CONTINUITY FOR MAXIMAL COMMUTATOR OF BOCHNER-RIESZ OPERATORS ON SOME WEIGHTED HARDY SPACES

LIU LANZHE AND TONG QINGSHAN

Received 17 May 2004 and in revised form 3 November 2004

We show the boundedness for the commutator of Bochner-Riesz operator on some weighted H^1 space.

1. Introduction

Let b be a locally integrable function. The maximal operator $B^\delta_{r,b}$ associated with the commutator generated by the Bochner-Riesz operator is defined by

$$B^\delta_{r,b}(f)(x) = \sup_{r>0} |B^\delta_{r,b}(f)(x)|,$$ \hspace{1cm} (1.1)

where

$$B^\delta_{r,b}(f)(x) = \int_{\mathbb{R}^n} B^\delta_r(x-y)f(y)(b(x)-b(y))dy$$ \hspace{1cm} (1.2)

and $(B^\delta_r(\hat{f}))(\xi) = (1-r^2|\xi|^2)^{\delta/2}\hat{f}(\xi)$. We also define that

$$B^\delta_{*,b}(f)(x) = \sup_{r>0} |B^\delta_r(f)(x)|,$$ \hspace{1cm} (1.3)

which is the Bochner-Riesz operator (see [8]). Let E be the space $E = \{h : \|h\| = \sup_{r>0} |h(r)| < \infty\}$, then, for each fixed $x \in \mathbb{R}^n$, $B^\delta_r(f)(x)$ may be viewed as a mapping from $[0, +\infty)$ to E, and it is clear that $B^\delta_{*,b}(f)(x) = \|B^\delta_r(f)(x)\|$ and $B^\delta_{*,b}(f)(x) = \|b(x)B^\delta_r(f)(x) - B^\delta_r(bf)(x)\|$.

As well known, a classical result of Coifman et al. [4] proved that the commutator $[b,T]$ generated by $\text{BMO}(\mathbb{R}^n)$ functions and the Calderón-Zygmund operator is bounded on $L^p(\mathbb{R}^n)$ ($1 < p < \infty$). However, it was observed that $[b,T]$ is not bounded, in general, from $H^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ and from $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$ for $p \leq 1$. But, if $H^p(\mathbb{R}^n)$ is replaced by some suitable atomic space $H^p_{\text{B}}(\mathbb{R}^n)$ and $H^1_{\text{B}}(\mathbb{R}^n)$ (see [1, 6, 7, 9]), then $[b,T]$ maps continuously $H^p_{\text{B}}(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ and $H^1_{\text{B}}(\mathbb{R}^n)$ into weak $L^1(\mathbb{R}^n)$ for $p \in (n/(n+1), 1]$. The main purpose of this paper is to establish the weighted boundedness of the commutators.
related to Bochner-Riesz operator and BMO(R^n) function on some weighted H^1 space. We first introduce some definitions (see [1, 6, 7, 9]).

Definition 1.1. Let b, w be locally integrable functions and $w \in A_1$ (i.e., $Mw(x) \leq cw(x)$ a.e.). A bounded measurable function a on R^n is said to be (w, b)-atom if

(i) $\text{supp } a \subset B = B(x_0, r)$,
(ii) $\|a\|_{L^\infty} \leq w(B)^{-1}$,
(iii) $\int a(y)dy = \int a(y)b(y)dy = 0$.

A temperate distribution f is said to belong to $H^1_b(w)$ if, in the Schwartz distributional sense, it can be written as

$$f(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x), \quad (1.4)$$

where a_j’s are (w, b)-atoms, $\lambda_j \in \mathbb{C}$, and $\sum_{j=1}^{\infty} |\lambda_j| < \infty$. Moreover, $\|f\|_{H^1_b(w)} \sim \sum_{j=1}^{\infty} |\lambda_j|$.

Definition 1.2. Let $w \in A_1$. A function f is said to belong to weighted Block H^1 space $H^1_b(w)$ if f can be written as (1.4), where a_j’s are w-atoms (i.e., a_j’s satisfy Definition 1.1(i), (ii), and (iii)’ $\int a(y)dy = 0$) and $\lambda_j \in \mathbb{C}$ with

$$\sum_{j=1}^{\infty} |\lambda_j| \left(1 + \log^+ \frac{1}{|\lambda_j|}\right) < \infty. \quad (1.5)$$

Moreover, $\|f\|_{H^1_b(w)} \sim \sum_{j=1}^{\infty} |\lambda_j| \left(1 + \log^+ \left(\frac{\sum_i |\lambda_i|}{|\lambda_j|}\right)\right)$.

Now, we formulate our results as follows.

Theorem 1.3. Let $b \in \text{BMO}(R^n)$ and $w \in A_1$. Then the maximal commutator B^δ_{*b} is bounded from $H^1_b(w)$ to $L^1_w(R^n)$ when $\delta > (n - 1)/2$.

Theorem 1.4. Let $b \in \text{BMO}(R^n)$ and $w \in A_1$. Then the maximal commutator B^δ_{*b} is bounded from $H^1_b(w)$ to $L^{1,\infty}_w(R^n)$ when $\delta > (n - 1)/2$.

Theorem 1.5. Let $b \in \text{BMO}(R^n)$ and $w \in A_1$. Then the maximal commutator B^δ_{*b} is bounded from $H^1_b(w)$ to $L^{1,\infty}_w(R^n)$ when $\delta > (n - 1)/2$.

2. Proof of theorems

Proof of Theorem 1.3. It suffices to show that there exists a constant $C > 0$ such that for every (w, b)-atom a,

$$\|B^\delta_{*b} (a)\|_{L^1_w} \leq C. \quad (2.1)$$

Let a be a (w, b)-atom supported on a ball $B = B(x_0, R)$. We write

$$\int_{R^n} [B^\delta_{*b}(a)(x)] w(x)dx$$

$$\begin{equation}
= \int_{|x-x_0| \leq 2R} [B^\delta_{*b}(a)(x)] w(x)dx + \int_{|x-x_0| > 2R} [B^\delta_{*b}(a)(x)] w(x)dx \equiv I + II. \quad (2.2)
\end{equation}$$
For I, taking $q > 1$, by Hölder’s inequality and the L^q-boundedness of $B_{\ast, b}^\delta$ (see [2]), we see that

$$I \leq C \left\| B_{\ast, b}^\delta (a) \right\|_{L^q} \cdot w(2B)^{1-1/q} \leq C \left\| a \right\|_{L^q} w(2B)^{1-1/q} \leq C. \quad (2.3)$$

For II, let $b_0 = |B(x_0, R)|^{-1} \int_{B(x_0, R)} b(y) dy$, then

$$II \leq \sum_{k=1}^\infty \int_{2^{k+1}R \geq |x-x_0| > 2^k R} |b(x) - b_0| B_{\ast}^\delta (a)(x) w(x) dx \quad (2.4)$$

and

$$+ \sum_{k=1}^\infty \int_{2^{k+1}R \geq |x-x_0| > 2^k R} B_{\ast}^\delta ((b - b_0) a)(x) w(x) dx = II_1 + II_2. \quad (2.5)$$

For II_1, we choose δ_0 such that

$$n - \frac{1}{2} < \delta_0 \leq \frac{n + 1}{2} \left(\delta, \min \left(\delta, \frac{n+1}{2} \right) \right) \quad (2.6)$$

and consider the following two cases.

Case 1 ($0 < r \leq R$). In this case, note that (see [8])

$$|B^\delta (z)| \leq C (1 + |z|)^{-\delta (n+1)/2}, \quad (2.7)$$

we have, for $|x-x_0| > 2|y-x_0|$, \n

$$|B^\delta_r (a)(x)| \leq C r^{-n} \int_{B(x_0, R)} \frac{|a(y)|}{1 + |x-y|/r} \delta^{(n+1)/2} d \gamma \quad (2.8)$$

and

$$\leq C |B|^{(\delta_{n+1}+n)/2} |z|^{\delta_{n+1}+n/2} w(B)^{-1}. \quad (2.9)$$

Case 2 ($r > R$). In this case, note that

$$\nabla^\beta B^\delta (z) \leq C (1 + |z|)^{-\delta (n+1)/2}$$

for any $\beta = (\beta_1, \ldots, \beta_n) \in (\mathbb{N} \cup \{0\})^n$ and $|x-x_0| > 2|y-x_0|$, where

$$\nabla^\beta = \left(\frac{\partial}{\partial x_1} \right)^{\beta_1} \cdots \left(\frac{\partial}{\partial x_n} \right)^{\beta_n}, \quad (2.10)$$

by the vanishing condition of a, we gain

$$\left| B^\delta_r (a)(x) \right| \leq C r^{-(n+1)} \int_{B(x_0, R)} \frac{|a(y)| |y-x_0|}{1 + |x-y|/r} \delta^{(n+1)/2} d \gamma \quad (2.11)$$

\n
$$\leq C |B|^{(\delta_{n+1}+n)/2} |z|^{\delta_{n+1}+n/2} w(B)^{-1}. \quad (2.12)$$
Combining Case 1 with Case 2, we obtain

\[
II_1 \leq C \sum_{k=1}^{\infty} 2^{-k(\delta_0+(n+1)/2)} w(B)^{-1} |2^{k+1}B| \left(\frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} |b(x) - b_0|^p dx \right)^{1/p} \\
\times \frac{1}{|B|} \int_B w(x)^p dx
\]

for any ball \(B \) and some \(1 < p < \infty \) (see [10]). Using the properties of BMO(\(R^n \)) functions (see [10]), and noting \(w \in A_1 \), then

\[
\frac{w(B_2)}{|B_2|} \cdot \frac{|B_1|}{w(B_1)} \leq C \tag{2.13}
\]

for all balls \(B_1, B_2 \) with \(B_1 \subset B_2 \). Thus, by Hölder’s and reverse of Hölder’s inequalities for \(w \in A_1 \), we get, for \(1/p + 1/p' = 1 \),

\[
II_1 \leq C \sum_{k=1}^{\infty} 2^{-k(\delta_0+(n+1)/2)} w(B)^{-1} |2^{k+1}B| \left(\frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} |b(x) - b_0|^p dx \right)^{1/p} \\
\times \left(\frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} w(x)^p dx \right)^{1/p}
\]

\[
\leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} k^2 \left(2^{-k(\delta_0-(n-1)/2)} \left(\frac{w(2kB)}{|2kB|} \right)^{1/p} \right) \leq C. \tag{2.14}
\]

For \(II_2 \), similar to the estimate of \(II_1 \), we obtain

\[
B^*_{(b-b_0)}(x) \leq C \|b\|_{\text{BMO}} w(B)^{-1} |B|^{(\delta_0+(n+1)/2)/n} |x-x_0|^{-(\delta_0+(n+1)/2)}, \tag{2.15}
\]

thus

\[
II_2 \leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} w(B)^{-1} |B|^{(\delta_0+(n+1)/2)/n} |2^kB|^{-(\delta_0+(n+1)/2)/n} w(2kB) \\
\leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} 2^{-k(\delta_0-(n-1)/2)} \left(\frac{w(2kB)}{|2kB|} \right) \leq C. \tag{2.16}
\]

This finishes the proof of Theorem 1.3. \(\square \)

To prove Theorem 1.4, we recall the following lemma (see [5, 10]).
Lemma 2.1. Let $w \geq 0$ and $\{g_k\}$ be a sequence of measurable functions satisfying
\[
\|g_k\|_{L_w^{1-\alpha}} \leq 1. \tag{2.17}
\]
Then, for every numerical sequence $\{\lambda_k\}$,
\[
\left\| \sum_k \lambda_k g_k \right\|_{L_w^{1-\alpha}} \leq C \sum_k |\lambda_k| \left(1 + \log \left(\sum_j |\lambda_j| / |\lambda_k|\right)\right). \tag{2.18}
\]

Proof of Theorem 1.4. By Lemma 2.1, it is enough to show that there exists a constant C such that
\[
\|B^\delta_{*\cdot,b}(a)\|_{L_w^{1-\alpha}} \leq C \quad \text{for each } w\text{-atom } a. \tag{2.19}
\]
Let a be a w-atom supported on a ball $B = B(x_0, r)$. We write
\[
w(\{x \in \mathbb{R}^n : B^\delta_{*\cdot,b}(a)(x) > \lambda\}) \\
\leq w(\{x \in 2B : B^\delta_{*\cdot,b}(a)(x) > \lambda\}) + w(\{x \in (2B)^c : B^\delta_{*\cdot,b}(a)(x) > \lambda\}) = I + II. \tag{2.20}
\]
For I, by the L^q-boundedness of $B^\delta_{*,b}$ for $q > 1$, we gain
\[
I \leq \lambda^{-1} \|B^\delta_{*,b}(a)\chi_{2B}\|_{L_w^1} \leq C\lambda^{-1} \|B^\delta_{*,b}(a)\|_{L_w^1} \cdot w(B)^{1-1/q} \\
\leq C\lambda^{-1} \|a\|_{L_w^1} \cdot w(B)^{1-1/q} \leq C\lambda^{-1}. \tag{2.21}
\]
For II, let $b_0 = |B|^{-1} \int_B b(x)dx$, notice that
\[
B^\delta_{*,b}(a)(x) = \|b(x)B^\delta_{*,b}(a)(x) - B^\delta_{*,b}(ba)(x)\| \\
= \|b(x) - b_0\| B^\delta_{*,b}(a)(x) - B^\delta_{*,b}((b, b_0) a)(x)\| \\
\leq |b(x) - b_0| B^\delta_{*,b}(a)(x) + B^\delta_{*,b}((b, b_0) a)(x) \\
\leq b(x) - b_0 |B^\delta_{*,b}(a)(x) + B^\delta_{*,b}((b, b_0) a)(x),
\]
we have
\[
II \leq w\left(\left\{x \in (2B)^c : |b(x) - b_0| g^\delta_{*,a}(a)(x) > \frac{\lambda}{2}\right\}\right) \\
+ w\left(\left\{x \in (2B)^c : g^\delta_{*,a}((b, b_0) a)(x) > \frac{\lambda}{2}\right\}\right) = II_1 + II_2. \tag{2.23}
\]
Similar to the proof of Theorem 1.3, we get
\[
II_1 \leq C\lambda^{-1} \int_{(2B)^c} |b(x) - b_0| B^\delta_{*,b}(a)(x)w(x)dx \\
= C\lambda^{-1} \sum_{k=1}^{\infty} \int_{2^{k+1}B \setminus 2^kB} |b(x) - b_0| B^\delta_{*,b}(a)(x)w(x)dx \leq C\lambda^{-1} \|b\|_{\text{BMO}}, \tag{2.24}
\]
\[
II_2 \leq C\lambda^{-1} \int_{(2B)^c} B^\delta_{*,b}((b, b_0) a)(x)w(x)dx \leq C\lambda^{-1} \|b\|_{\text{BMO}}.
\]
Combining the estimate of $I, II_1,$ and $II_2,$ we gain

$$w(\{x \in \mathbb{R}^n : B_{*,b}^\delta(a)(x) > \lambda\}) \leq C\lambda^{-1} \|b\|_{\text{BMO}}. \quad (2.25)$$

This completes the proof of Theorem 1.4. □

Proof of Theorem 1.5. Given $f \in H^1(w),$ let $f = \sum_j \lambda_j a_j$ be the atomic decomposition for $f.$ By a limiting argument, it suffices to show Theorem 1.5 for a finite sum of $f = \sum_Q \lambda_Q a_Q$ with $\sum_Q |\lambda_Q| \leq C \|f\|_{H^1(w)}.$ We may assume that each Q (the supporting cube of a_Q) is dyadic. For $\lambda > 0$ by [3, Lemma 4.1], there exists a collection of pairwise disjoint dyadic cubes $\{S\}$ such that

$$\sum_Q \sum_{Q \subset S} |\lambda_Q| \leq C\lambda |S|, \quad \forall S,$$

$$\sum_S |S| \leq \lambda^{-1} \sum_Q |\lambda_Q|, \quad \left\| \sum_{Q \notin S} \lambda_Q |Q|^{-1} \chi_Q \right\|_{L^\infty} \leq C\lambda. \quad (2.26)$$

Let $E = \bigcup_S \overline{S},$ where for a fixed cube $Q,$ \overline{Q} denotes the cube with the same center as Q but with the side-length $4\sqrt{n}$ times that of $Q.$ Then, $|E| \leq C\lambda^{-1} \|f\|_{H^1}.$ Set $M(x) = \sum_S \sum_{Q \subset S} \lambda_Q a_Q, N(x) = f(x) - M(x).$ By the L^2 boundedness of $B_{*,b}^\delta$ and the well-known argument, it suffices to show that

$$w(\{x \in E^c : B_{*,b}^\delta(M)(x) > \lambda\}) \leq C\lambda^{-1} \|f\|_{H^1(w)}. \quad (2.27)$$

Because $B_{*,b}^\delta(M)(x) \leq \sum_S \sum_{Q \subset S} |\lambda_Q| B_{*,b}^\delta(a_Q)(x),$ we have

$$w(\{x \in E^c : B_{*,b}^\delta(M)(x) > \lambda\})$$

$$\leq C\lambda^{-1} \int_{E^c} B_{*,b}^\delta(M)(x)w(x)dx$$

$$\leq C\lambda^{-1} \sum_S \sum_Q |\lambda_Q| \sum_{k=1}^\infty \int_{2^k Q} B_{*,b}^\delta(a_Q)(x)w(x)dx, \quad (2.28)$$

similar to the estimate of Theorem 1.3, we get, when $x \in E^c,$

$$B_{*,b}^\delta(a_Q)(x) \leq C\|b\|_{\text{BMO}} w(B)^{-1} |Q|^{(\delta_0+(n+1)/2)/n} |x-x_0|^{-(\delta_0+(n+1)/2)}$$

$$+ C |b(x) - b_0| w(B)^{-1} 2^{-k(\delta_0+(n+1)/2)} \quad (2.29)$$
thus, by Hölder’s and reverse of Hölder’s inequalities for \(w \in A_1 \), we obtain

\[
\begin{align*}
 & w(\{ x \in E^c : B^\delta_{*;\eta}(M)(x) > \lambda \}) \\
 & \leq C \lambda^{-1} w(B)^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \sum_{k=1}^{\infty} k 2^{-k(\delta_0+(n+1)/2)} w(2^k Q) \\
 & \leq C \lambda^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \sum_{k=1}^{\infty} k 2^{-k(\delta_0-(n-1)/2)} \\
 & \leq C \lambda^{-1} \sum_S \sum_{Q \subset S} |\lambda_Q| \leq C \lambda^{-1} \| f \|_{H^1(w)}.
\end{align*}
\]

(2.30)

This finishes the proof of Theorem 1.5. \(\square \)

Acknowledgment

The author would like to express his gratitude to the referee for his very valuable comments and suggestions.

References

Liu Lanzhe: College of Mathematics and Computer, Changsha University of Science and Technology, Changsha 410077, China

E-mail address: lanzheliu@263.net

Tong Qingshan: College of Mathematics and Computer, Changsha University of Science and Technology, Changsha 410077, China
Submit your manuscripts at
http://www.hindawi.com