A new representation of remainder of Lagrange interpolating polynomial is derived. Error inequalities of Ostrowski-Grüss type for the Lagrange interpolating polynomial are established. Some similar inequalities are also obtained.

1. Introduction

Many error inequalities in polynomial interpolation can be found in [1, 7]. These error bounds for interpolating polynomials are usually expressed by means of the norms $\| \cdot \|_p$, $1 \leq p \leq \infty$. Some new error inequalities (for corrected interpolating polynomials) are given in [10, 11]. The last mentioned inequalities are similar to error inequalities obtained in recent years in numerical integration and they are known in the literature as inequalities of Ostrowski (or Ostrowski-like, Ostrowski-Grüss) type. For example, in [9] we can find inequalities of Ostrowski-Grüss type for the well-known Simpson’s quadrature rule,

$$\left| \int_{x_0}^{x_2} f(t)dt - \frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x_2)\right] \right| \leq C_n (\Gamma_n - \gamma_n) h^{n+1}, \quad (1.1)$$

where $x_i = x_0 + ih$, for $h > 0$, $i = 1, 2$, γ_n, Γ_n are real numbers such that $\gamma_n \leq f^{(n)}(t) \leq \Gamma_n$, for all $t \in [x_0, x_2]$, and C_n are constants, $n \in \{1, 2, 3\}$.

The inequalities of Ostrowski type can be also found in [2, 3, 4, 5, 6, 12]. In some of the mentioned papers, we can find estimations for errors of quadrature formulas which are expressed by means of the differences $\Gamma_k - \gamma_k$, $S - \gamma_k$, $\Gamma_k - S$, where Γ_k, γ_k are real numbers such that $\gamma_k \leq f^{(k)}(t) \leq \Gamma_k$, $t \in [a, b]$ (k is a positive integer while $[a, b]$ is an interval of integration) and $S = \frac{f^{(k-1)}(b) - f^{(k-1)}(a)}{(b - a)}$. It is shown that the estimations expressed in such a way can be much better than the estimations expressed by means of the norms $\| f^{(k)} \|_p$, $1 \leq p \leq \infty$.

As we know there is a close relationship between interpolation polynomials and quadrature rules. Thus, it is a natural try to establish similar error inequalities in polynomial interpolation.
We first establish general error inequalities, expressed by means of \(\| f^{(k)} - P_m \| \), where \(P_m \) is any polynomial of degree \(m \) and then we obtain inequalities of the above mentioned types. For that purpose, we derive a new representation of remainder of the interpolating polynomial. This is done in Section 2. In Section 3, we obtain the error inequalities of the above-mentioned types. In Section 4, we give some results for derivatives.

Finally, we emphasize that the usual error inequalities in polynomial interpolation (for the Lagrange interpolating polynomial \(L_n(x) \)) are given by means of the \((n+1) \)th derivative while in this paper we can find these error inequalities expressed by means of the \(k \)th derivative for \(k = 1, 2, \ldots, n \).

2. Representation of remainder

Let \(D = \{a = x_0 < x_1 < \cdots < x_n = b\} \) be a given subdivision of the interval \([a, b]\) and let \(f : [a, b] \to \mathbb{R} \) be a given function. The Lagrange interpolation polynomial is given by

\[
L_n(x) = \sum_{i=0}^{n} p_{ni}(x) f(x_i),
\]

where

\[
p_{ni}(x) = \frac{(x-x_0) \cdots (x-x_{i-1})(x-x_{i+1}) \cdots (x-x_n)}{(x_i-x_0) \cdots (x_i-x_{i-1})(x_i-x_{i+1}) \cdots (x_i-x_n)},
\]

for \(i = 0, 1, \ldots, n \). We have the Cauchy relations [7, pages 160-161],

\[
\sum_{i=0}^{n} p_{ni}(x) = 1,
\]

(2.3)

\[
\sum_{i=0}^{n} p_{ni}(x)(x-x_i)^j = 0, \quad j = 1, 2, \ldots, n.
\]

(2.4)

Let \(\bar{D} = \{x_0 = a < x_1 < \cdots < x_n = b\} \) be a given uniform subdivision of the interval \([a, b]\), that is, \(x_i = x_0 + ih, h = (b-a)/n, i = 0, 1, 2, \ldots, n \). Then the Lagrange interpolating polynomial is given by

\[
L_n(x) = L_n(x_0 + th) = (-1)^n \frac{t(t-1) \cdots (t-n)}{n!} \sum_{i=0}^{n} (-1)^i \binom{n}{i} \frac{f(x_i)}{t-i},
\]

where \(t \notin \{0, 1, 2, \ldots, n\}, 0 < t < n \).

Lemma 2.1. Let \(P_m(t) \) be an arbitrary polynomial of degree \(\leq m \) and let \(p_{ni}(x) \) be defined by (2.2). Then

\[
\sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} P_m(t)(t-x_i)^k dt = 0,
\]

(2.6)

for \(0 \leq k + m \leq n - 1 \) and \(x \in [a, b] \).
Proof. Let x be a given real number. Then we have

$$P_m(t) = \sum_{j=0}^{m} c_j(x-t)^j,$$

for some coefficients $c_j = c_j(x)$, $j = 0, 1, 2, \ldots, m$. (This is a consequence of the Taylor formula.) Thus,

$$\sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} P_m(t)(t-x_i)^k dt = \sum_{j=0}^{m} c_j \sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} (x-t)^j(t-x_i)^k dt. \quad (2.8)$$

Let $\beta(\cdot, \cdot)$ and $\Gamma(\cdot)$ denote the beta and gamma functions, respectively. We now calculate

$$\int_{x_i}^{x} (x-t)^j(t-x_i)^k dt = \int_{0}^{x-x_i} (x-x_i-u)^j u^k du$$

$$= (x-x_i)^j \int_{0}^{1} \left(1 - \frac{u}{x-x_i}\right)^j u^k du$$

$$= (x-x_i)^{j+k+1} \int_{0}^{1} (1-v)^j v^k dv$$

$$= \beta(j+1,k+1)(x-x_i)^{j+k+1}$$

$$= \frac{\Gamma(k+1)\Gamma(j+1)}{\Gamma(k+j+2)}(x-x_i)^{j+k+1}$$

$$= \frac{k!j!}{(k+j+1)!}(x-x_i)^{j+k+1}. \quad (2.9)$$

From (2.8) and (2.9) it follows that

$$\sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} P_m(t)(t-x_i)^k dt = \sum_{j=0}^{m} c_j \frac{k!j!}{(k+j+1)!} \sum_{i=0}^{n} p_{ni}(x)(x-x_i)^{j+k+1}. \quad (2.10)$$

From (2.10) and (2.4) we conclude that (2.6) holds. \hfill \Box

Theorem 2.2. Let $f \in C^{n+1}(a, b)$ and let the assumptions of Lemma 2.1 hold. Then

$$f(x) = L_n(x) + R_{k,m}(x),$$

where $L_n(x)$ is given by (2.1) and

$$R_{k,m}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} \left[f^{(k+1)}(t) - P_m(t)\right](t-x_i)^k dt. \quad (2.12)$$

Proof. We have

$$R_{k,m}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} f^{(k+1)}(t)(t-x_i)^k dt - \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} P_m(t)(t-x_i)^k dt. \quad (2.13)$$
From (2.13) and (2.6) it follows that
\[R_{k,m}(x) = R_k(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} f^{(k+1)}(t)(t-x_i)^k dt. \] (2.14)

For \(k = 0 \) we have
\[R_0(x) = \sum_{i=0}^{n} p_{ni}(x) \int_{x_i}^{x} f'(t)dt = \sum_{i=0}^{n} p_{ni}(x) [f(x) - f(x_i)] = f(x) - L_n(x), \] (2.15)

since (2.3) holds.

We now suppose that \(k \geq 1 \). Integrating by parts, we obtain
\[\frac{(-1)^k}{k!} \int_{x_i}^{x} f^{(k+1)}(t)(t-x_i)^k dt = \frac{(-1)^k}{k!} f^{(k)}(x)(x-x_i)^k + \frac{(-1)^{k-1}}{(k-1)!} \int_{x_i}^{x} f^{(k)}(t)(t-x_i)^{k-1} dt. \] (2.16)

In a similar way we get
\[\frac{(-1)^{k-1}}{(k-1)!} \int_{x_i}^{x} f^{(k)}(t)(t-x_i)^{k-1} dt = \frac{(-1)^{k-1}}{(k-1)!} f^{(k-1)}(x)(x-x_i)^{k-1} \frac{(-1)^{k-2}}{(k-2)!} \int_{x_i}^{x} f^{(k-1)}(t)(t-x_i)^{k-2} dt. \] (2.17)

Continuing in this way, we get
\[\frac{(-1)^k}{k!} \int_{x_i}^{x} f^{(k+1)}(t)(t-x_i)^k dt = \sum_{j=1}^{k} \frac{(-1)^j}{j!} f^{(j)}(x)(x-x_i)^j + \int_{x_i}^{x} f'(t)dt = f(x) - f(x_i) + \sum_{j=1}^{k} \frac{(-1)^j}{j!} f^{(j)}(x)(x-x_i)^j. \] (2.18)

From (2.14) and (2.18) it follows that
\[R_k(x) = \sum_{i=0}^{n} p_{ni}(x) \left[f(x) - f(x_i) + \sum_{j=1}^{k} \frac{(-1)^j}{j!} f^{(j)}(x)(x-x_i)^j \right] \]
\[= f(x) - L_n(x) + \sum_{j=1}^{k} \frac{(-1)^j}{j!} f^{(j)}(x) \sum_{i=0}^{n} p_{ni}(x)(x-x_i)^j \]
\[= f(x) - L_n(x), \quad k = 1, 2, \ldots, n, \] (2.19)

since (2.3) and (2.4) hold. From (2.14), (2.15), and (2.19) we see that (2.11) holds. \(\square \)
3. Error inequalities

We now introduce the notations

\[\omega_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n), \quad (3.1) \]
\[C_k(x) = \sum_{i=0}^{n} \frac{|x - x_i|^k}{|x_i - x_{i-1}| \cdots |x_{i+1} - x_n|}, \quad (3.2) \]
\[B_k(x) = \sum_{i=0}^{n} \frac{(S_{ki} - \gamma_{k+1}) |x - x_i|^k}{|x_i - x_{i-1}| \cdots |x_{i+1} - x_n|}, \quad (3.3) \]
\[D_k(x) = \sum_{i=0}^{n} \frac{(\Gamma_{k+1} - S_{ki}) |x - x_i|^k}{|x_i - x_{i-1}| \cdots |x_{i+1} - x_n|}, \quad (3.4) \]

where \(S_{ki} = [f^{(k)}(x) - f^{(k)}(x_i)]/(x - x_i), i = 0, 1, \ldots, n, \) and \(\gamma_{k+1}, \Gamma_{k+1} \) are real numbers such that \(\gamma_{k+1} \leq f^{(k+1)}(t) \leq \Gamma_{k+1}, t \in [a, b], k = 0, 1, \ldots, n - 1. \)

Let \(g \in C(a, b). \) As we know among all algebraic polynomials of degree \(\leq m \) there exists the only polynomial \(P_m(t) \) having the property that

\[||g - P_m||_\infty \leq ||g - P_m||_\infty, \quad (3.5) \]

where \(P_m \in \Pi_m \) is an arbitrary polynomial of degree \(\leq m. \) We define

\[E_m(g) = ||g - P_m|| = \inf_{P_m \in \Pi_m} ||g - P_m||_\infty. \quad (3.6) \]

Theorem 3.1. Under the assumptions of Theorem 2.2,

\[|f(x) - L_n(x)| \leq \frac{E_m(f^{(k+1)})}{(k+1)!} C_k(x) \omega_n(x), \quad (3.7) \]

where \(C_k(\cdot) \) and \(E_m(\cdot) \) are defined by (3.2) and (3.6), respectively.

Proof. Let \(P_m(t) = P_m^*(t) \), where \(P_m^*(t) \) is defined by (3.6) for the function \(g(t) = f^{(k+1)}(t). \)

We have

\[|R_{k,m}(x)| = \left| \frac{(-1)^k}{k!} \sum_{i=0}^{n} \left[f^{(k+1)}(t) - P_m^*(t) \right] (t - x_i)^k \right| dt \]
\[\leq \left| \frac{f^{(k+1)} - P_m^*}{(k+1)!} \right| C_k(x) \omega_n(x) \]
\[= \frac{E_m(f^{(k+1)})}{(k+1)!} C_k(x) \omega_n(x), \quad (3.8) \]

since

\[\left| \int_{x_i}^{x} (t - x_i)^k \right| = \left| \frac{x - x_i}{k+1} \right| (k+1). \quad (3.9) \]
Remark 3.2. The above estimate has only theoretical importance, since it is difficult to find the polynomial \(P^* \). In fact, we can find \(P^* \) only for some special cases of functions. However, we can use the estimate to obtain some practical estimations—see Theorem 3.3.

Theorem 3.3. Let the assumptions of Theorem 2.2 hold. If \(y_{k+1}, \Gamma_{k+1} \) are real numbers such that \(y_{k+1} \leq f^{(k+1)}(t) \leq \Gamma_{k+1}, t \in [a, b], k = 0, 1, \ldots, n - 1 \), then

\[
| f(x) - L_n(x) | \leq \frac{\Gamma_{k+1} - y_{k+1}}{2(k+1)!} C_k(x) | \omega_n(x) |,
\]

(3.10)

where \(\omega_n \) and \(C_k(\cdot) \) are defined by (3.1) and (3.2), respectively. Also

\[
| f(x) - L_n(x) | \leq \frac{| \omega_n(x) |}{k!} B_k(x),
\]

(3.11)

\[
| f(x) - L_n(x) | \leq \frac{| \omega_n(x) |}{k!} D_k(x),
\]

(3.12)

where \(B_k(\cdot) \) and \(D_k(\cdot) \) are defined by (3.3) and (3.4), respectively.

Proof. We set \(P_m(t) = (\Gamma_{k+1} + y_{k+1})/2 \) in (2.12). Then we have

\[
| f(x) - L_n(x) | = | R_k(x) | \leq \frac{1}{k!} \sum_{i=0}^{n} | p_m(x) | \left| f^{(k+1)} - \frac{\Gamma_{k+1} + y_{k+1}}{2} \right| \left(\int_{x_i}^{x} (t - x_i)^k dt \right).
\]

(3.13)

We also have

\[
\left| f^{(k+1)} - \frac{\Gamma_{k+1} + y_{k+1}}{2} \right| \leq \frac{\Gamma_{k+1} - y_{k+1}}{2},
\]

(3.14)

\[
\left| \int_{x_i}^{x} (t - x_i)^k dt \right| = \frac{| x - x_i |^{k+1}}{k+1}.
\]

From the above three relations we get

\[
| f(x) - L_n(x) | \leq \frac{\Gamma_{k+1} - y_{k+1}}{2(k+1)!} \sum_{i=0}^{n} | p_m(x) | \left| x - x_i \right|^{k+1} \leq \frac{\Gamma_{k+1} - y_{k+1}}{2(k+1)!} C_k(x) | \omega_n(x) |.
\]

The first inequality is proved.

We now set \(P_m(t) = y_{k+1} \) in (2.12). Then we have

\[
| f(x) - L_n(x) | = | R_k(x) | \leq \frac{1}{k!} \sum_{i=0}^{n} | p_m(x) | \left| \int_{x_i}^{x} \left[f^{(k+1)}(t) - y_{k+1} \right] (t - x_i)^k dt \right|.
\]

(3.15)
We also have
\[
\left| \int_{x_i}^x \left[f^{(k+1)}(t) - \gamma_{k+1} \right] (t - x_i)^k \, dt \right| \leq \left| x - x_i \right|^k \left| f^{(k)}(x) - f^{(k)}(x_i) - \gamma_{k+1} (x - x_i) \right| \\
= \left| x - x_i \right|^{k+1} (S_{ki} - \gamma_{k+1}).
\] (3.16)

Thus,
\[
\left| f(x) - L_n(x) \right| \leq \frac{1}{k!} \sum_{j=0}^n \left| p_{nj}(x) \right| \left| x - x_i \right|^{k+1} (S_{ki} - \gamma_{k+1})
\] (3.17)

The second inequality is proved. In a similar way we prove that the third inequality holds.

\[\square\]

Lemma 3.4. Let \(D = \{ x_0 = a < x_1 < \cdots < x_n = b \} \) be a given uniform subdivision of the interval \([a,b]\), that is, \(x_i = x_0 + ih, h = (b - a)/n, i = 0,1,2,\ldots,n \). If \(x \in (x_{j-1},x_j) \), for some \(j \in \{1,2,\ldots,n\} \), then
\[
\left| \omega_n(x) \right| \leq j!(n-j+1)!h^{n+1},
\] (3.18)
\[
C_k(x) \leq \frac{2^n}{n!} \left\{ \frac{1}{2} \left[n+1 + |n-2j+1| \right] \right\}^k h^{k-n},
\] (3.19)
\[
C_k(x) \left| \omega_n(x) \right| \leq \alpha_{jnk} \frac{n-j+1}{n} \frac{2^n (b-a)^{k+1}}{\binom{n}{j}},
\] (3.20)

where
\[
\alpha_{jnk} = \left[\frac{1}{2n} (n+1 + |2j-n-1|) \right]^k.
\] (3.21)

This lemma is proved in [10].

Remark 3.5. Note that
\[
\alpha_{jnk} \leq 1
\] (3.22)
and \(\alpha_{jnk} = 1 \) if and only if \(j = 1 \) or \(j = n \). If we choose \(x \in [x_j,x_{j+1}] \), \(j = 0,1,\ldots,n-1 \), then we get the factor \((j+1)/n\) instead of the factor \((n-j+1)/n\) in (3.20).

Theorem 3.6. Under the assumptions of Lemma 3.4 and Theorem 3.3,
\[
\left| f(x) - L_n(x) \right| \leq \frac{\Gamma_{k+1} - \gamma_{k+1}}{(k+1)!} \alpha_{jnk} \frac{n-j+1}{n} \frac{2^n (b-a)^{k+1}}{\binom{n}{j}}.
\] (3.23)

Proof. The proof follows immediately from Theorem 3.3 and Lemma 3.4. \[\square\]
4. Results for derivatives

Lemma 4.1. Let \(1 \leq j \leq n-1\) and \(j+1 \leq r \leq n\). Then

\[
\sum_{i=0}^{n} p_{ni}^{(j)}(x)(x-x_i)^r = 0. \tag{4.1}
\]

Proof. We have (see (2.4))

\[
A(x) = \sum_{i=0}^{n} p_{ni}(x)(x-x_i)^r = 0, \quad \text{for } 1 \leq r \leq n. \tag{4.2}
\]

Thus,

\[
A'(x) = \sum_{i=0}^{n} p_{ni}'(x)(x-x_i)^r + r \sum_{i=0}^{n} p_{ni}(x)(x-x_i)^{r-1} = 0, \tag{4.3}
\]

if \(1 \leq r \leq n\). If \(n \geq r-1 \geq 1\), that is, \(n+1 \geq r \geq 2\), then

\[
r \sum_{i=0}^{n} p_{ni}(x)(x-x_i)^{r-1} = 0. \tag{4.4}
\]

From (4.3) and (4.4) we get

\[
\sum_{i=0}^{n} p_{ni}'(x)(x-x_i)^r = 0, \quad \text{for } 2 \leq r \leq n. \tag{4.5}
\]

(Note that \(\{r : 1 \leq r \leq n\} \cap \{r : 2 \leq r \leq n+1\} = \{r : 2 \leq r \leq n\}.\) Here we use this fact and similar facts without a special mentioning.)

We now suppose that

\[
\sum_{i=0}^{n} p_{ni}^{(j)}(x)(x-x_i)^r = 0, \tag{4.6}
\]

for \(j = 1,2,\ldots,m, m < n-1\) and \(j+1 \leq r \leq n\). We wish to prove that

\[
\sum_{i=0}^{n} p_{ni}^{(m+1)}(x)(x-x_i)^r = 0, \quad \text{for } m+2 \leq r \leq n. \tag{4.7}
\]

For that purpose, we first calculate

\[
A^{(m)}(x) = \sum_{i=0}^{n} \left[p_{ni}(x)(x-x_i)^r \right]^{(m)}
\]

\[
= \sum_{i=0}^{n} \sum_{k=0}^{m} \binom{m}{k} P_{ni}^{(k)}(x) \frac{r!}{(r-m+k)!} (x-x_i)^{r-m+k}\tag{4.8}
\]

\[
= \sum_{k=0}^{m} \binom{m}{k} \frac{r!}{(r-m+k)!} \sum_{i=0}^{n} P_{ni}^{(k)}(x)(x-x_i)^{r-m+k}.\]
We have
\[A^{(m)}(x) = 0, \quad \text{for } r \geq m + 1, \] (4.9)
by the above assumption. Thus,
\[A^{(m+1)}(x) = 0. \] (4.10)

On the other hand, we have
\begin{align*}
A^{(m+1)}(x) &= \frac{d}{dx} A^{(m)}(x) \\
&= \sum_{k=0}^{m} \binom{m}{k} \frac{r!}{(r-m+k)!} \sum_{i=0}^{n} P^{(k+1)}_{ni}(x)(x-x_i)^{r-m+k} \\
&\quad + \sum_{k=0}^{m} \binom{m}{k} \frac{r!}{(r-m+k-1)!} \sum_{i=0}^{n} P^{(k)}_{ni}(x)(x-x_i)^{r-m+k-1} \\
&= 0.
\end{align*}
(4.11)

We now rewrite the above relation in the form
\begin{align*}
\sum_{i=0}^{n} P^{(m+1)}_{ni}(x)(x-x_i)^{r} + \sum_{k=0}^{m} \binom{m}{k} \frac{r!}{(r-m+k)!} \sum_{i=0}^{n} P^{(k+1)}_{ni}(x)(x-x_i)^{r-m+k} \\
&\quad + \sum_{k=0}^{m} \binom{m}{k} \frac{r!}{(r-m+k-1)!} \sum_{i=0}^{n} P^{(k)}_{ni}(x)(x-x_i)^{r-m+k-1} = 0.
\end{align*}
(4.12)

For \(r - m + k - 1 \geq k + 1 \), that is, \(r \geq m + 2 \), we have
\[\sum_{i=0}^{n} P^{(k)}_{ni}(x)(x-x_i)^{r-m+k-1} = 0 \] (4.13)
by the above assumption. We also have
\[\sum_{i=0}^{n} P^{(k+1)}_{ni}(x)(x-x_i)^{r-m+k} = 0, \] (4.14)
if \(r - m + k \geq k + 2 \), that is, \(r \geq m + 2 \). Thus (4.7) holds. This completes the proof. \(\square \)

Theorem 4.2. Let \(f \in C^{r+1}(a,b) \) and let \(P_r(t) \) be an arbitrary polynomial of degree \(\leq r \) and let \(0 \leq k \leq n, 1 \leq m \leq k \). Then
\[f^{(m)}(x) = L^{(m)}_{n}(x) + E_{k,r}(x), \] (4.15)
where
\[E_{k,r}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} P^{(m)}_{ni}(x) \int_{x_i}^{x} [f^{(k+1)}(t) - P_r(t)](t-x_i)^k dt. \] (4.16)
Inequalities in polynomial interpolation

Proof. We define

\[v_i(x) = \int_{x_i}^{x} \left[f^{(k+1)}(t) - P_r(t) \right] (t - x_i)^k \, dt \]
\[= \int_{x_i}^{x} g(t) (t - x_i)^k \, dt, \quad (4.17) \]

where, obviously, \(g(t) = f^{(k+1)}(t) - P_r(t) \). We denote

\[R_{k,r}(x) = f(x) - L_n(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}(x)v_i(x), \quad (4.18) \]

see Theorem 2.2. Then we have

\[R_{k,r}^{(m)}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} \left[p_{ni}(x)v_i(x) \right]^{(m)} \]
\[= \frac{(-1)^k}{k!} \sum_{i=0}^{n} \sum_{j=0}^{m} \binom{m}{j} p_{ni}^{(j)}(x)v_i^{(m-j)}(x) \]
\[= \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}^{(m)}(x)v_i(x) + \frac{(-1)^k}{k!} \sum_{i=0}^{n} \sum_{j=0}^{m-1} \binom{m}{j} p_{ni}^{(j)}(x)v_i^{(m-j)}(x). \quad (4.19) \]

We introduce the notation

\[B(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} \sum_{j=0}^{m-1} \binom{m}{j} p_{ni}^{(j)}(x)v_i^{(m-j)}(x) \quad (4.20) \]

such that

\[R_{k,r}^{(m)}(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} p_{ni}^{(m)}(x)v_i(x) + B(x). \quad (4.21) \]

We now rewrite \(B(x) \) in the form

\[B(x) = \frac{(-1)^k}{k!} \sum_{i=0}^{n} \sum_{j=0}^{m-2} \binom{m}{j} p_{ni}^{(j)}(x)v_i^{(m-j)}(x) + \frac{(-1)^k}{k!} m \sum_{i=0}^{n} p_{ni}^{(m-1)}(x)v_i'(x). \quad (4.22) \]

We have

\[v_i'(x) = g(x)(x - x_i)^k \quad (4.23) \]

such that

\[\sum_{i=0}^{n} p_{ni}^{(m-1)}(x)v_i'(x) = g(x) \sum_{i=0}^{n} p_{ni}^{(m-1)}(x)(x - x_i)^k = 0, \quad (4.24) \]

for \(k \geq m \)—see Lemma 4.1.
We also have

\[v_{i}^{(m-j)}(x) = \sum_{l=0}^{m-j-1} \binom{m-j-1}{l} g^{(l)}(x) \frac{k!}{(k-m+j+l+1)!} (x-x_{i})^{k-m+j+l+1}, \]

(4.25)

for \(m \geq j + 2 \) such that

\[\sum_{i=0}^{n} \sum_{j=0}^{m-2} \binom{m}{j} p_{ni}^{(j)}(x) v_{i}^{(m-j)}(x) = \sum_{j=0}^{m-2} \binom{m}{j} \sum_{l=0}^{m-j-1} \binom{m-j-1}{l} \frac{k!}{(k-m+j+l+1)!} \]

\[\times \sum_{i=0}^{n} p_{ni}^{(j)}(x)(x-x_{i})^{k-m+j+l+1} = 0, \]

(4.26)

if \(k-m+j+l+1 \geq j+1 \), that is, \(k \geq m \), since \(l \geq 0 \)—see also Lemma 4.1. Hence, \(B(x) = 0 \) in all cases. Now from (4.21) it follows that

\[R_{k,r}^{(m)}(x) = \frac{(-1)^{k}}{k!} \sum_{i=0}^{n} p_{ni}^{(m)}(x) v_{i}(x) = \frac{(-1)^{k}}{k!} \sum_{i=0}^{n} p_{ni}^{(m)}(x) \int_{x_{i}}^{x} [f^{(k+1)}(t) - P_{r}(t)](t-x_{i})^{k} dt. \]

(4.27)

On the other hand, we have

\[[f(x) - L_{n}(x)]^{(m)} = f^{(m)}(x) - L_{n}^{(m)}(x). \]

(4.28)

This completes the proof. \(\square \)

Theorem 4.3. Under the assumptions of Theorem 4.2,

\[|f^{(m)}(x) - L_{n}^{(m)}(x)| \leq \frac{E_{r}(f^{(k+1)})}{(k+1)!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| |x-x_{i}|^{k+1}, \]

(4.29)

where \(E_{r}(\cdot) \) is defined by (3.6).

Proof. Let \(P_{r}(t) = P_{r}^{*}(t) \), where \(P_{r}^{*}(t) \) is defined by (3.6) for the function \(g(t) = f^{(k+1)}(t) \). We have

\[|R_{k,r}^{(m)}(x)| = \left| \frac{(-1)^{k}}{k!} \sum_{i=0}^{n} p_{ni}^{(m)}(x) \int_{x_{i}}^{x} [f^{(k+1)}(t) - P_{r}^{*}(t)](t-x_{i})^{k} dt \right| \]

\[\leq \frac{||f^{(k+1)}(t) - P_{r}^{*}(t)||}{(k+1)!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| |x-x_{i}|^{k+1} \]

(4.30)

\[= \frac{E_{r}(f^{(k+1)})}{(k+1)!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| |x-x_{i}|^{k+1}, \]
If we choose \(Pr \) since
\[
\left| \int_{x_i}^{x} (t - x_i)^k \, dt \right| = \frac{|x - x_i|^{k+1}}{k + 1}. \tag{4.31}
\]

Theorem 4.4. Under the assumptions of Theorem 3.3 and Lemma 4.1,
\[
|f^{(m)}(x) - L_n^{(m)}(x)| \leq \frac{\Gamma_{k+1} - y_{k+1}}{2(k+1)!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| |x - x_i|^{k+1},
\]
\[
|f^{(m)}(x) - L_n^{(m)}(x)| \leq \frac{1}{k!} \sum_{i=0}^{n} (S_{ki} - y_{k+1}) |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}, \tag{4.32}
\]
\[
|f^{(m)}(x) - L_n^{(m)}(x)| \leq \frac{1}{k!} \sum_{i=0}^{n} (\Gamma_{k+1} - S_{ki}) |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}.
\]

Proof. We choose \(P_r(t) = \Gamma_{k+1} + y_{k+1}/2 \) in Theorem 4.2. Then we get
\[
|f^{(m)}(x) - L_n^{(m)}(x)| \leq \frac{1}{k!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| \left| \int_{x_i}^{x} f^{(k+1)}(t) - \frac{\Gamma_{k+1} + y_{k+1}}{2} (t - x_i) \, dt \right|
\]
\[
\leq \frac{\Gamma_{k+1} - y_{k+1}}{2(k+1)!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| \left| \int_{x_i}^{x} (t - x_i) \, dt \right| \tag{4.33}
\]
\[
= \frac{\Gamma_{k+1} - y_{k+1}}{2(k+1)!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}.
\]

If we choose \(P_r(t) = y_{k+1} \) in Theorem 4.2, then we get
\[
|f^{(m)}(x) - L_n^{(m)}(x)| \leq \frac{1}{k!} \sum_{i=0}^{n} |p_{ni}^{(m)}(x)| \left| \int_{x_i}^{x} f^{(k+1)}(t) - y_{k+1} (t - x_i) \, dt \right|
\]
\[
\leq \frac{1}{k!} \sum_{i=0}^{n} (S_{ki} - y_{k+1}) |p_{ni}^{(m)}(x)| |x - x_i|^{k+1}, \tag{4.34}
\]

since \(\int_{x_i}^{x} |f^{(k+1)}(t) - y_{k+1}| \, dt = |f^{(k)}(x) - f^{(k)}(x_i) - y_{k+1}(x - x_i)| \).

In a similar way we prove that the third inequality holds. \(\square \)

References

Nenad Ujević: Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia

E-mail address: ujevic@pmfst.hr
Submit your manuscripts at http://www.hindawi.com