COMMON FIXED POINTS OF SINGLE-VALUED AND MULTIVALUED MAPS

YICHENG LIU, JUN WU, AND ZHIXIANG LI

Received 19 June 2005 and in revised form 1 September 2005

We define a new property which contains the property (EA) for a hybrid pair of single- and multivalued maps and give some new common fixed point theorems under hybrid contractive conditions. Our results extend previous ones. As an application, we give a partial answer to the problem raised by Singh and Mishra.

1. Introduction and preliminaries

Let \((X,d)\) be a metric space. Then, for \(x \in X, A \subset X, \ d(x,A) = \inf \{d(x,y),\ y \in A\}\). We denote \(CB(X)\) as the class of all nonempty bounded closed subsets of \(X\). Let \(H\) be the Hausdorff metric with respect to \(d\), that is,

\[
H(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A) \right\},
\]

for every \(A,B \in CB(X)\). A self-map \(T\) defined on \(X\) satisfies Rhoades’ contractive definition in following sense: (see [19]) for all \(x,y \in X, x \neq y,\)

\[
d(Tx,Ty) < \max \{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\}.
\]

The fixed points theorems for Rhoades-type contraction mapping were investigated by many authors \([1, 5, 8, 10, 13, 16, 22]\) and the more results on this fields can be found in \([2, 4, 9, 11, 15, 23]\). Hybrid fixed point theory for nonlinear single-valued and multivalued maps is a new development in the domain of contraction-type multivalued theory (see \([3, 7, 10, 12, 14, 17, 18, 20]\) and references therein). In 1998, Jungck and Rhoades \([12]\) introduced the notion of weak compatibility to the setting of single-valued and multivalued maps. In \([21]\), Singh and Mishra introduced the notion of (IT)-commutativity for hybrid pair of single-valued and multivalued maps which need not be weakly compatible. Recently, Aamri and El Moutawakil \([1]\) defined a property (EA) for self-maps which contained the class of noncompatible maps. More recently, Kamran \([13]\) extended the property (EA) for a hybrid pair of single- and multivalued maps and generalized the notion of (IT)-commutativity for such pair.
The aim of this paper is to define a new property which contains the property (EA) for a hybrid pair of single- and multivalued maps and give some new common fixed point theorems under hybrid contractive conditions. As an application, we give an affirmative (half-) answer (Theorem 2.8) to the open problem in [21].

Now we state some known definitions and facts.

Definition 1.1 [12]. Maps \(f : X \to X \) and \(T : X \to CB(X) \) are weakly compatible if they commute at their coincidence points, that is, if \(fTx = Tf x \) whenever \(fx \in Tx \).

Definition 1.2 [21]. Maps \(f : X \to X \) and \(T : X \to CB(X) \) are said to be (IT)-commuting at \(x \in X \) if \(fTx \subset Tfx \) whenever \(fx \in Tx \).

Definition 1.3 [1]. Maps \(f, g : X \to X \) are said to satisfy the property (EA) if there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} g x_n = t \in X \).

Definition 1.4 [13]. Maps \(f : X \to X \) and \(T : X \to CB(X) \) are said to satisfy the property (EA) if there exist a sequence \(\{x_n\} \) in \(X \), some \(t \in X \), and \(A \) in \(CB(X) \) such that

\[
\lim_{n \to \infty} fx_n = t \in A = \lim_{n \to \infty} T x_n. \tag{1.3}
\]

Definition 1.5 [13]. Let \(T : X \to CB(X) \). The map \(f : X \to X \) is said to be \(T \)-weakly commuting at \(x \in X \) if \(ffx \in Tfx \).

For the rest of the introduction, we state the following theorem as the prototype in this paper.

Theorem 1.6 (see [13]). Let \(f \) be a self-map of the metric space \((X,d)\) and let \(F \) be a map from \(X \) into \(CB(X) \) such that

1. \((f,F)\) satisfies the property (EA);
2. for all \(x \neq y \) in \(X \),

\[
H(Fx,Fy) < \max \left\{ d(fx, fy), \frac{d(fx,Fx) + d(fy,Fy)}{2}, \frac{d(fx,Fy) + d(fy,Fx)}{2} \right\}. \tag{1.4}
\]

If \(fX \) is closed subset of \(X \), then

(a) \(f \) and \(F \) have a coincidence point;
(b) \(f \) and \(F \) have a common fixed point provided that \(f \) is \(F \)-weakly commuting at \(v \) and \(ffv = fv \) for \(v \in C(f,F) \), where \(C(f,F) = \{x : x \) is a coincidence point of \(f \) and \(F\} \).

2. Main results

We begin with the following definition.

Definition 2.1. (1) Let \(f, g, F, G : X \to X \). The maps pair \((f,F)\) and \((g,G)\) are said to satisfy the common property (EA) if there exist two sequences \(\{x_n\}, \{y_n\} \) in \(X \) and some \(t \) in \(X \) such that

\[
\lim_{n \to \infty} G y_n = \lim_{n \to \infty} F x_n = \lim_{n \to \infty} f x_n = \lim_{n \to \infty} g y_n = t \in X. \tag{2.1}
\]
(2) Let \(f, g : X \rightarrow X \) and \(F, G : X \rightarrow CB(X) \). The maps pair \((f, F) \) and \((g, G) \) are said to satisfy the common property (EA) if there exist two sequences \(\{x_n\} \), \(\{y_n\} \) in \(X \), some \(t \) in \(X \), and \(A, B \) in \(CB(X) \) such that
\[
\lim_{n \rightarrow \infty} Fx_n = A, \quad \lim_{n \rightarrow \infty} Gy_n = B, \quad \lim_{n \rightarrow \infty} f x_n = \lim_{n \rightarrow \infty} g y_n = t \in A \cap B. \quad (2.2)
\]

Example 2.2. Let \(X = [1, +\infty) \) with the usual metric. Define \(f, g : X \rightarrow X \) and \(F, G : X \rightarrow CB(X) \) by \(f(x) = 2 + x/3 \), \(g(x) = 2 + x/2 \), and \(F(x) = [1, 2 + x], G(x) = [3, 3 + x/2] \) for all \(x \in X \). Consider the sequences \(\{x_n\} = \{3 + 1/n\}, \{y_n\} = \{2 + 1/n\} \). Clearly, \(\lim_{n \rightarrow \infty} Fx_n = [1, 5] = A, \lim_{n \rightarrow \infty} Gy_n = [3, 4] = B, \lim_{n \rightarrow \infty} f x_n = \lim_{n \rightarrow \infty} g y_n = 3 \in A \cap B \). Therefore, \((f, F) \) and \((g, G) \) are said to satisfy the common property (EA).

Theorem 2.3. Let \(f, g \) be two self-maps of the metric space \((X, d) \) and let \(F, G \) be two maps from \(X \) into \(CB(X) \) such that
(1) \((f, F) \) and \((g, G) \) satisfy the common property (EA);
(2) for all \(x \neq y \) in \(X \),
\[
H(Fx, Gy) < \max \left\{ \frac{d(fx, gy)}{2}, \frac{d(fx, Fx) + d(gy, Gy)}{2}, \frac{d(fx, Gy) + d(gy, Fx)}{2} \right\}. \quad (2.3)
\]

If \(FX \) and \(GX \) are closed subsets of \(X \), then
(a) \(f \) and \(F \) have a coincidence point;
(b) \(g \) and \(G \) have a coincidence point;
(c) \(f \) and \(F \) have a common fixed point provided that \(f \) is \(F \)-weakly commuting at \(v \) and \(f v = f v \) for \(v \in C(f, F) \);
(d) \(g \) and \(G \) have a common fixed point provided that \(g \) is \(G \)-weakly commuting at \(v \) and \(g v = g v \) for \(v \in C(g, G) \);
(e) \(f, g, F, \) and \(G \) have a common fixed point provided that both (c) and (d) are true.

Proof. Since \((f, F) \) and \((g, G) \) satisfy the common property (EA), there exist two sequences \(\{x_n\}, \{y_n\} \) in \(X \) and \(u \in X, A, B \in CB(X) \) such that
\[
\lim_{n \rightarrow \infty} Fx_n = A, \quad \lim_{n \rightarrow \infty} Gy_n = B,
\lim_{n \rightarrow \infty} f x_n = \lim_{n \rightarrow \infty} g y_n = u \in A \cap B. \quad (2.4)
\]

By virtue of \(FX \) and \(GX \) being closed, we have \(u = f v \) and \(u = g w \) for some \(v, w \in X \). We claim that \(f v \in Fv \) and \(g w \in Gw \). Indeed, condition (2) implies that
\[
H(Fx_n, Gw) < \max \left\{ d(fx_n, gw), \frac{d(fx_n, Fx_n) + d(gw, Gw)}{2}, \frac{d(fx_n, Gw) + d(gw, Fx_n)}{2} \right\}. \quad (2.5)
\]
Taking the limit as \(n \to \infty \), we obtain
\[
H(A, Gw) < \max \left\{ d(fv, gw), \frac{d(fv, A) + d(gw, Gw)}{2}, \frac{d(fv, Gw) + d(gw, A)}{2} \right\}
\]
\[
= \frac{d(gw, Gw)}{2}.
\]
(2.6)

Since \(gw = fv \in A \), it follows from the definition of Hausdorff metric that
\[
d(gw, Gw) \leq H(A, Gw) \leq \frac{d(gw, Gw)}{2},
\]
which implies that \(gw \in Gw \).

On the other hand, by condition (2) again, we have
\[
H(Fv, Gyn) < \max \left\{ d(fv, gyn), \frac{d(fv, Fv) + d(gyn, Gyn)}{2}, \frac{d(fv, Gyn) + d(gyn, Fv)}{2} \right\}
\]
(2.7)

Similarly, we obtain
\[
d(fv, Fv) \leq H(Fv, B) \leq \frac{d(fv, Fv)}{2}.
\]
(2.8)

Hence \(fv \in Fv \). Thus \(f \) and \(F \) have a coincidence point \(v, g \) and \(G \) have a coincidence point \(w \). This ends the proofs of part (a) and part (b).

Furthermore, by virtue of condition (c), we obtain \(ffv = fv \) and \(ffv \in Ffv \). Thus \(u = fu \in Fu \). This proves (c). A similar argument proves (d). Then (e) holds immediately.

\[\square \]

Remark 2.4. In Theorem 2.3, if \(F, G \) are two maps from \(K \) into \(CB(X) \), where \(K \) is a closed subset of \(X \). In this case, it is necessary to assume that \((X, d) \) is a metrically convex metric space. In this direction, many excellent works have appeared (see [5, 21]).

Corollary 2.5 (see [13, Theorem 3.10]). Let \(f \) be a self-map of the metric space \((X, d) \) and let \(F \) be a map from \(X \) into \(CB(X) \) such that
(1) \((f, F) \) satisfies the property (EA);
(2) for all \(x \neq y \) in \(X \),
\[
H(Fx, Fy) < \max \left\{ d(fx, fy), \frac{d(fx, Fx) + d(fy, Fy)}{2}, \frac{d(fx, Fy) + d(fy, Fx)}{2} \right\}.
\]
(2.10)

If \(fx \) is closed subset of \(X \), then
(a) \(f \) and \(F \) have a coincidence point;
(b) \(f \) and \(F \) have a common fixed point provided that \(f \) is \(F \)-weakly commuting at \(v \) and \(ffv = fv \) for \(v \in C(f, F) \).
Proof. Let \(F = G \) and \(f = g \), then the results follow from Theorem 2.3 immediately. □

If \(f = g \), we can conclude the following corollary.

Corollary 2.6. Let \(f \) be a self-map of the metric space \((X,d)\) and let \(F, G \) be two maps from \(X \) into \(\text{CB}(X) \) such that

1. \((f,F)\) and \((f,G)\) satisfy the common property (EA);
2. for all \(x \neq y \) in \(X \),

\[
H(Fx,Gy) < \max \left\{ \frac{d(fx,fy)}{2}, \frac{d(fx,Fx) + d(fy,Gy)}{2}, \frac{d(fx,Gy) + d(fy,Fx)}{2} \right\}. \tag{2.11}
\]

If \(fX \) is closed subset of \(X \), then

(a) \(f, G \) and \(F \) have a coincidence point;
(b) \(f, G \) and \(F \) have a common fixed point provided that \(f \) is both \(F \)-weakly commuting and \(G \)-weakly commuting at \(v \) and \(ffv = f v \) for \(v \in C(f,F) \).

If both \(F \) and \(G \) are single-valued maps in Theorem 2.3, then we have the following corollary.

Corollary 2.7. Let \(f, g, F, \) and \(G \) be four self-maps of the metric space \((X,d)\) such that

1. \((f,F)\) and \((g,G)\) satisfy the common property (EA);
2. for all \(x \neq y \) in \(X \),

\[
d(Fx,Gy) < \max \left\{ \frac{d(fx,gy)}{2}, \frac{d(fx,Fx) + d(gy,Gy)}{2}, \frac{d(fx,Gy) + d(gy,Fx)}{2} \right\}. \tag{2.12}
\]

If \(fX \) and \(gX \) are closed subsets of \(X \), then

(a) \(f \) and \(F \) have a coincidence point;
(b) \(g \) and \(G \) have a coincidence point;
(c) \(f \) and \(F \) have a common fixed point provided that \(f \) is \(F \)-weakly commuting at \(v \) and \(ffv = f v \) for \(v \in C(f,F) \);
(d) \(g \) and \(G \) have a common fixed point provided that \(g \) is \(G \)-weakly commuting at \(v \) and \(ggv = gv \) for \(v \in C(g,G) \);
(e) \(f, g, F, \) and \(G \) have a common fixed point provided that both (c) and (d) are true.

Theorem 2.8. Let \(f, g \) be two self-maps of the complete metric space \((X,d)\), let \(\lambda \in (0,1) \) be a constant, and let \(F, G \) be two maps from \(X \) into \(\text{CB}(X) \) such that for all \(x \neq y \) in \(X \),

\[
H(Fx,Gy) \leq \lambda \max \left\{ d(fx,gy), \frac{d(fx,Fx) + d(gy,Gy)}{2}, \frac{d(fx,Gy) + d(gh,Fx)}{2} \right\}. \tag{2.13}
\]

If \(fX \) and \(gX \) are closed subsets of \(X \) and \(FX \subset gX \), \(GX \subset fX \), then

(a) \(f \) and \(F \) have a coincidence point;
(b) \(g \) and \(G \) have a coincidence point;
(c) \(f \) and \(F \) have a common fixed point provided that \(f \) is \(F \)-weakly commuting at \(v \) and \(ffv = f v \) for \(v \in C(f,F) \);
Hence, we obtain

\[d(y_1, y_2) \leq H(Fx_0, Gx_1) + \lambda. \] \tag{2.14}

Since \(GX \subset fX \), there exists \(x_2 \) such that \(f x_2 = y_2 \in Gx_1 \), then we choose \(y_3 \in Fx_2 \) satisfying

\[d(y_2, y_3) \leq H(Gx_1, Fx_2) + \lambda^2, \] \tag{2.15}

and \(y_3 = g x_3 \) for some \(x_3 \in X \).

We continue this process to obtain a sequence \(\{y_n\} \) in \(X \) such that

\[y_{2n} = f x_{2n} \in Gx_{2n-1}, \quad y_{2n+1} = g x_{2n+1} \in Fx_{2n}, \]

\[d(y_{2n}, y_{2n+1}) \leq H(Gx_{2n-1}, Fx_{2n}) + \lambda^{2n}, \] \tag{2.16}

\[d(y_{2n-1}, y_{2n}) \leq H(Fx_{2n-2}, Gx_{2n-1}) + \lambda^{2n-1}, \quad n = 1, 2, \ldots. \]

Let \(a_n = d(y_n, y_{n+1}) \), then

\[a_{2n} = d(y_{2n}, y_{2n+1}) \leq H(Gx_{2n-1}, Fx_{2n}) + \lambda^{2n} \]

\[\leq \lambda \max \left\{ d(f x_{2n}, g x_{2n-1}), d(f x_{2n}, Fx_{2n}), d(g x_{2n-1}, Gx_{2n-1}), \right\} + \lambda^{2n}. \] \tag{2.17}

By \(f x_{2n} \in Gx_{2n-1} \), we have

\[d(g x_{2n-1}, Gx_{2n-1}) \leq d(g x_{2n-1}, f x_{2n}), \quad d(f x_{2n}, Fx_{2n}) \leq H(Gx_{2n-1}, Fx_{2n}). \] \tag{2.18}

Thus, we rewrite (2.17) as

\[a_{2n} \leq \lambda \max \left\{ d(f x_{2n}, g x_{2n-1}), \frac{d(g x_{2n-1}, Fx_{2n})}{2} \right\} + \lambda^{2n}. \] \tag{2.19}

Hence, we obtain

\[a_{2n} \leq \lambda \max \left\{ a_{2n-1}, \frac{a_{2n-1} + a_{2n}}{2} \right\} + \lambda^{2n}. \] \tag{2.20}

If \(a_{2n-1} \leq a_{2n} \) for some \(n \), we have \(a_{2n} \leq \lambda^{2n}/(1 - \lambda) \). Otherwise, we get

\[a_{2n} \leq \lambda a_{2n-1} + \lambda^{2n}. \] \tag{2.21}
Therefore, by (2.20), we achieve
\[
a_{2n} \leq \max \left\{ \lambda a_{2n-1} + \lambda^{2n}, \frac{\lambda^{2n}}{1 - \lambda} \right\}.
\] (2.22)

On the other hand,
\[
a_{2n-1} \leq H(Gx_{2n-1}, Fx_{2n-2}) + \lambda^{2n-1}
\leq \lambda \max \left\{ d(fx_{2n-2}, gx_{2n-1}), d(fx_{2n-2}, Fx_{2n-2}), d(gx_{2n-1}, Gx_{2n-1}) \right\},
\]
\[
d(fx_{2n-2}, Gx_{2n-1}) + d(gx_{2n-1}, Fx_{2n-2}) \right\} + \lambda^{2n-1}.
\] (2.23)

Since \(gx_{2n-1} \in Fx_{2n-2} \), we have
\[
d(gx_{2n-1}, Gx_{2n-1}) \leq H(Gx_{2n-1}, Fx_{2n-2})
\]
\[
d(fx_{2n-2}, Fx_{2n-2}) \leq d(gx_{2n-1}, fx_{2n-2}).
\] (2.24)

Thus, we obtain
\[
a_{2n-1} \leq \lambda \max \left\{ a_{2n-2}, \frac{a_{2n-2} + a_{2n-1}}{2} \right\} + \lambda^{2n-1}.
\] (2.25)

Similarly, we get
\[
a_{2n-1} \leq \max \left\{ \lambda a_{2n-2} + \lambda^{2n-1}, \frac{\lambda^{2n-1}}{1 - \lambda} \right\}.
\] (2.26)

By (2.22) and (2.26), we obtain
\[
a_n \leq \max \left\{ \lambda a_{n-1} + \lambda^n, \frac{\lambda^n}{1 - \lambda} \right\}, \quad n = 1, 2, \ldots.
\] (2.27)

It is easy to see that
\[
a_n \leq \max \left\{ \lambda^n(a_0 + n), \frac{\lambda^n}{1 - \lambda} \right\}, \quad n = 1, 2, \ldots.
\] (2.28)

Thus, there exists \(n_0 > 0 \) such that for \(n \geq n_0 \),
\[
a_n \leq \lambda^n(a_0 + n).
\] (2.29)

Hence \(\lim_{n \to \infty} a_n = 0 \).

In order to prove that \(\{ y_n \} \) is Cauchy sequence, for any \(\epsilon > 0 \), we choose a sufficiently large number \(N \) such that
\[
\lambda^N(a_0 + N) \leq \frac{\epsilon(1 - \lambda)}{2}, \quad \lambda^N \leq \frac{\epsilon(1 - \lambda)^2}{4}.
\] (2.30)
Thus, for any positive integer k, we obtain

$$d(\gamma N, \gamma N + k) \leq \sum_{i=0}^{k-1} a_{N+i} \leq \sum_{i=0}^{k-1} \lambda^N (a_0 + N + i)$$

$$< \lambda^N (a_0 + N) \frac{1}{1-\lambda} + \lambda^N \sum_{i=0}^{k-1} i \lambda^i$$

$$< \lambda^N (a_0 + N) \frac{1}{1-\lambda} + \lambda^N \frac{2}{(1-\lambda)^2} \leq \epsilon.$$

This implies that $\{y_n\}$ is a Cauchy sequence. Thus there is u satisfying

$$\lim_{n \to \infty} y_n = u = \lim_{n \to \infty} f x_{2n} = \lim_{n \to \infty} g x_{2n+1}.$$

(2.32)

Since fX and gX are closed, there exist a, b such that $fa = u = gb$. A similar argument proves that

$$\lim_{n \to \infty} F x_{2n} = \lim_{n \to \infty} G x_{2n+1},$$

$$u \in \lim_{n \to \infty} F x_{2n} = \lim_{n \to \infty} G x_{2n+1}.

(2.33)$$

Then (f, F) and (g, G) satisfy the common property (EA). The rest of the proof follows Theorem 2.3 immediately, then the proof of Theorem 2.8 is complete.

\[\square \]

Corollary 2.9. Let f, g be two self-maps of the complete metric space (X, d), let $\lambda \in (0, 1)$ be a constant, and let F, G be two maps from X into $\text{CB}(X)$ such that for all $x \neq y$ in X,

$$H(Fx, Gy) \leq \alpha d(fx, gy) + \beta \max \{d(fx, Fx), d(gy, Gy)\}$$

$$+ \gamma \max \{d(fx, Gy) + d(gy, Fx), d(fx, Fx) + d(gy, Gy)\},$$

(2.34)

and $\alpha + \beta + 2\gamma < 1$. If fX and gX are closed subsets of X and $FX \subset gX, GX \subset fX$, then

(a) f and F have a coincidence point;

(b) g and G have a coincidence point;

(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $f \ast v = f v$ for $v \in C(f,F)$;

(d) g and G have a common fixed point provided that g is G-weakly commuting at v and $g \ast v = g v$ for $v \in C(g,G)$;

(e) $f, g, F,$ and G have a common fixed point provided that both (c) and (d) are true.

Proof. Let $\lambda = \alpha + \beta + 2\gamma$. Following (2.34) and $\max \{d(fx, Fx), d(gy, Gy)\} \geq (d(fx, Fx) + d(gy, Gy))/2$, it is easy to see that

$$H(Fx, Gy) \leq \lambda \max \left\{d(fx, gy), d(fx, Fx), d(gy, Gy), \frac{d(fx, Gy) + d(gy, Fx)}{2}\right\}.

(2.35)$$

Thus by Theorem 2.8, we arrive to the conclusion in Corollary 2.9.

\[\square \]
The next theorem involves a function φ. Various conditions on φ have been investigated by different authors [4, 6, 15, 16]. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ continue and satisfy the following conditions:

(A1) φ is nondecreasing on \mathbb{R}^+,
(A2) $0 < \varphi(t) < t$, for each $t \in (0, +\infty)$.

Theorem 2.10. Let f, g be two self-maps of the metric space (X, d) and let $F, G : X \to X$ be two maps from X into $\text{CB}(X)$ such that

1. (f, F) and (g, G) satisfy the common property (EA);
2. for all $x \neq y$ in X,

$$H(Fx, Gy) \leq \varphi(\max\{d(fx, gy), d(fx, Fx), d(gy, Gy), d(fx, Gy), d(gy, Fx)\}).$$ \hspace{1cm} (2.36)

If fX and gX are closed subsets of X, then

(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $ffv = f v$ for $v \in C(f, F)$;
(d) g and G have a common fixed point provided that g is G-weakly commuting at v and $ggv = gv$ for $v \in C(g, G)$;
(e) f, g, F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since (f, F) and (g, G) satisfy the common property (EA), there exist two sequences $\{x_n\}, \{y_n\}$ in X and $u \in X, A, B \in \text{CB}(X)$ such that

$$\lim_{n \to \infty} Fx_n = A, \lim_{n \to \infty} Gy_n = B,$$

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = u \in A \cap B. \hspace{1cm} (2.37)$$

By virtue of fX and gX being closed, we have $u = fv$ and $u = gw$ for some $v, w \in X$. We claim that $fv \in Fv$ and $gw \in Gw$. Indeed, condition (2) implies that

$$H(Fx_n, Gw) \leq \varphi(\max\{d(fx_n, gw), d(fx_n, Fx_n), d(gw, Gw), d(fx_n, Gw), d(gw, Fx_n)\}).$$ \hspace{1cm} (2.38)

Taking the limit as $n \to \infty$, we obtain

$$H(A, Gw) \leq \varphi(\max\{d(fv, gw), d(fv, A), d(gw, Gw), d(fv, Gw), d(gw, A)\})$$

$$\leq \varphi(d(gw, Gw)) < d(gw, Gw). \hspace{1cm} (2.39)$$

Since $gw = fv \in A$, it follows from the definition of Hausdorff metric that

$$d(gw, Gw) \leq H(A, Gw) < d(gw, Gw), \hspace{1cm} (2.40)$$

which implies that $gw \in Gw$.
Common fixed points of hybrid maps

On the other hand, by condition (2) again, we have

\[
H(Fv, Gy_n) \leq \varphi(\max\{d(fv, gy_n), d(fv, Fv), d(gy_n, Gy_n), d(fv, Gy_n), d(gy_n, Fv)\}). \tag{2.41}
\]

Similarly, we obtain

\[
d(fv, Fv) \leq H(Fv, B) < d(fv, Fv). \tag{2.42}
\]

Hence \(fv \in Fv\). Thus \(f\) and \(F\) have a coincidence point \(v\), \(g\) and \(G\) have a coincidence point \(w\). This ends the proofs of part (a) and part (b). The rest of proof is similar to the argument of Theorem 2.3.

\[
\]

References

Yicheng Liu: Department of Mathematics and System Sciences, College of Science, National University of Defense Technology, Changsha 410073, China

E-mail address: liuyc2001@hotmail.com

Jun Wu: College of Mathematics and Econometrics, Hunan University, Changsha 410082, China

E-mail address: junwmath@hotmail.com

Zhixiang Li: Department of Mathematics and System Sciences, College of Science, National University of Defense Technology, Changsha 410073, China

E-mail address: zhxli02@yahoo.com.cn