EXPANSION OF α-OPEN SETS AND DECOMPOSITION OF α-CONTINUOUS MAPPINGS

M. RAJAMANI AND K. BAGYALAKSHMI

Received 6 November 2004 and in revised form 22 June 2005

We introduce the notions of expansion \mathcal{A}_a of α-open sets and \mathcal{A}_a-expansion α-continuous mappings in topological spaces. The main result of this paper is that a map f is α-continuous if and only if it is \mathcal{A}_a-expansion α-continuous and \mathcal{B}_a-expansion α-continuous, where $\mathcal{A}_a, \mathcal{B}_a$ are two mutually dual expansions.

1. Introduction

In 1965, Njastad [2] introduced the notion of α-sets in topological space. In 1983, Mashhour et al. [1] introduced, with the help of α-sets, a weak form of continuity which they termed as α-continuity. Noiri [3] introduced the same concept, but under the name strong semicontinuity. Noiri [4] defined with the aid of α-sets a new weakened form of continuous mapping called weakly α-continuous mapping. Sen and Bhattacharyya [5] introduced another new weakened form of continuity called weak $^*\alpha$-continuity and proved that a mapping is α-continuous if and only if it is weakly α-continuous and weak $^*\alpha$-continuous.

In this paper, we give a general setting for such decompositions of α-continuity by using expansion of α-open sets, whereas in [6], Tong used expansion of open sets to give a general setting for the decomposition of continuous mapping into weakly continuous and weak $^*\alpha$-continuous mappings.

2. Preliminaries

Throughout this paper, $(X, \tau), (Y, \sigma)$, and so forth (or simply X, Y, etc.) will always denote topological spaces. The family of all α-open sets in X is denoted by τ_a.

We recall the definition of weakly α-continuous and weak $^*\alpha$-continuous mappings.

Definition 2.1 [1]. A mapping $f : X \rightarrow Y$ is said to be α-continuous if for each open set V in Y, $f^{-1}(V) \in \tau_a$.

Definition 2.2 [3]. A mapping $f : X \rightarrow Y$ is said to be weakly α-continuous if for each x in X and for each open set V in Y containing $f(x)$, there exists a set $U \in \tau_a$ containing x such that $f(U) \subseteq \text{Cl} V$, where $\text{Cl} V$ means the closure of V.
Proposition 2.3 [5]. A mapping \(f : X \to Y \) is weakly \(\alpha \)-continuous if and only if \(f^{-1}(V) \subseteq \alpha \text{int}[f^{-1}(\text{Cl} V)] \), for every open set \(V \) in \(Y \), where \(\alpha \text{int}(A) \) means \(\alpha \)-interior of \(A \).

Definition 2.4 [5]. A mapping \(f : X \to Y \) is said to be weak* \(\alpha \)-continuous if and only if for every open set \(V \subseteq Y \), \(f^{-1}(\text{Fr} V) \) is \(\alpha \)-closed in \(X \), where \(\text{Fr} V = \text{Cl} V \setminus V \) is the boundary operator for open sets.

3. Decompositions of \(\alpha \)-continuity

Definition 3.1. Let \((X, \tau)\) be a topological space, let \(2^X\) be the set of all subsets in \(X \). A mapping \(\mathcal{A}_\alpha : \tau_\alpha \to 2^X \) is said to be an expansion on \(X \) if \(U \subseteq \mathcal{A}_\alpha U \) for each \(U \in \tau_\alpha \).

Remark 3.2. If \(\gamma_\alpha \) is the identity expansion, then \(\gamma_\alpha \) is defined by \(\gamma_\alpha U = U \). \(\mu_\alpha \) is defined by \(\mu_\alpha U = (\alpha \text{int} U \cap U^c)^c \) is an expansion. \(\mathcal{C}_\alpha \) is defined by \(\mathcal{C}_\alpha U = \text{Cl} U \) and \(\mathcal{F}_\alpha U \) is defined by \(\mathcal{F}_\alpha U = (\text{Fr} U)^c \) are expansions.

Definition 3.3 [6]. Let \((X, \tau)\) be a topological space. A pair of expansions \(\mathcal{A} \) and \(\mathcal{B} \) on \(X \) is said to be mutually dual if \(\mathcal{A} U \cap \mathcal{B} U = U \) for each \(U \in \tau \).

Remark 3.4. Let \((X, \tau)\) be a topological space. Then \(\mathcal{C}_\alpha \) and \(\mathcal{F}_\alpha \) are mutually dual. This follows from [6, Proposition 2].

Example 3.5. Let \(X = \{a, b, c\} \) with topologies \(\tau = \{\phi, \{a\}, X\}, \tau_\alpha = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} \). \(\mathcal{A}_\alpha(\phi) = \phi \), \(\mathcal{A}_\alpha(a) = \{a\}, \mathcal{A}_\alpha(a, b) = \{a, b\}, \mathcal{A}_\alpha(a, c) = X \), and \(\mathcal{A}_\alpha(X) = X \). Then \(\mathcal{A}_\alpha \) is an expansion. Let \(\mathcal{B}_1(\phi) = X \), \(\mathcal{B}_1(a) = \{a, c\} \), \(\mathcal{B}_1(a, b) = X \), \(\mathcal{B}_1(a, c) = \{a, c\} \), and \(\mathcal{B}_1(X) = X \). \(\mathcal{B}_2(\phi) = X \), \(\mathcal{B}_2(a) = \{a, b\}, \mathcal{B}_2(a, b) = \{a, b\}, \mathcal{B}_2(a, c) = \{a, c\} \), and \(\mathcal{B}_2(X) = X \). Then \(\mathcal{B}_1, \mathcal{B}_2 \) are both mutually dual to \(\mathcal{A}_\alpha \).

Proposition 3.6. Let \((X, \tau)\) be a topological space. Then \(\gamma_\alpha \) and \(\mu_\alpha \) are mutually dual.

Proof.

\[
(\gamma_\alpha U) \cap (\mu_\alpha U) = U \cap (\alpha \text{int} U \cap U^c)^c \\
= (\alpha \text{int} U) \cap (\alpha \text{int} U \cap U^c)^c \\
= (\alpha \text{int} U) \cap ((\alpha \text{int} U)^c \cup U) \\
= ((\alpha \text{int} U) \cap (\alpha \text{int} U)^c) \cup (\alpha \text{int} U \cap U) \\
\phi \cup U = U.
\]

Definition 3.7. Let \((X, \tau)\) and \((Y, \sigma)\) be two topological spaces and let \(\mathcal{A}_\alpha \) be an expansion on \(Y \). Then the mapping \(f : X \to Y \) is said to be \(\mathcal{A}_\alpha \)-expansion \(\alpha \)-continuous if \(f^{-1}(V) \subseteq \alpha \text{int}[f^{-1}(\mathcal{A}_\alpha V)] \), for each \(V \in \sigma \).

Remark 3.8. A weakly \(\alpha \)-continuous mapping \(f : X \to Y \) can be renamed as \(\mathcal{C}_\alpha \)-expansion \(\alpha \)-continuous mapping.

Theorem 3.9. Let \((X, \tau)\) and \((Y, \sigma)\) be two topological spaces and \(\mathcal{A}_\alpha, \mathcal{B}_\alpha \) are two mutually dual expansions on \(Y \). Then the mapping \(f : X \to Y \) is \(\alpha \)-continuous if and only if \(f \) is \(\mathcal{A}_\alpha \)-expansion \(\alpha \)-continuous and \(\mathcal{B}_\alpha \)-expansion \(\alpha \)-continuous.
Proof. Necessity. Suppose that \(f \) is \(\alpha \)-continuous. Since \(\mathcal{A}_\alpha, \mathcal{B}_\alpha \) are mutually dual on \(Y \), \(\mathcal{A}_\alpha V \cap \mathcal{B}_\alpha V = V \) for each \(V \in \sigma \).

Then
\[
f^{-1}(V) = f^{-1}(\mathcal{A}_\alpha V \cap \mathcal{B}_\alpha V) = f^{-1}(\mathcal{A}_\alpha V) \cap f^{-1}(\mathcal{B}_\alpha V). \tag{3.2}
\]

Since \(f \) is \(\alpha \)-continuous, \(f^{-1}(V) = \alpha \text{int} f^{-1}(V) \).

Therefore,
\[
f^{-1}(V) = \alpha \text{int} f^{-1}(V) = \alpha \text{int} (f^{-1}(\mathcal{A}_\alpha V \cap \mathcal{B}_\alpha V)) = \alpha \text{int} f^{-1}(\mathcal{A}_\alpha V) \cap \alpha \text{int} f^{-1}(\mathcal{B}_\alpha V). \tag{3.3}
\]

This implies that \(f^{-1}(V) \subseteq \alpha \text{int} f^{-1}(\mathcal{A}_\alpha V) \) and \(f^{-1}(V) \subseteq \alpha \text{int} f^{-1}(\mathcal{B}_\alpha V) \). This shows that \(f \) is \(\mathcal{A}_\alpha \)-expansion \(\alpha \)-continuous and \(\mathcal{B}_\alpha \)-expansion \(\alpha \)-continuous.

Sufficiency. Since \(f \) is \(\mathcal{A}_\alpha \)-expansion \(\alpha \)-continuous, \(f^{-1}(V) \subseteq \alpha \text{int} f^{-1}(\mathcal{A}_\alpha V) \) for each \(V \in \sigma \). Since \(f \) is \(\mathcal{B}_\alpha \)-expansion \(\alpha \)-continuous, \(f^{-1}(V) \subseteq \alpha \text{int} f^{-1}(\mathcal{B}_\alpha V) \) for each \(V \in \sigma \). As \(\mathcal{A}_\alpha \) and \(\mathcal{B}_\alpha \) are two mutually dual expansions on \(Y \), \(\mathcal{A}_\alpha V \cap \mathcal{B}_\alpha V = V \),
\[
f^{-1}(V) = f^{-1}(\mathcal{A}_\alpha V \cap \mathcal{B}_\alpha V) = f^{-1}(\mathcal{A}_\alpha V) \cap f^{-1}(\mathcal{B}_\alpha V),
\]

\[
\alpha \text{int} f^{-1}(V) = \alpha \text{int} f^{-1}(\mathcal{A}_\alpha V) \cap \alpha \text{int} f^{-1}(\mathcal{B}_\alpha V) \supseteq f^{-1}(V) \cap f^{-1}(V) = f^{-1}(V). \tag{3.4}
\]

This implies that \(f^{-1}(V) \subseteq \alpha \text{int} f^{-1}(V) \). Always, \(\alpha \text{int} f^{-1}(V) \subseteq f^{-1}(V) \). So \(f^{-1}(V) = \alpha \text{int} f^{-1}(V) \). Therefore, \(f^{-1}(V) \) is an \(\alpha \)-open set in \(X \) for each \(V \in \sigma \). Hence \(f \) is \(\alpha \)-continuous. \(\square \)

Definition 3.10. Let \((X, \tau) \) and \((Y, \sigma) \) be two topological spaces, \(\mathcal{B}_\alpha \) an expansion on \(Y \). Then a mapping \(f : X \to Y \) is said to be \(\alpha \)-closed \(\mathcal{B}_\alpha \)-continuous if \(f^{-1}((\mathcal{B}_\alpha V)^c) \) is an \(\alpha \)-closed set in \(X \) for each \(V \in \sigma \).

Remark 3.11. A weak *\(\alpha \)-continuous mapping can be renamed as \(\alpha \)-closed \(\mathcal{F}_\alpha \)-continuous mapping since \((\mathcal{F}_\alpha V)^c = (\text{Fr} V)^c = \text{Fr} V \).

Proposition 3.12. An \(\alpha \)-closed \(\mathcal{B}_\alpha \)-continuous mapping is \(\mathcal{B}_\alpha \)-expansion \(\alpha \)-continuous.

Proof. First, we prove that \((f^{-1}((\mathcal{B}_\alpha V)^c))^c = f^{-1}(\mathcal{B}_\alpha V) \).

Let \(x \in (f^{-1}((\mathcal{B}_\alpha V)^c))^c \). Then \(x \notin f^{-1}(\mathcal{B}_\alpha V)^c \). Hence \(f(x) \notin (\mathcal{B}_\alpha V)^c \), \(f(x) \in \mathcal{B}_\alpha V \), and \(x \in f^{-1}(\mathcal{B}_\alpha V) \).

Conversely, if \(x \in f^{-1}(\mathcal{B}_\alpha V) \), then \(f(x) \in \mathcal{B}_\alpha V \). Hence \(f(x) \notin (\mathcal{B}_\alpha V)^c \), \(x \notin f^{-1}(\mathcal{B}_\alpha V)^c \). Therefore, \((f^{-1}((\mathcal{B}_\alpha V)^c))^c = f^{-1}(\mathcal{B}_\alpha V) \).

Since \(f^{-1}((\mathcal{B}_\alpha V)^c) \) is an \(\alpha \)-closed set in \(X \), \((f^{-1}((\mathcal{B}_\alpha V)^c))^c \) is an \(\alpha \)-open set in \(X \). Hence \(f^{-1}(\mathcal{B}_\alpha V) \) is an \(\alpha \)-open in \(X \) and \(f^{-1}(\mathcal{B}_\alpha V) = \alpha \text{int} f^{-1}(\mathcal{B}_\alpha V) \).

Since \(\mathcal{B}_\alpha \) is an expansion on \(Y \), \(V \subseteq \mathcal{B}_\alpha V \), we have \(f^{-1}(V) \subseteq f^{-1}(\mathcal{B}_\alpha V) = \alpha \text{int} f^{-1}(\mathcal{B}_\alpha V) \). Therefore, \(f \) is \(\mathcal{B}_\alpha \)-expansion \(\alpha \)-continuous. \(\square \)

By Theorem 3.9 and Proposition 3.12, we have the following corollary.
Corollary 3.13. Let \((X, \tau)\) and \((Y, \alpha)\) be two topological spaces and \(\mathcal{A}_\alpha, \mathcal{B}_\alpha\) are two mutually dual expansions on \(Y\). Then a mapping \(f : X \rightarrow Y\) is \(\alpha\)-continuous if and only if \(f\) is \(\mathcal{A}_\alpha\)-expansion \(\alpha\)-continuous, and \(\alpha\)-closed \(\mathcal{B}_\alpha\)-continuous.

By Remarks 3.8, 3.11, and by the above corollary, we have the following corollary.

Corollary 3.14 [5]. A mapping is \(\alpha\)-continuous if and only if it is weakly \(\alpha\)-continuous and \(\alpha\)-closed.

References

M. Rajamani: Post Graduate and Research Department of Mathematics, N.G.M. College (Autonomous), Bharathiar University, Coimbatore, Pollachi-642 001, Tamil Nadu, India
E-mail address: rajkarthy@yahoo.com

K. Bagyalakshmi: Post Graduate and Research Department of Mathematics, N.G.M. College (Autonomous), Bharathiar University, Coimbatore, Pollachi-642 001, Tamil Nadu, India
E-mail address: rajkarthy@yahoo.com
Submit your manuscripts at http://www.hindawi.com