A REFINEMENT OF NORMAL APPROXIMATION TO POISSON BINOMIAL

K. NEAMMANEE

Received 8 August 2004 and in revised form 6 December 2004

Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables with $P(X_j = 1) = 1 - P(X_j = 0) = p_j$ and let $S_n := X_1 + X_2 + \cdots + X_n$. S_n is called a Poisson binomial random variable and it is well known that the distribution of a Poisson binomial random variable can be approximated by the standard normal distribution. In this paper, we use Taylor’s formula to improve the approximation by adding some correction terms. Our result is better than before and is of order $1/n$ in the case $p_1 = p_2 = \cdots = p_n$.

1. Introduction and main result

Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables with $P(X_j = 1) = p_j$ and $P(X_j = 0) = q_j$, where $0 < p_j < 1$ and $p_j + q_j = 1$ for $j = 1, 2, \ldots, n$. Let $S_n := X_1 + X_2 + \cdots + X_n$, $\mu := ES_n = p_1 + p_2 + \cdots + p_n$, and $\sigma^2 := Var S_n = p_1 q_1 + p_2 q_2 + \cdots + p_n q_n$. In connection with Bernoulli’s theorem, the following important question arises: when the number of trials is large, how can one find, at least approximately, the probability

$$P(a \leq S_n \leq b),$$ \hspace{1cm} (1.1)

where $a, b = 1, 2, \ldots, n$?

De Moivre [3] was the first one who successfully attacked this difficult problem in case of $p_1 = p_2 = \cdots = p_n$ by using the standard normal distribution

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-(1/2)t^2} dt.$$ \hspace{1cm} (1.2)

After him, in essentially the same way, but using more powerful analytical tools, Laplace [7] succeeded in establishing a simple approximation formula which is given in all books on probability. A general bound was given by Feller [5] for independent and nonidentically distributed random variables with finite third moments and by Chen and Shao [2] without assuming the existence of third moments. In the case when the random variables are identically distributed, it has long been known that the best bound is of order $1/\sqrt{n}$.

Copyright © 2005 Hindawi Publishing Corporation
DOI: 10.1155/IJMMS.2005.717
A refinement of normal approximation to Poisson binomial

In this paper, we investigate the approximation of S_n by its asymptotic expansions. If two terms,

$$G(x) := \Phi(x) + \frac{1}{6\sqrt{2\pi\sigma^3}} \sum_{j=1}^{n} p_j q_j (p_j - q_j) (1 - x^2) e^{-x^2/2}, \quad (1.3)$$

are used, then the accuracy of the approximation is better. The use of asymptotic expansions is one of the most natural ways of refinement (see, e.g., Uspensky [12], Kolassa [6], Petrov [11], and Bhattacharya and Rao [1]). The refinement of the central limit theorem for sums of independent Bernoulli random variables has a long history.

In what follows, let

$$\Delta_n := |P(a \leq S_n \leq b) - (G(x_2) - G(x_1))|, \quad (1.4)$$

where

$$x_1 = \frac{1}{\sigma} \left(a - \mu - \frac{1}{2} \right), \quad x_2 = \frac{1}{\sigma} \left(b - \mu + \frac{1}{2} \right). \quad (1.5)$$

In the case when S_n is a binomial random variable, that is, $p_1 = p_2 = \cdots = p_n$, Uspensky [12] shows that

$$\Delta_n \leq 0.26 + 0.36 \frac{|q-p|}{\sigma^2} + 2e^{-(3/2)\sigma} \quad (1.6)$$

under the condition that

$$\sigma^2 \geq 25 \quad (1.7)$$

and in 1955, Makabe [8] improved the result of Uspensky in the form of

$$\Delta_n \leq \frac{0.106 + 0.054(q-p) + 0.108(q-p)^2}{\sigma^2} + 2e^{-(3/2)\sigma} \quad (1.8)$$

under the conditions that

$$p < \frac{1}{2}, \quad \sigma^2 \geq 25, \quad n \geq 100. \quad (1.9)$$

In this paper, we consider the correction terms in the case when p_i’s are not necessarily equal, that is, S_n is a Poisson binomial random variable. In this case, Makabe [9] shows that

$$\Delta_n \leq \frac{C}{\sigma^2} \quad (1.10)$$

for some constant $C > 0$ under the conditions that

$$\sigma^2 \geq 25, \quad p_i < \frac{1}{2} \quad \text{for } i = 1, 2, \ldots, n. \quad (1.11)$$
Mikhaïlov [10] calculated the constant C of Makabe and found out that

$$\Delta_n \leq \frac{2(\sigma + 3)}{\sigma^3} \quad (1.12)$$

under the condition that

$$\sigma^2 \geq 100. \quad (1.13)$$

In 1995, Volkova showed that

$$\Delta_n \leq \frac{2}{\sigma^2} (0.05\beta_4 + 0.1\beta_3^2 + 0.08) + \frac{2}{\sigma^3} (0.05\beta_3 + 0.17\beta_3^2 + 0.056)$$

$$+ \frac{2}{\sigma^4} (0.06\beta_4^2 + 0.27\beta_4 + 0.002), \quad (1.14)$$

where β_3 and β_4 are the third and fourth semi-invariants of S_n, respectively. The bound of Volkova is valid under the condition (1.13).

In the present work, we improve the bounds in (1.6), (1.8), (1.10), (1.12), and (1.14) under the condition (1.13). Here is our main results.

Theorem 1.1. For $\sigma^2 \geq 100$,

$$\Delta_n \leq \frac{0.1618}{\sigma^2}. \quad (1.15)$$

In the proof of the main theorem, we use the idea of Uspensky which uses only Taylor’s formula without using any high-power analytical tools.

Remarks 1.2. (1) In Theorem 1.1, we estimate Δ_n in case of $\sigma^2 \geq 100$. In fact, the bound is valid in the range $0 < \sigma^2 < 100$ as well. For example, if $\sigma^2 \in [25, 100)$, by using the argument of Theorem 1.1, one can get the bound of the form

$$\Delta_n \leq \frac{0.3056}{\sigma^2}. \quad (1.16)$$

In this case, Volkova [14] showed that

$$\Delta_n \leq \frac{2(2\sigma + 5)}{5\sigma^3}, \quad (1.17)$$

which is larger than our result.

(2) The bound in Theorem 1.1 is correct in order (see Deheuvels et al. [4]) and in the case $p_1 = p_2 = \cdots = p_n$, the order of the bound is $1/n$.

2. Proof of main result

Let $\varphi_1, \varphi_2, \ldots, \varphi_n$ and φ be the characteristic functions of X_1, X_2, \ldots, X_n and S_n, respectively. Hence

$$\varphi_j(t) = q_j + p_j e^{it} \quad \text{for } j = 1, 2, \ldots, n, \quad \varphi(t) = \prod_{j=1}^{n} (q_j + p_j e^{it}), \quad (2.1)$$
where \(i = \sqrt{-1} \). We note that the complex number \(\varphi(t) \) can be represented in the form

\[
\varphi_j(t) = \rho_j(t)e^{i\Theta_j(t)},
\]

where

\[
\rho_j(t) := \left| \varphi_j(t) \right| = (p_j^2 + q_j^2 + 2p_jq_j\cos t)^{1/2} = \left(1 - 4p_jq_j\sin^2\frac{t}{2} \right)^{1/2},
\]

\[
\Theta_j(t) := \text{argument of } \varphi_j(t) = \arctan \left(\frac{p_j\sin t}{q_j + p_j\cos t} \right).
\]

Hence

\[
\varphi(t) = \rho(t)e^{i\Theta(t)},
\]

where \(\rho(t) = \prod_{j=1}^{n} \rho_j(t) \) and \(\Theta(t) = \sum_{j=1}^{n} \Theta_j(t) (\text{mod } 2\pi) \).

Let

\[
\alpha(t) := \Theta(t) - \mu t,
\]

\[
R(x) := \frac{1}{2\pi} \int_{0}^{\pi} \frac{\rho(t)\sin(\sigma xt - \alpha(t))}{\sin(t/2)} dt.
\]

From Uspensky [12], we know that

\[
P(a \leq S_n \leq b) = R(x_2) - R(x_1),
\]

where \(x_1 \) and \(x_2 \) are defined in (1.5).

Lemma 2.1. For \(j = 1, 2, \ldots, n \),

1. \(\rho_j(t) \leq e^{-\left(2/\pi^2\right)p_jq_j t^2} \) for \(t \in [0, \pi) \),
2. \(\rho_j(t) \leq e^{-\left(1/2\right)p_jq_j t^2 + (1/24)p_jq_j t^4} \) for \(t \in [0, \pi] \),
3. \(\rho_j(t) \geq e^{-\left(1/2\right)p_jq_j t^2 - (1/4)p_jq_j t^4} \) for \(t \in [0, \pi/2] \).

Proof. (1) By (2.3) and the fact that \(|4p_jq_j\sin^2(t/2)| < 1 \), we have

\[
\ln \rho_j(t) = \frac{1}{2}\ln \left(1 - 4p_jq_j\sin^2\frac{t}{2} \right) \leq \frac{1}{2}\sum_{k=1}^{\infty} \frac{1}{k} \left(4p_jq_j\sin^2\frac{t}{2} \right)^k \leq -2p_jq_j\sin^2\frac{t}{2} \leq -\frac{2}{\pi^2}p_jq_j\frac{t}{2},
\]

where we have used the fact that

\[
\sin \frac{t}{2} \geq \frac{t}{\pi} \text{ on } [0, \pi)
\]

in the last inequality. Hence we have (1).
(2) By Taylor’s formula, we know that $\sin^2(t/2) \geq t^2/4 - t^4/48$. So (2) follows by this fact and (2.10).

(3) Let $t \in [0, \pi/2]$. Using Taylor’s formula for $f(t) = (1/3)\sin^4(t/2) + \sin^2(t/2)$, we can show that

$$\frac{t^2}{4} - \sin^2 \frac{t}{2} \geq \frac{1}{3} \sin^4 \frac{t}{2}, \quad (2.13)$$

Hence, by (2.9), (2.13) and the fact that $0 \leq \sin(t/2) \leq t/2$, we have

$$\ln \rho_j(t) = \left\{ -\frac{1}{2} p_j q_j t^2 - \frac{1}{4} (4 p_j q_j)^2 \sin^4 \frac{t}{2} \right\} + 2 p_j q_j \left\{ \frac{t^2}{4} - \sin^2 \frac{t}{2} \right\}$$

$$- \frac{1}{2} \sum_{k=3}^{\infty} \frac{1}{k} \left(4 p_j q_j \sin^2 \frac{t}{2} \right)^k$$

$$\geq \left\{ -\frac{1}{2} p_j q_j t^2 - \frac{1}{4} p_j^2 q_j^2 t^4 \right\} + 2 p_j q_j \sin^4 \frac{t}{2} - \frac{1}{6} \sum_{k=3}^{\infty} \left(4 p_j q_j \sin^2 \frac{t}{2} \right)^k$$

$$= \left\{ -\frac{1}{2} p_j q_j t^2 - \frac{1}{4} p_j^2 q_j^2 t^4 \right\} + 2 p_j q_j \sin^4 \frac{t}{2} - \frac{1}{1 - 4 p_j q_j \sin^2(t/2)}$$

$$\geq \left\{ -\frac{1}{2} p_j q_j t^2 - \frac{1}{4} p_j^2 q_j^2 t^4 \right\} + 2 p_j q_j \sin^4 \frac{t}{2} - \frac{1}{3} (4 p_j q_j)^3 \sin^6 \frac{t}{2}$$

$$= \left\{ -\frac{1}{2} p_j q_j t^2 - \frac{1}{4} p_j^2 q_j^2 t^4 \right\} + 2 p_j q_j \sin^4 \frac{t}{2} \left(1 - 32 p_j^2 q_j^2 \sin^2 \frac{t}{2} \right)$$

$$\geq -\frac{1}{2} p_j q_j t^2 - \frac{1}{4} p_j^2 q_j^2 t^4$$

which implies that $\rho_j(t) \geq e^{-(1/2)p_j q_j t^2 - (1/4)p_j^2 q_j^2 t^4}$. \(\square\)

We are now ready to prove the main result of this section. For convenience, we assume $\sigma^2 \geq 100$ and divide the proof into 5 steps as follows.

Step 1. We will show that $|\rho(t) - e^{-(1/2)\sigma^2 t^2}| \leq (1/16)\sigma^2 t^4 e^{-(1/2)\sigma^2 t^2}$ for $t \in [0, \sqrt{3/\sigma}]$.

From Lemma 2.1(2), we have

$$\rho(t) = \prod_{j=1}^{n} \rho_j(t) \leq e^{-(1/2)\sigma^2 t^2 + (1/24)\sigma^2 t^4}, \quad (2.15)$$

which implies that

$$\rho(t) - e^{-(1/2)\sigma^2 t^2} \leq e^{-(1/2)\sigma^2 t^2} (e^{(1/24)\sigma^2 t^4} - 1) \leq \frac{1}{24} \sigma^2 t^4 e^{-(1/2)\sigma^2 t^2 + (1/24)\sigma^2 t^4}, \quad (2.16)$$

where we have used the fact that $e^x - 1 \leq xe^x$ for $x > 0$ in the last inequality.
A refinement of normal approximation to Poisson binomial

By Lemma 2.1(3) and the fact that $0 \leq p_jq_j \leq 1/4$, we have

$$
\rho(t) - e^{-(1/2)\sigma^2 t^2} \geq e^{-(1/2)\sigma^2 t^2} (e^{-(1/16)\sigma^2 t^4} - 1)
\geq e^{-(1/2)\sigma^2 t^2} (e^{-(1/16)\sigma^2 t^4} - 1)
\geq -\frac{1}{16} \sigma^2 t^4 e^{-(1/2)\sigma^2 t^2},
$$

(2.17)

where we have used the fact that $e^{-x} - 1 > -x$ for $x > 0$ in the last inequality.

From (2.16), (2.17) and the fact that $e^{(1/24)\sigma^2 t^4} \leq 3/2$ for $t \in [0, \sqrt{3}/\sigma]$, we have

$$
|\rho(t) - e^{-(1/2)\sigma^2 t^2}| \leq \frac{1}{16} \sigma^2 t^4 e^{-(1/2)\sigma^2 t^2} \quad \text{on} \quad [0, \sqrt{3}/\sigma].
$$

(2.18)

Step 2. We will show that

$$
\sin(\sigma xt - \alpha(t)) = \sin(\sigma xt) - \frac{1}{6} \sum_{j=1}^{n} p_jq_j(p_j - q_j) t^3 \cos(\sigma xt) + \Delta_1,
$$

(2.19)

where $|\Delta_1| \leq 0.0285 t^5 + 0.0035 t^6$ and $t \in [0, \sqrt{3}/\sigma]$.

From Uspensky [12, page 124], we see that

$$
\Theta_j^{(1)}(0) = p_j, \quad \Theta_j^{(2)}(0) = 0, \quad \Theta_j^{(3)}(0) = p_jq_j(p_j - q_j),
$$

(2.20)

and for $t \in [0, \pi/2]$,

$$
|\Theta_j^{(3)}(t)| \leq \frac{9}{8} p_jq_j |p_j - q_j| \left(1 - 4p_jq_j \sin^2 \frac{t}{2}\right)^{-3},
$$

$$
|\Theta_j^{(4)}(t)| \leq 2p_jq_j |p_j - q_j| \left(1 - 4p_jq_j \sin^2 \frac{t}{2}\right)^{-4} t.
$$

(2.21)

Hence, for $t \in [0, \sqrt{3}/\sigma]$ and $\sigma^2 \geq 100$, we have

$$
|\Theta_j^{(3)}(t)| \leq \frac{9p_jq_j}{8(1 - 3/4\sigma)^3} \leq 1.4215 p_jq_j,
$$

$$
|\Theta_j^{(4)}(t)| \leq \frac{2p_jq_j t}{(1 - 3/4\sigma)^4} \leq 2.7319 p_jq_j t.
$$

(2.22)

Hence

$$
\alpha(t) = \frac{1}{6} \sum_{j=1}^{n} p_jq_j(p_j - q_j) t^3 + M_1(t)t^5,
$$

(2.23)

$$
\alpha(t) = M_2(t)t^3,
$$
where \(|M_1(t)| \leq 0.0285\) and \(|M_2(t)| \leq 0.0593\). So

\[
\sin(\sigma xt - \alpha(t)) \\
= \sin(\sigma xt) \cos(\alpha(t)) - \sin(\alpha(t)) \cos(\sigma xt) \\
= \sin(\sigma xt) \left(1 - \frac{1}{2} \cos(t_0) \alpha^2(t) \right) \\
- \left(\alpha(t) - \frac{1}{2} \sin(t_1) \alpha^2(t) \right) \cos(\sigma xt), \quad \text{for some } t_0 \text{ and } t_1,
\]

(2.24)

\[
= \sin(\sigma xt) - \frac{1}{6} \sum_{j=1}^{n} p_j q_j (p_j - q_j) t^3 \cos(\sigma xt) + \triangle_1,
\]

where \(|\triangle_1| \leq |M_1(t)| t^2 + |\alpha^2(t)| \leq 0.0285t^5 + 0.0035t^6\).

Step 3. We will show that

\[
R(x) = \frac{1}{\pi} \int_{0}^{\sqrt{3/\sigma}} e^{-\frac{1}{2} \sigma^2 t^2} \frac{\sin(\sigma xt - \alpha(t))}{t} \, dt + \triangle_2,
\]

(2.25)

where \(|\triangle_2| \leq 0.0713/\sigma^2\).

By Lemma 2.1(1) and (2.12), we have

\[
\frac{1}{2\pi} \int_{\sqrt{(3/4\sigma)}\pi}^{\pi} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{\sin(t/2)} \, dt \\
\leq \frac{1}{2} \int_{\sqrt{(3/4\sigma)}\pi}^{\infty} \frac{e^{-(2/\pi^2) \sigma^2 t^2}}{t} \, dt \\
= \frac{1}{2} \int_{\sqrt{3\sigma/2}}^{\infty} e^{-t^2} dt \\
\leq \frac{1}{3\sigma} \int_{\sqrt{3\sigma/2}}^{\infty} t e^{-t^2} dt \\
= \frac{1}{6\sigma} e^{-3\sigma/2} \\
\leq 0.0167 e^{-3\sigma/2}.
\]

(2.26)

By (2.12) and the fact that \(\rho(t)\) is decreasing on \([0, \pi/2]\), we have

\[
\frac{1}{2\pi} \int_{\sqrt{3/\sigma}}^{\sqrt{(3/4\sigma)}\pi} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{\sin(t/2)} \, dt \\
\leq \frac{1}{2} \int_{\sqrt{3/\sigma}}^{\sqrt{(3/4\sigma)}\pi} \frac{\rho(t)}{t} \, dt \\
\leq \frac{1}{2} \rho \left(\sqrt{\frac{3}{\sigma}} \right) \int_{\sqrt{3/\sigma}}^{\sqrt{(3/4\sigma)}\pi} \frac{1}{t} \, dt \\
= \frac{3}{4} e^{-(3/2)\sigma} \ln \frac{\pi}{2} \\
= 0.3383 e^{-(3/2)\sigma}.
\]

(2.27)
From (2.26), (2.27) and the fact that

\[e^{(3/2)\sigma} \geq \frac{1}{10!} \left(\frac{3}{2} \sigma \right)^{10} \geq 1589\sigma^2 \quad \text{for } \sigma^2 \geq 100, \]

we have

\[R(x) = \frac{1}{2\pi} \int_0^{\sqrt{3/\sigma}} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{\sin(t/2)} \, dt + \triangle_{21}, \]

where \(|\triangle_{21}| \leq 0.00024/\sigma^2 \).

Since \(\sin x = x - \cos(x_0)(x^3/6) \) for some \(x_0 \), we have

\[\left| \frac{1}{\sin x} - \frac{1}{x} \right| = \left| \sin x - x \right| \leq \frac{x^2}{6\sin x}, \]

which implies that

\[\frac{1}{2\pi} \int_0^{\sqrt{3/\sigma}} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{\sin(t/2)} \, dt = \frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{t} \, dt + \triangle_{22}, \]

where

\[|\triangle_{22}| \leq \frac{1}{48\pi} \left| \int_0^{\sqrt{3/\sigma}} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{\sin(t/2)} \, dt \right| \quad \text{which by (2.12)} \]

\[\leq \frac{1}{48} \int_0^{\sqrt{3/\sigma}} t \rho(t) \, dt \quad \text{which by Lemma 2.1(2)} \]

\[\leq \frac{1}{32} \int_0^{\infty} te^{-(1/2)\sigma^2 t^2} \, dt \]

\[= \frac{1}{32\sigma^2}. \]

By Step 1, we see that

\[\frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} \frac{\rho(t) \sin(\sigma xt - \alpha(t))}{t} \, dt = \frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} e^{-(1/2)\sigma^2 t^2} \sin(\sigma xt - \alpha(t)) \, dt + \triangle_{23}, \]

where

\[|\triangle_{23}| \leq \frac{\sigma^2}{16\pi} \int_0^{\sqrt{3/\sigma}} t^3 e^{-(1/2)\sigma^2 t^2} \, dt \]

\[\leq \frac{\sigma^2}{16\pi} \int_0^{\infty} t^3 e^{-(1/2)\sigma^2 t^2} \, dt \]

\[= \frac{0.0398}{\sigma^2}. \]

Hence, by (2.29)–(2.34), we have the conclusion of Step 3.
Step 4. We will show that

$$
\frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} e^{-(1/2)\sigma^2 t^2} \frac{\sin(\sigma xt)}{t} dt = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-(1/2)t^2} dt + \triangle_3,
$$

(2.35)

where $|\triangle_3| \leq (6.68 \times 10^{-6})/\sigma^2$.

Note that

$$
\frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} e^{-(1/2)\sigma^2 t^2} \frac{\sin(\sigma xt)}{t} dt = \frac{1}{\pi} \int_0^\infty e^{-(1/2)\sigma^2 t^2} \frac{\sin(\sigma xt)}{t} dt + \triangle_3,
$$

(2.36)

where

$$
|\triangle_3| \leq \frac{1}{\pi} \int_0^{\infty} e^{-(1/2)\sigma^2 t^2} \frac{\sin(\sigma xt)}{t} dt
\leq \frac{\sigma}{3\pi} \int_0^{\infty} t e^{-(1/2)\sigma^2 t^2} dt
= \frac{0.1061}{\sigma} e^{-(3/2)\sigma} \text{ which by (2.28)}
\leq \frac{6.68 \times 10^{-6}}{\sigma^2}.
$$

Let $L(x) = \int_0^\infty e^{-(1/2)t^2} (\sin(\sigma xt)/t) dt$. From the well-known integral

$$
\int_0^\infty e^{-at^2} \cos(bt) dt = \frac{1}{2} \sqrt{\pi} e^{-b^2/4a} \text{ for } a > 0,
$$

(2.38)

we have

$$
L'(x) = \int_0^\infty e^{-(1/2)t^2} \cos(\sigma xt) dt = \frac{\sqrt{\pi}}{\sqrt{2}} e^{-x^2/2}
$$

(2.39)

which implies that

$$
L(x) = \frac{\sqrt{\pi}}{\sqrt{2}} \int_0^x e^{-(1/2)t^2} dt.
$$

(2.40)

Hence

$$
\frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} e^{-(1/2)\sigma^2 t^2} \frac{\sin(\sigma xt)}{t} dt = \frac{1}{\pi} \int_0^\infty e^{-(1/2)\sigma^2 t^2} \frac{\sin(\sigma xt)}{t} dt
= \frac{1}{\sqrt{2\pi}} \int_0^x e^{-(1/2)t^2} dt.
$$

(2.41)

From (2.36) and (2.41), Step 4 is proved.
726 A refinement of normal approximation to Poisson binomial

Step 5. We will show that

\[
\frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} e^{-(1/2)a^2 t^2} \sin \left(\sigma xt - \alpha(t) \right) \frac{dt}{t} = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-(1/2)t^2} dt - G(x) + \triangle_4, \tag{2.42}
\]

where \(|\triangle_4| \leq 0.0218/\sigma^2 \).

Differentiating (2.38) twice with respect to \(b \), we have

\[
\int_0^\infty t^2 e^{-at} \cos(bt) dt = \frac{1}{4a^2} \sqrt{\pi} \left(1 - \frac{b^2}{2a} \right) e^{-b^2/4a}. \tag{2.43}
\]

Putting \(a = 1/2 \) and \(b = x \), we have

\[
\int_0^\infty t^2 e^{-(1/2)x^2} \cos(xt) dt = \sqrt{\pi/2} \left(1 - x^2 \right) e^{-x^2/2}. \tag{2.44}
\]

Hence

\[
\frac{1}{6\pi} \sum_{j=1}^n p_j q_j (p_j - q_j) \int_0^{\sqrt{3/\sigma}} t^2 e^{-(1/2)a^2 t^2} \cos(\alpha(t)) dt
\]

\[
= \frac{1}{6\pi \sigma^3} \sum_{j=1}^n p_j q_j (p_j - q_j) \int_0^\infty t^2 e^{-(1/2)t^2} \cos(xt) dt
\]

\[
- \frac{1}{6\sqrt{2\pi} \sigma^3} \sum_{j=1}^n p_j q_j (p_j - q_j) \int_\sqrt{3/\sigma}^\infty t^2 e^{-(1/2)t^2} \cos(xt) dt
\]

\[
= \frac{1}{6\sqrt{2\pi} \sigma^3} (1 - x^2) \sum_{j=1}^n p_j q_j (p_j - q_j) e^{-x^2/2} + \triangle_{41}, \tag{2.45}
\]

where

\[
|\triangle_{41}| \leq \frac{1}{6\pi \sigma} \int_\sqrt{3/\sigma}^\infty t^2 e^{-(1/2)t^2} dt
\]

\[
\leq \frac{1}{6\sqrt{3} \pi \sigma^{3/2}} \int_\sqrt{3/\sigma}^\infty t^3 e^{-(1/2)t^2} dt
\]

\[
= \frac{2}{3\sqrt{3} \pi \sqrt{\sigma}} e^{-(3/2)\sigma} \text{ which by (2.28)}
\]

\[
\leq \frac{2.4 \times 10^{-5}}{\sigma^2}. \tag{2.46}
\]

From (2.45), Steps 2 and 4,

\[
\frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} e^{-(1/2)a^2 t^2} \sin \left(\sigma xt - \alpha(t) \right) \frac{dt}{t} = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-(1/2)t^2} dt - \frac{1}{6\sqrt{2\pi} \sigma^3} (1 - x^2) \sum_{j=1}^n p_j q_j (p_j - q_j) e^{-x^2/2} + \triangle_4, \tag{2.47}
\]
where
\[
\left| \triangle_4 \right| \leq \frac{1}{\pi} \int_0^{\sqrt{3/\sigma}} \left(0.0285t^4 + 0.0035t^5 \right) e^{-\left(1/2\right)t^2} dt + \frac{6.68 \times 10^{-6}}{\sigma^2} + \frac{2.4 \times 10^{-5}}{\sigma^2}
\]
\[
\leq 0.0095 + \frac{3.068 \times 10^{-5}}{\sigma^2} \leq 0.0096/\sigma^2.
\]

From Steps 3 and 5,
\[
R(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\left(1/2\right)t^2} dt - G(x) + \triangle_5,
\]
where \(|\triangle_5| < |\triangle_2| + |\triangle_4| \leq 0.0809/\sigma^2\). Hence, by (2.7), we have Theorem 1.1.

3. Example

We will demonstrate a possible application of approximation in Theorem 1.1 with the problem of estimating the distribution function of the number of empty cells in an equiprobable scheme for group allocation of particles introduced by Vatutin and Mikhailov [13] as follows.

Suppose that \(n\) groups of \(s\) particles are allocated independently in \(N\) cells labelled by the numbers 1, 2, …, \(N\). It is assumed that these particles are allocated one to a cell. Let

\[S_n := \text{number of cells remaining empty after } n \text{ groups are allocated.} \quad (3.1)\]

Vatutin and Mikhailov [13] showed that the distribution function of \(S_n\) coincides with that for a sum of independent Bernoulli random variables with

\[
\mu = N \left(1 - \frac{s}{N}\right)^n,
\]
\[
\sigma^2 = N \left(1 - \frac{s}{N}\right)^n \left[1 - N \left(1 - \frac{s}{N}\right)^n + (N - 1) \left(1 - \frac{s}{N - 1}\right)^n\right].
\]

(3.2)

From Theorem 1.1, we see that

\[
\Delta_n \leq \frac{0.1618}{\sigma^2},
\]

(3.3)

where \(\sigma^2\) is defined in (3.2). We note that our bound is simpler than that in Volkova [14] and easy to evaluate.

Acknowledgments

The author would like to thank the referees for useful comments and acknowledge Thailand Research Fund for a financial support.
A refinement of normal approximation to Poisson binomial

References

K. Neammanee: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: kritsana.n@chula.ac.th