 1, \\
\Delta(G) + 2, & \text{otherwise.}
\end{cases}
\] (3.1)

Proof. Let \(V(G) = V_1 \cup V_2 \cup \cdots \cup V_k \) and \(|V_i| = n_i\) \((i = 1,2,...,k)\). \(V_i \) is the \(i \)-part vertex set and \(V_i = \{v_i^1, v_i^2, ..., v_i^{n_i} \} \) \((i = 1,2,...,k)\). Without loss of generality, we let \(n_1 \geq n_2 \geq \cdots \geq n_k \). Thus \(\Delta(G) = \sum_{m=1}^{k-1} n_m \). The proof can be divided into the following two cases.

Case 3. There exists \(i \in \{1,2,...,k\} \) such that \(n_i = 1 \). We let the vertex set of \(G \) be \(V(G) = \{v_1, v_2, ..., v_m \} \), where \(m = \sum_{i=1}^{k} n_i \). By Lemma 2.6, it easy to draw the conclusion.

Case 4. \(n_i \geq 2 \) \((1 \leq i \leq k)\). To complete the proof, we give an incidence coloring just with \(\Delta + 2 \) colors firstly.

For \(j,t = 1,2,...,k \), \(i = 1,2,...,n_j \), and \(s = 1,2,...,n_t \), we let

\[
\sigma(v_i^j, v_i^t, v_s^t) = \begin{cases}
\sum_{m=0}^{t-1} (n_m + s), & i \neq s, t < j \text{ or } i = s, t > j, \\
\sum_{m=0}^{t-2} (n_m + s), & i \neq s, t > j \text{ or } i = s, t < j, \\
\Delta + 1, & i = s, t = 1, \\
\Delta + 2, & i = s, t = k.
\end{cases}
\] (3.2)

To complete the proof, it suffices to prove that \(G \) cannot be colored with \(\Delta + 1 \) colors. It is obvious that each of the vertices in \(V_1 \) is the maximum-degree vertex. For \(n_1 \geq 2 \), let \(u,v \in V_1 \), then \(uv \notin E(G) \) and \(N(u) \neq N(v) \). Hence \(\text{inc}(G) \geq \Delta + 2 \) follows from Theorem 2.14. Therefore \(\text{inc}(G) = \Delta + 2 \), and the proof is completed.

By Theorem 3.1, it is easy to obtain the theorem in [3, 4]. In fact, the incidence coloring \(\sigma \) given to determine the incidence chromatic number for complete 3-partite graphs is a special case of the coloring above. Hence, we obtain some corollaries as follows.

Corollary 3.2. Let \(K_n \) be complete graph. Then \(\text{inc}(K_n) = n \).

The incidence coloring of \(K_{3,4} \) and \(K_5 \) is given in Figure 3.1.

4. Incidence chromatic number of three families of graphs

The planar graph \(Q_n \), which is called triangular prism, is defined by \(Q_n = G(V(G), E(G)) \), where the vertex set \(V(G) = u_1, u_2, ..., u_n \cup v_1, v_2, ..., v_n \), and the edges set \(E(Q_n) \) consists
of two n-cycles u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n, and $2n$ edges $(u_i, v_i), (u_i, v_{i+1})$ for all $i \in [n] (v_1 = v_{n+1})$.

Theorem 4.1. For any integer $n \geq 3$,

$$ \text{inc}(Q_n) = \begin{cases} \Delta + 1 = 5, & n = 0 \mod(5), \\ \Delta + 2 = 6, & \text{otherwise}. \end{cases} \quad (4.1) $$

Proof. Because $\Delta(G) = 4$, we know that $\text{inc}(Q_n) \geq \Delta + 1 = 5$. When $n = 5k$, $k \geq 1$, we give a 5-incidence coloring σ of Q_{5k}. For $i = 1, 2, \ldots, 5k$, let $(u_i, u_i u_i^*)$ be the incidence set $\{u_i, u_i w | w = v_{i+1}, u_i v_i \}$. Let

$$ \sigma(u_i, u_i u_i^*) = \{1 + 2(i - 1)(\mod 5), 2 + 2(i - 1)(\mod 5), \\ 3 + 2(i - 1)(\mod 5), 4 + 2(i - 1)(\mod 5)\}, \quad (4.2) $$

$$ \sigma(v_{i+1}, v_i v_i) = \sigma(u_i, u_i v_i), \quad \sigma(w, w u_i) = \sigma(u_{im} u_i, u_i v_i), \quad \sigma(v_i, v_i u_i) = \sigma(u_{i+1}, u_{i+1} v_{i+1}). $$

It is easy to see that the coloring above is a proper 5-incidence coloring of Q_n. Thus, we can only consider the case $n \neq 5k$. We will first prove that Q_n is 6-incidence colorable by explicitly giving a 6-incidence coloring σ of Q_n for any integer $n \geq 3$. At last, we will give the proof that Q_n cannot be incidence coloring just with colors $1, 2, 3, 4, 5$. The proof can be divided into the following three cases.

Case 5. $n = 3k$ ($k \geq 1$). Let $i = 3s + t$ ($t \leq 2$), $i = 1, 2, \ldots, n$, then Q_n has an incidence coloring using 6 colors from the color set $C = \{1, 2, \ldots, n + r + 1\}$, as follows: for $i = 1, 2, \ldots, n$,
810 The incidence chromatic number of some graph

let

\[\sigma(v_i, v_{i+1}) = \sigma(u_i, u_{i+1}) = \begin{cases} t, & t \neq 0, \\ 3, & t = 0, \end{cases}\]

\[\sigma(v_i, v_{i-1}) = \sigma(u_i, u_{i-1}) = t + 1,\]

\[\sigma(u_i, u_{i+1}) = \sigma(v_i, v_{i+1}) = \sigma(u_i, u_{i+1}) + 3,\]

\[\sigma(u_i, u_i) = \sigma(v_{i+1}, v_{i+1}u_{i+1}) = \sigma(u_{i+1}, u_{i+1}u_i) + 3.\] \hfill (4.3)

Case 6. \(n = 3k + 1 (k \geq 1).\) Let \(i = 3s + t (t \leq 2).\) For \(i = 1, 2, \ldots, n,\) let

\[\sigma(v_i, v_{i+1}) = \begin{cases} 3, & t = 0, \\ 4, & i = 1, \\ 5, & i = 2, \\ t, & \text{otherwise}, \end{cases}\]

\[\sigma(u_i, u_{i+1}) = \begin{cases} 3, & t = 0, \\ 6, & i = 1, \\ t, & \text{otherwise}, \end{cases}\]

\[\sigma(v_i, v_{i-1}) = \begin{cases} 6, & i = 1, \\ 2, & i = 2, \\ t + 1, & \text{otherwise}, \end{cases}\]

\[\sigma(u_i, u_{i-1}) = \begin{cases} 5, & i = 1, \\ 4, & i = n, \\ t + 1, & \text{otherwise}, \end{cases}\]

\[\sigma(u_i, u_i) = \sigma(v_{i+1}, v_{i+1}u_{i+1}) = \begin{cases} \sigma(u_{i+1}, u_{i+1}u_i) + 3, & i \neq 1, n, \\ 5, & i = n, \end{cases}\]

\[\sigma(u_1u_1v_1) = \sigma(v_2v_2v_1) = 2, \quad \sigma(v_1v_1u_3) = 3.\] \hfill (4.4)

Case 7. \(n = 3k + 2 (k \geq 1).\) Let \(i = 3s + t (t \leq 2),\) for \(i = 1, 2, \ldots, n,\) and \(w_{n+1} = w_1, w = u, v;\)

\(w_0 = w_{n}, w = u, v.\) We let

\[\sigma(u_i, u_{i+1}) = \begin{cases} 3, & t = 0, \\ 5, & i = n, \\ 6, & i = 1, \\ t, & \text{otherwise}, \end{cases}\]

\[\sigma(u_i, u_i) = \sigma(v_{i+1}, v_{i+1}u_{i+1}) = \begin{cases} \sigma(u_{i+1}, u_{i+1}u_i) + 3, & i \neq 1, n, \\ 3, & i = 1, \\ 5, & i = n, \end{cases}\]
It is easy to show that Q_n is 6-incidence colorable. To complete the proof, it remains to be shown that there do not exist an incidence coloring using only 5 colors. Assume, on the contrary, that Q_n is 5-incident colorable. For each vertex $v_i \in Q_n$, $d(v_i) = \Delta(Q_n)$. Thus, four incidences $(u_i, u_i v_i), (u_{i-1}, u_{i-1} v_i), (v_i v_{i+1}, v_i v_{i+1})$ have the same color, without loss of generality, 1. For $i = 1, 2, \ldots, n$, the case is the same. Because there are 5 colors that can be used in incidence coloring, and the degree of each vertex v_i in cycle $v_1 v_2 \cdots v_nv_1$ is 4, thus the two incidences $(v_i v_i v_{i+1})$ and $(v_{i+4}, v_{i+4} v_{i+5})$ (or $(v_{i-4}, v_{i-4} v_{i-5})$) have the same color. If $n \neq 5k$, form the proof above, it is easy to obtain a contradiction. Thus, we have completed the prove.

Theorem 4.2. Let G be a Hamilton graph with order $n \geq 3$ and degree $\Delta \leq 3$. Then $\text{inc}(G) \leq \Delta + 2$.

Proof. When $\Delta \leq 2$, by Lemma 2.2, $\text{inc}(G) \leq \Delta + 2$. When $\Delta = 3$, by Lemma 2.3, we can only consider the case $d(v) = 3 \ (\forall v \in V(G))$. Let $\{v_1, v_2, \ldots, v_n, v_1\}$ be the Hamilton cycle and $S = E(G) \setminus \{v_i v_{i+1} | 1 \leq i \leq n-1\}$. The proof can be divided into the following three cases.

Case 8. $n = 0 \bmod(3)$. For $i = 1, 2, \ldots, n$, we let $\sigma(v_i v_i v_{i+1}) = 2i - 1 \bmod 3$ and $\sigma(v_{i+1}, v_{i+1} v_i) = 2i \bmod 3$, where $v_{n+1} = v_1$. Because the edges $e \in S$ form a matching, thus we can incidence color the incidence uncolored with two new colors 3, 4. Then, we have given G an incidence coloring with colors 0, 1, 2, 3, 4.
The incidence chromatic number of some graph

Case 9. \(n \neq 0 \mod(3) \). Let \(v_j \in A_{v_1} (j \neq 1, n) \) and \(v_k \in A_{v_n} (n \neq 1, n - 1) \). For \(i = 1, 2, \ldots, n \) and \(v_{n+1} = v_1 \), we let

\[
\sigma(v_i, v_iv_{i+1}) = \begin{cases}
2i - 1 \mod(3), & i \neq 1, j, \\
4, & i = j = k + 1, \\
3, & \text{otherwise},
\end{cases}
\]

\[
\sigma(v_{i+1}, v_{i+1}v_i) = \begin{cases}
2i \mod(3), & i \neq 1, j - 1, \\
3, & i = j - 1 = k, \\
4, & \text{otherwise},
\end{cases}
\] (4.6)

\[
\sigma(v_j, v_jv_1) = \begin{cases}
1, & n = 1 \mod(3) \text{ and } j = 1 \mod(3), \\
0, & n = 2 \mod(3) \text{ and } j \neq 0 \mod(3), \\
2, & \text{otherwise},
\end{cases}
\]

\[
\sigma(v_1, v_1v_j) = n - 1 \mod(3).
\]

Since the edges \(e \in S \setminus \{v_1v_k\} \) form a matching, thus we can incidence color the incidence uncolored with two new colors 3,4. Thus, we have given \(G \) an incidence coloring with colors 0,1,\ldots,4. \(\square \)

The plane check graph \(G_{m,n} \) is defined by \(V(G_{m,n}) = \{v_{i,j} | i \in [m]; j \in [n]\}; E(G_{m,n}) = \{v_{i,j}v_{i,j+1} | i \in [m]; j \in [n - 1]\} \cup \{v_{i,j}v_{i+1,j} | i \in [m - 1]; j \in [n]\} \), which is the Cartesian product of path \(P_m \) and \(P_n \).

Theorem 4.3. For plane graph \(G_{m,n} \), we have \(\text{inc}(G_{m,n}) = 5 \).

Proof. \(\Delta(G_{m,n}) = 4 \), then \(\text{inc}(G_{m,n}) \geq 5 \). We now give a 5-incidence coloring \(\sigma \) of \(G_{m,n} \) as follows: \((i \in [m]; j \in [n]) \)

\[
\sigma(v_{i,j}, v_{i,j+1}) = j + 3(i - 1)(\mod(5)) \ (j \neq n),
\]

\[
\sigma(v_{i,j+1}, v_{i,j+1}v_{i,j}) = j + 4(i - 1)(\mod(5)) \ (j \neq n),
\]

\[
\sigma(v_{i,j}, v_{i,j}v_{i+1,j}) = j + 2(i - 1)(\mod(5)) \ (i \neq m),
\]

\[
\sigma(v_{i+1,j}, v_{i+1,j}v_{i,j}) = j + 4(i - 1)(\mod(5)) \ (i \neq m).
\] (4.7)

It is easy to see that the coloring above is an incidence coloring of \(G_{m,n} \). Thus \(\text{inc}(G_{m,n}) = 5 \). \(\square \)

Remark 4.4. It is difficult to obtain the incidence chromatic number for some graphs. We have presented a hybrid genetic algorithm for the incidence coloring on graphs in [6]. The experimental results indicate that a hybrid genetic algorithm can obtain solutions of excellent quality of problem instances with different size.

Acknowledgment

This work is supported by China National Science Foundation.
References

Liu Xikui: College of Information & Engineering, Shandong University of Science and Technology, Qingdao 266510, Shandong, China

Current address: School of Professional Technology, Xuzhou Normal University, Xuzhou 221011, Jiangsu, China

E-mail address: xkliubs@eyou.com

Li Yan: College of Information & Engineering, Shandong University of Science and Technology, Qingdao 266510, Shandong, China

E-mail address: liyan7511@eyou.com
Submit your manuscripts at
http://www.hindawi.com