We obtain necessary and sufficient conditions for the asymptotic stability of the linear delay difference equation $x_{n+1} + p \sum_{j=1}^{N} x_{n-k+(j-1)}l = 0$, where $n = 0, 1, 2, \ldots$, p is a real number, and k, l, and N are positive integers such that $k > (N - 1)l$.

1. Introduction

In [4], the asymptotic stability condition of the linear delay difference equation

$$x_{n+1} - x_n + p \sum_{j=1}^{N} x_{n-k+(j-1)}l = 0,$$

where $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, p is a real number, and k, l, and N are positive integers with $k > (N - 1)l$ is given as follows.

Theorem 1.1. Let k, l, and N be positive integers with $k > (N - 1)l$. Then the zero solution of (1.1) is asymptotically stable if and only if

$$0 < p < \frac{2 \sin(\pi/2M) \sin(l\pi/2M)}{\sin(Nl\pi/2M)},$$

where $M = 2k + 1 - (N - 1)l$.

Theorem 1.1 generalizes asymptotic stability conditions given in [1, page 87], [2, 3, 5], and [6, page 65]. In this paper, we are interested in the situation when (1.1) does not depend on x_n, namely we are interested in the asymptotic stability of the linear delay difference equation of the form

$$x_{n+1} + p \sum_{j=1}^{N} x_{n-k+(j-1)}l = 0,$$

where $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, p is a real number, and k, l, and N are positive integers with $k \geq (N - 1)l$. Our main theorem is the following.
Theorem 1.2. Let k, l, and N be positive integers with $k \geq (N - 1)l$. Then the zero solution of (1.3) is asymptotically stable if and only if

$$- \frac{1}{N} < p < p_{\min},$$

where p_{\min} is the smallest positive real value of p for which the characteristic equation of (1.3) has a root on the unit circle.

2. Proof of theorem

The characteristic equation of (1.3) is given by

$$F(z) = z^{k+1} + p(z^{(N-1)l} + \cdots + z^l + 1) = 0.$$ (2.1)

For $p = 0$, $F(z)$ has exactly one root at 0 of multiplicity $k + 1$. We first consider the location of the roots of (2.1) as p varies. Throughout the paper, we denote the unit circle by C and let $M = 2k + 2 - (N - 1)l$.

Proposition 2.1. Let z be a root of (2.1) which lies on C. Then the roots z and p are of the form

$$z = e^{w_m i},$$

$$p = (-1)^{m+1} \frac{\sin(lw_m/2)}{\sin(Nlw_m/2)} \equiv p_m$$

for some $m = 0, 1, \ldots, M - 1$, where $w_m = (2m/M)\pi$. Conversely, if p is given by (2.3), then $z = e^{w_m i}$ is a root of (2.1).

Proof. Note that $z = 1$ is a root of (2.1) if and only if $p = -1/N$, which agrees with (2.2) and (2.3) for $w_m = 0$. We now consider the roots of (2.1) which lie on C except the root $z = 1$. Suppose that the value z satisfies $z^Nl = 1$ and $z^l \neq 1$. Then $z^{Nl} - 1 = (z^l - 1)(z^{(N-1)l} + \cdots + z^l + 1) = 0$ which gives $z^{(N-1)l} + \cdots + z^l + 1 = 0$, and hence z is not a root of (2.1).

As a result, to determine the roots of (2.1) which lie on C, it suffices to consider only the value z such that $z^Nl \neq 1$ or $z^l = 1$. For these values of z, we may write (2.1) as

$$p = -\frac{z^{k+1}}{z^{(N-1)l} + \cdots + z^l + 1}.$$ (2.4)

Since p is real, we have

$$p = -\frac{\overline{z}^{k+1}}{\overline{z}^{(N-1)l} + \cdots + \overline{z}^l + 1} = -\frac{z^{-k-1+(N-1)l}}{z^{(N-1)l} + \cdots + z^l + 1},$$

where \overline{z} denotes the conjugate of z. It follows from (2.4) and (2.5) that

$$z^{2k+2-(N-1)l} = 1$$

which implies that (2.2) is valid for $m = 0, 1, \ldots, M - 1$ except for those integers m such that $e^{Nlw_m i} = 1$ and $e^{lw_m i} \neq 1$. We now show that p is of the form stated in (2.3). There are two cases to be considered as follows.
Case 1. \(z \) is of the form \(e^{\omega_m i} \) for some \(m = 1, 2, \ldots, M - 1 \) and \(z^{N_l} \neq 1 \).

From (2.4), we have

\[
p = -\frac{z^{k+1}(z^l - 1)}{z^{N_l} - 1} = -\frac{e^{(k+1)\omega_m i}(e^{\omega_m i} - 1)}{e^{N_l\omega_m i} - 1} = -\frac{e^{(k+1-(N-1)(l/2))\omega_m i}(e^{\omega_m i/2} - e^{-\omega_m i/2})}{e^{N_l\omega_m i/2} - e^{-N_l\omega_m i/2}}
\]

\[
= -e^{(k+1-(N-1)(l/2))\omega_m i} \frac{\sin(l\omega_m/2)}{\sin(N_l\omega_m/2)}
\]

\[
= -e^{m\pi i} \frac{\sin(l\omega_m/2)}{\sin(N_l\omega_m/2)} = (-1)^{m+1} \frac{\sin(l\omega_m/2)}{\sin(N_l\omega_m/2)} \equiv p_m.
\]

Case 2. \(z \) is of the form \(e^{\omega_m i} \) for some \(m = 1, 2, \ldots, M - 1 \) and \(z^l = 1 \).

In this case, we have \(l\omega_m = 2q\pi \) for some positive integer \(q \). Then taking the limit of \(p_m \) as \(l\omega_m \to 2q\pi \), we obtain

\[
p = -\frac{(-1)^{m+q(N-1)}}{N}.
\]

From these two cases, we conclude that \(p \) is of the form in (2.3) for \(m = 1, 2, \ldots, M - 1 \) except for those \(m \) such that \(e^{N_l\omega_m i} = 1 \) and \(e^{\omega_m i} \neq 1 \).

Conversely, if \(p \) is given by (2.3), then it is obvious that \(z = e^{\omega_m i} \) is a root of (2.1). This completes the proof of the proposition. \(\square \)

From Proposition 2.1, we may consider \(p \) as a holomorphic function of \(z \) in a neighborhood of each \(z_m \). In other words, in a neighborhood of each \(z_m \), we may consider \(p \) as a holomorphic function of \(z \) given by

\[
p(z) = -\frac{z^{k+1}}{z^{(N-1)l} + \cdots + z^l + 1}.
\]

Then we have

\[
\frac{dp(z)}{dz} = -\frac{(k+1)z^k}{z^{(N-1)l} + \cdots + z^l + 1} + \frac{z^k \{(N-1)lz^{(N-1)l} + \cdots + lz^l\}}{(z^{(N-1)l} + \cdots + z^l + 1)^2}.
\]

From this, we have the following lemma.

Lemma 2.2. \(dp/dz \big|_{z = e^{\omega_m i}} \neq 0 \). In particular, the roots of (2.1) which lie on \(C \) are simple.

Proof. Suppose on the contrary that \(dp/dz \big|_{z = e^{\omega_m i}} = 0 \). We divide (2.10) by \(p(z)/z \) to obtain

\[
k + 1 = \frac{l\{(N-1)z^{(N-1)l} + \cdots + z^l\}}{z^{(N-1)l} + \cdots + z^l + 1} = 0.
\]

Substituting \(z \) by \(1/z \) in (2.10), we obtain

\[
k + 1 = \frac{l\{(N-1) + (N-2)z^l + \cdots + z^{(N-2)l}\}}{z^{(N-1)l} + \cdots + z^l + 1} = 0.
\]
By adding (2.11) and (2.12), we obtain
\[2k + 2 - (N - 1)l = 0 \] (2.13)
which contradicts \(k \geq (N - 1)l \). This completes the proof. \(\square \)

From Lemma 2.2, there exists a neighborhood of \(z = e^{wm_i} \) such that the mapping \(p(z) \) is one to one and the inverse of \(p(z) \) exists locally. Now, let \(z \) be expressed as \(z = re^{i\theta} \). Then we have
\[
\frac{dz}{dp} = \frac{z}{r} \left\{ \frac{dr}{dp} + ir \frac{d\theta}{dp} \right\} \] (2.14)
which implies that
\[
\frac{dr}{dp} = \text{Re} \left\{ \frac{r}{z} \frac{dz}{dp} \right\} \] (2.15)
as \(p \) varies and remains real. The following result describes the behavior of the roots of (2.1) as \(p \) varies.

Proposition 2.3. The moduli of the roots of (2.1) at \(z = e^{wm_i} \) increase as \(|p| \) increases.

Proof. Let \(r \) be the modulus of \(z \). Let \(z = e^{wm_i} \) be a root of (2.1) on \(C \). To prove this proposition, it suffices to show that
\[
\frac{dr}{dp} \cdot p \bigg|_{z=e^{wm_i}} > 0. \] (2.16)
There are two cases to be considered.

Case 1 \((z'^{Nl} \neq 1) \). In this case, we have
\[
p(z) = -\frac{z^{k+1}(z^l - 1)}{z^{Nl} - 1} = -\frac{z^k f(z)}{z^{Nl} - 1}, \] (2.17)
where \(f(z) = z(z^l - 1) \). Then
\[
\frac{dp}{dz} = -\frac{z^{k-1}g(z)}{(z^{Nl} - 1)^2}, \] (2.18)
where \(g(z) = (kf(z) + zf'(z))(z^{Nl} - 1) - Nlz^{Nl} f(z) \). Letting \(w(z) = -(z^{Nl} - 1)^2/(z^k g(z)) \), we obtain
\[
\frac{dr}{dp} = \text{Re} \left\{ \frac{r}{z} \frac{dz}{dp} \right\} = r \text{Re}(w). \] (2.19)
We now compute \(\text{Re}(w) \). We note that
\[
f(z) = \frac{f(z)}{z^{i\pi/2}}, \quad f'(z) = \frac{h(z)}{z^l}, \] (2.20)
where $h(z) = l + 1 - z^l$. From the above equalities and as $z^M = 1$, we have

$$
\frac{z^k g(z)}{2} = \frac{1}{2} \left\{ (z^{Nl} - 1)^2 + \frac{(z^{Nl} - 1)^2}{z^k g(z)} \right\}
$$

It follows that

$$
\text{Re}(w) = \frac{w + \bar{w}}{2}
$$

Since

$$
2k f(z) + z(f'(z) - h(z)) - Nlf(z) = Mf(z),
$$

we obtain

$$
\text{Re}(w) = \frac{(z^{Nl} - 1)^4 M}{2z^{2Nl}|g(z)|^2} \frac{-z^k f(z)}{z^{Nl} - 1} = \frac{(z^{Nl} - 1)^4 M_p}{2z^{2Nl}|g(z)|^2}.
$$

The value of $\text{Re}(w)$ at $z = e^{\nu_{mi}}$ is

$$
\text{Re}(w) = \frac{(z^{Nl} - 1)^4 M_p}{2z^{2Nl}|g(z)|^2} = (2 \cos Nl \nu_m - 2)^2 \cdot \frac{M_p}{2 |g(z)|^2} > 0.
$$
Therefore,
\[
\frac{dr}{dp} = \frac{2r(\cos Nlw_m - 1)^2 M_p}{|g(z)|^2}
\] (2.26)
and it follows that (2.16) holds at \(z = e^{\text{wmi}} \).

Case 2 (\(z^l = 1 \)). With an argument similar to Case 1, we obtain
\[
\frac{dr}{dp} = \frac{2rN^2 M_p}{|(M + 1)z - M + 1|^2}
\] (2.27)
which implies that (2.16) is valid for \(z = e^{\text{wmi}} \).

This completes the proof.

We now determine the minimum of the absolute values of \(p_m \) given by (2.3). We have the following result.

Proposition 2.4. \(|p_0| = \min\{|p_m| : m = 0, 1, \ldots, M - 1\} \).

To prove Proposition 2.4, we need the following lemma, which was proved in [4].

Lemma 2.5. Let \(N \) be a positive integer, then
\[
\left| \frac{\sin Nt}{\sin t} \right| \leq N
\] (2.28)
holds for all \(t \in \mathbb{R} \).

Proof of Proposition 2.4. From (2.3), \(p_m = (-1)^{m+1} \frac{(\sin(lw_m/2)/\sin(Nlw_m/2))}{M} \). For \(m = 0 \), it follows from L'Hospital's rule that \(p_0 = -1/N \). For \(m = 1, 2, \ldots, M - 1 \), we have
\[
|p_m| = \left| (-1)^{m+1} \frac{\sin(lw_m/2)}{\sin(Nlw_m/2)} \right| \geq \frac{1}{N}
\] (2.29)
by Lemma 2.5. This completes the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that \(F(1) = 1 + Np \leq 0 \) if and only if \(p \leq -1/N \). Since \(\lim_{z \to \infty} F(z) = +\infty \), it follows that (2.1) has a positive root \(\alpha \) such that \(\alpha > 1 \) when \(p \leq -1/N \). We claim that if \(|p| \) is sufficiently small, then all the roots of (2.1) are inside the unit disk. To this end, we note that when \(p = 0 \), (2.1) has exactly one root at 0 of multiplicity \(k + 1 \). By the continuity of the roots with respect to \(p \), this implies that our claim is true. By Proposition 2.4, \(p_0 = -1/N \) and \(|p_m| \geq 1/N \) which implies that \(|p_0| = 1/N \) is the smallest positive value of \(p \) such that a root of (2.1) intersects the unit circle as \(|p| \) increases. Moreover, Proposition 2.3 implies that if \(p > p_{\text{min}} \), then there exists a root \(\alpha \) of (2.1) such that \(|\alpha| \geq 1 \), where \(p_{\text{min}} \) is the smallest positive real value of \(p \) for which (2.1) has a root on \(C \). We conclude that all the roots of (2.1) are inside the unit disk if and only if \(-1/N < p < p_{\text{min}} \). In other words, the zero solution of (1.3) is asymptotically stable if and only if condition (1.4) holds. This completes the proof.
3. Examples

Example 3.1. In (1.3), let \(l \) and \(k \) be even positive integers, then we have

\[
F(-1) = -1 + pN.
\]

(3.1)

Thus if \(p = 1/N \), then \(F(-1) = 0 \) and we conclude that (1.3) is asymptotically stable if and only if \(-1/N < p < 1/N\).

Example 3.2. In (1.3), let \(N = 3, l = 3, \) and \(k = 6 \). Then \(M = 8 \) and we obtain \(p_0 = -1/3, p_1 = \sin(3/8)\pi/\sin(9/8)\pi, p_2 = -\sin(3/4)\pi/\sin(9/4)\pi, p_3 = \sin(9/8)\pi/\sin(27/8)\pi, p_4 = -\sin(3/2)\pi/\sin(9/2)\pi, p_5 = \sin(15/8)\pi/\sin(45/8)\pi, p_6 = -\sin(9/4)\pi/\sin(27/4)\pi, \) and \(p_7 = \sin(21/8)\pi/\sin(63/8)\pi \). Thus, \(p_3 = p_5 = \sin(\pi/8)/\sin(3\pi/8) \) is the smallest positive real value of \(p \) such that (2.1) has a root on \(C \). We conclude that (1.3) is asymptotically stable if and only if \(-1/3 < p < \sin(\pi/8)/\sin(3\pi/8)\).

4. Acknowledgments

This research is supported by the Thailand Research Fund Grant no. RTA458005 and RSA4780012. We would like to thank the referees for their valuable comments.

References

T. Kaewong: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
E-mail address: theeradach@tsu.ac.th

Y. Lenbury: Department of Mathematics, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok 10400, Thailand
E-mail address: scylb@mahidol.ac.th

P. Niamsup: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
E-mail address: scipnmsp@chiangmai.ac.th
Submit your manuscripts at
http://www.hindawi.com