A ring R is called a right Ikeda-Nakayama (for short IN-ring) if the left annihilator of the intersection of any two right ideals is the sum of the left annihilators, that is, if $\ell(I \cap J) = \ell(I) + \ell(J)$ for all right ideals I and J of R. R is called Armendariz ring if whenever polynomials $f(x) = a_0 + a_1x + \cdots + a_mx^m$, $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_ib_j = 0$ for each i, j. In this paper, we show that if $R[x]$ is a right IN-ring, then R is a right IN-ring in case R is an Armendariz ring.
2 Ikeda-Nakayama modules

A module M is called α-Armendariz if
\begin{enumerate}[(i)]
\item for any $m \in M$ and $a \in R$, $\alpha(am) = 0$ if and only if $\alpha(a)m = 0$;
\item for any $m(x) = \sum_{i=0}^{n} m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^{s} a_j x^j \in R[x]$, $m(x)f(x) = 0$ implies $m_i a_j = 0$ for each i, j (cf. [8, 9]).
\end{enumerate}

In [5, Proposition 3.1], Hirano showed that if R is Armendariz ring if and only if $r\text{Ann}_R(2^R) \subseteq r\text{Ann}_R(R[x])$; $A \rightarrow AR[x]$ is bijective, where $r\text{Ann}_R(2^R) = \{ r_R(U) : U \subseteq R \}$. Using this proposition, in this paper, it is shown that if $R[x]$ is a right IN-ring, then R is a right IN-ring, in case R is an Armendariz ring.

2. Ikeda-Nakayama modules

Let $S[x]$ and $R[x]$ be the polynomial rings over rings S and R and, for a module sM_R, let $M[x]$ be the set of all formal polynomials in indeterminate x with coefficients from M. Then $M[x]$ becomes an $(S[x], R[x])$-bimodule under usual addition and multiplication of polynomials. Extend the notion of an IN-ring to module such as the following.

Definition 2.1. Recall that $M[x]$ is called an Ikeda-Nakayama module (IN-module) if
\begin{equation}
\ell_{S[x]}(U \cap V) = \ell_{S[x]}(U) + \ell_{S[x]}(V)
\end{equation}
for any $R[x]$-submodules U and V of $M[x]_{R[x]}$. Such modules and rings were studied by many authors (cf. [4, 6, 10]). Professor Harmanci asked (private communication) for a description of modules M (rings R) such that $M[x]$ are Ikeda-Nakayama modules (right Ikeda-Nakayama rings), respectively.

Note that there is a canonical ring homomorphism $\lambda : S[x] \rightarrow \text{End}(M[x]_{R[x]})$ given by $\lambda(s(x))(m(x)) = s(x)m(x)$ for $m(x) \in M[x]$ and $s(x) \in S[x]$.

Let U and V be $R[x]$-submodules of $M[x]$. Then, for any $t(x) \in \ell_{S[x]}(U \cap V)$, $\alpha_{t(x)} : U + V \rightarrow M[x]$, $u + v \rightarrow t(x)u$ is well defined, where $u \in U$ and $v \in V$.

Lemma 2.2. Let $S[x]M[x]_{R[x]}$-bimodule and U and V be $R[x]$-submodules of $M[x]_{R[x]}$. Then, for any $t(x) \in \ell_{S[x]}(U \cap V)$, every $U + V \xrightarrow{\alpha_{t(x)}} M[x]$ extends commutatively to $M[x]$ by $\lambda(s(x))$ for some $s(x) \in S[x]$ if and only if $M[x]$ is an IN-module.

In particular, if $U \cap V = 0$, then every $U + V \xrightarrow{\alpha_{t(x)}} M[x]$ extends commutatively to $M[x]$ by $\lambda(s(x))$ for some $s(x) \in S[x]$ if and only if $S[x] = \ell_{S[x]}(U) + \ell_{S[x]}(V)$.

Proof. Let $t(x) \in \ell_{S[x]}(U \cap V)$. Then $\alpha_{t(x)} : U + V \rightarrow M[x]$, $u + v \rightarrow t(x)u$ is a well-defined $R[x]$-module homomorphism, where $u \in U$ and $v \in V$. By assumption, there exists $s(x) \in S[x]$ such that $\lambda(s(x))$ extends to $\alpha_{t(x)}$. Thus, for all $u \in U$ and $v \in V$, $t(x)u = \alpha_{t(x)}(u + v) = \lambda(s(x))(u + v) = s(x)(u + v)$ and so $t(x) - s(x)u + (s(x))v = 0$. It follows that $t(x) - s(x) \in \ell_{S[x]}(U)$ and $-s(x) \in \ell_{S[x]}(V)$. Hence $t(x) = (t(x) - s(x)) + (s(x)) \in \ell_{S[x]}(U) + \ell_{S[x]}(V)$. The other inclusion is clear.

For converse, assume that $M[x]$ is an IN-module and, for any $t(x) \in \ell_{S[x]}(U \cap V)$, $\alpha_{t(x)} : U + V \rightarrow M[x]$ defined as above. For $a(x) \in \ell_{S[x]}(U)$ and $b(x) \in \ell_{S[x]}(V)$, write $t(x) = a(x) + b(x)$. Then, for all $u \in U$ and $v \in V$, $\alpha_{t(x)}(u + v) = t(x)u = (a(x) + b(x))u = a(x)u + b(x)u = 0 + b(x)u = b(x)u = b(x)u + b(x)v = b(x)v = \lambda(b(x)(u + v))$. □

As a result of Lemma 2.2, we have the following proposition.
Proposition 2.3. Let $R[x]$ be the set of all polynomials in indeterminate x with coefficients from R. If I and J are right ideals of $R[x]$ such that every $R[x]$-linear map $I + J \to R[x]$ extends to $R[x]$, then

$$\ell_{R[x]}(I \cap J) = \ell_{R[x]}(I) + \ell_{R[x]}(J).$$

(2.2)

In particular, this holds if $I + J = R[x]$, in which case $\ell_{R[x]}(I \cap J) = \ell_{R[x]}(I) \oplus \ell_{R[x]}(J)$.

Let N be an $R[x]$-submodule of $M[x]$ and $N_C = \{m_i \in M : \exists n \in N \text{ with } n = m_0 + m_1x + \cdots + m_ix^i\}$.

Theorem 2.4. Let M be an Ikeda-Nakayama module and let N and K be $R[x]$-submodules of $M[x]$ such that $\ell_S(N \cap K)_C = \ell_S(N_C \cap K_C)$. Then $M[x]$ is an IN-module.

Proof. Let U and V be $R[x]$-submodules of $M[x]$. Let $t(x) \in \ell_{S[x]}(U \cap V)$. Then $\alpha_t(x) : U + V \to M[x], u + v \to t(x)u$ is a well defined $R[x]$-homomorphism, where $u \in U$ and $v \in V$. Similarly, for all $t \in \ell_S(U_C \cap V_C)$, the $\alpha_t : U_C + V_C \to M, u' + v' \to tu'$ is a well defined R-homomorphism, where $u' \in U_C$ and $v' \in V_C$. Since M is an IN-module, we have $\ell_S(U \cap V)_C = \ell_S(N_C \cap K_C) = \ell_S(U_C) + \ell_S(V_C)$ by assumption and definition. Hence there exists a homomorphism $h_t : M \to M$ such that $h_t i = \alpha_t$, where $i : U_C + V_C \to M$ is the inclusion map by [10, Lemma 1]. We define $h' : M[x] \to M[x]$ such that $h'_i(k_0 + k_1x + \cdots + k_nx^n) = h_i(k_0) + h_i(k_1)x + \cdots + h_i(k_n)x^n$. It is clear that h'_i is well defined. Let $t(x) = t_0 + t_1x + t_2x^2 + \cdots + t_nx^n \in \ell_{S[x]}(U \cap V)$. Then $t_0, t_1, \ldots, t_n \in \ell_S(U \cap V)_C = \ell_S(U_C) + \ell_S(V_C)$. For each $t_j, \alpha_t : U_C + V_C \to M, u' + v' \to tu'$ is a well defined R-homomorphism, and then we define a map $h_t : M \to M$ such that $h_t i = \alpha_t$, where $i : U_C + V_C \to M$ is the inclusion map. We extend it by defining $h'_j : M[x] \to M[x]$ such that, for $j = 0, 1, 2, \ldots, n$, $h'_j(k_0 + k_1x + \cdots + k_nx^n) = (h_i(k_0) + h_i(k_1)x + \cdots + h_i(k_n)x^n)x^j$.

To complete the proof, we show that $h_i = \alpha_{t_i(x)}$, where $i' : U + V \to M[x]$ is the inclusion map. Let $h = \sum_{j=0}^n h'_j$ and $u = u_0 + u_1x + \cdots + u_nx^n \in U$ and $v(x) = v_0 + v_1x + \cdots + v_nx^i \in V$. Then $u_0, u_1, \ldots, u_r \in U_C$ and $v_0, v_1, \ldots, v_r \in V_C$. So $h'_j(u + v) = (h_i(u_0) + h_i(u_1)x + \cdots + h_i(u_r)x^r)x^j = t_jx^j(u_0 + u_1x + \cdots + u_rx^r)$ and $(u + v) = \sum_{j=0}^n h'_j(u + v) = t(x)(u + v)$. Hence $M[x]$ is an IN-module by Lemma 2.2. \hfill \Box

Let α be an endomorphism of R, that is, α is a ring homomorphism from R to R with $\alpha(1) = 1$. Following [9], a module M is called α-Armendariz if

1. for any $m \in M$ and $a \in R$, $ma = 0$ if and only if $m\alpha(a) = 0$;
2. for any $m(x) = \sum_{i=0}^n m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^n a_j x^j \in R[x]$, $m(x)f(x) = 0$ implies $m_ia_j = 0$ for each i, j.

Note that 1-Armendariz module is called Armendariz module.

We denote $r\text{Ann}_R(2^M) = \{r_R(U) \mid U \subseteq M\}$ and $\ell\text{Ann}_R(2^M) = \{\ell_R(U) \mid U \subseteq M\}$. If U is a subset of M, then $\ell_{R[x]}(U) = \ell_R(U)[x]$ and $r_{R[x]}(U) = r_R(U)[x]$. Hence we have the maps

$$\Phi : r\text{Ann}_R(2^M) \to r\text{Ann}_{R[x]}(2^{M[x]})$$

(2.3)
defined by $\Phi(r_R(U)) = r_R[x](U) = r_R(U)[x]$ for every $r_R(U) \in r\text{Ann}_R(2^M)$ and

$$\Phi' : \ell\text{Ann}_R(2^M) \rightarrow \ell\text{Ann}_{R[x]}(2^{M[x]})$$

(2.4)

defined by $\Phi'(\ell_R(U)) = \ell_R[x](U) = \ell_R(U)[x]$ for every $\ell_R(U) \in \ell\text{Ann}_R(2^M)$.

For a polynomial $m(x) \in M[x]$, $C_m(x)$ denotes the set of coefficients of $m(x)$ and for a subset V of $M[x]$, C_V denotes the set $\bigcup_{m(x) \in V} C_m(x)$. Then

$$r_{R[x]}(V) \cap R = r_R(V) = r_R(C_V), \quad \ell_{R[x]}(V) \cap R = \ell_R(V) = \ell_R(C_V).$$

(2.5)

Hence we also have the maps

$$\Psi : r\text{Ann}_{R[x]}(2^{M[x]}) \rightarrow r\text{Ann}_R(2^M)$$

(2.6)

defined by $\Psi(r_{R[x]}(V)) = r_{R[x]}(V) \cap R$ for every $r_{R[x]}(V) \in r\text{Ann}_{R[x]}(2^{M[x]})$ and

$$\Psi' : \ell\text{Ann}_{R[x]}(2^{M[x]}) \rightarrow \ell\text{Ann}_R(2^M)$$

(2.7)

defined by $\Psi'(\ell_{R[x]}(V)) = \ell_{R[x]}(V) \cap R$ for every $\ell_{R[x]}(V) \in \ell\text{Ann}_{R[x]}(2^{M[x]})$.

Obviously Φ (or Φ') is injective and Ψ (or Ψ') is surjective. Also, Φ (or Φ') is surjective if and only if Ψ (or Ψ') is injective and in this case Φ and Ψ (or Φ and Ψ') are the inverses of each other.

Proposition 2.5. Let M_R be a module. Then the following are equivalent.

1. M_R is an Armendariz module.
2. The map $\Phi : r\text{Ann}_R(2^M) \rightarrow r\text{Ann}_{R[x]}(2^{M[x]})$ defined by $\Phi(r_R(U)) = r_R[x](U) = r_R(U)[x]$, for every $r_R(U) \in r\text{Ann}_R(2^M)$, is bijective.
3. The map $\Phi' : \ell\text{Ann}_R(2^M) \rightarrow \ell\text{Ann}_{R[x]}(2^{M[x]})$ defined by $\Phi'(\ell_R(U)) = \ell_{R[x]}(U) = \ell_{R[U]}(V)$, for every $\ell_R(U) \in \ell\text{Ann}_R(2^M)$, is bijective.

Proof. (1) \Rightarrow (2). Assume M is an Armendariz module. Obviously Φ is injective. So it is enough to show Φ is surjective. Let $\ell_{R[x]}(V) \in \ell\text{Ann}_{R[x]}(2^{M[x]})$ for some $V \subseteq M[x]$. Then for $\ell_R(C_V) \in \ell\text{Ann}_R(2^M)$, $\Phi'(\ell_R(C_V)) = \ell_{R[x]}(C_V) = \ell_{R[x]}(V)$. In fact, let $f(x) \in \ell_{R[x]}(C_V)$, where $f(x) = a_0 + a_1x + \cdots + a_nx^n$. Then $f(x)C_V = 0$. Thus for all $m \in C_V$, $f(x)m = a_0m + a_1mx + \cdots + a_nmx^n = 0$ and hence $a_jm = 0$ for all j. Let $n(x) = n_0 + n_1x + \cdots + n_lx^l \in V$ be arbitrary. Then $f(x)n(x) = 0$ since $n_i \in C_V$ for all i. Hence $f(x) \in \ell_{R[x]}(V)$. Conversely, let $g(x) = b_0 + b_1x + \cdots + b_kx^k \in \ell_{R[x]}(V)$. Then for all $m(x) \in V$, $g(x)m(x) = 0$, where $m(x) = m_0 + m_1x + \cdots + m_lx^l \in V$. Since M_R is Armendariz, $b_jm_i = 0$ for all i and j. Hence $g(x)m_i = 0$ for all i. So $g(x) \in \ell_{R[x]}(C_V)$ since $m(x) \in V$ is arbitrary. Consequently for each $\ell_{R[x]}(V) \in \ell\text{Ann}_{R[x]}(2^{M[x]})$ for some $V \subseteq M[x]$ there exists $\ell_R(C_V) \in \ell\text{Ann}_R(2^M)$ such that $\Phi'(\ell_R(C_V)) = \ell_{R[x]}(V)$, and therefore Φ' is surjective.
(3) ⇒ (1). Conversely, assume \(f(x)m(x) = 0 \), where \(m(x) = m_0 + m_1x + \cdots + m_ix^i \in M[x] \) and \(f(x) = a_0 + a_1x + \cdots + a_kx^k \in R[x] \). By hypothesis, \(\ell_{R[x]}(m(x)) = \ell_R(U)[x] \) for some \(U \subseteq M \). Then \(f(x) \in \ell_R(U)[x] \) and hence \(a_j \in \ell_R(U) \) for all \(j \). So \(a_j \in \ell_R(U) \subseteq \ell_R(U)[x] = \ell_{R[x]}(m(x)) \) then \(a_jm(x) = 0 \). Consequently, \(a_jm_i = 0 \) for all \(i \) and \(j \). Therefore \(M_R \) is an Armendariz module.

By Proposition 2.5, we can obtain [5, Proposition 3.1].

Proposition 2.6. Let \(R \) be a ring. The following statements are equivalent.

1. \(R \) is Armendariz ring.
2. \(r\text{Ann}_R(2^R) \rightarrow r\text{Ann}_R(2^R[x]) \); \(A \rightarrow AR[x] \) is bijective, where \(r\text{Ann}_R(2^R) = \{r_R(U) : U \subseteq R \} \).
3. \(\ell\text{Ann}_R(2^R) \rightarrow \ell\text{Ann}_R(2^R[x]) \); \(B \rightarrow R[x]B \) is bijective, where \(\ell\text{Ann}_R(2^R) = \{\ell_R(U) : U \subseteq R \} \).

Now, we give the main result of this work.

Theorem 2.7. Let \(R[x] \) is a right IN-ring, then \(R \) is a right IN-ring.

Proof. Let \(I \) and \(J \) be right ideals of \(R \). Since \(R \) is an Armendariz ring, we have \(\ell_{R[x]}(I) = \ell_R(I)[x] \) by Proposition 2.6, for every right ideal \(I \) of \(R \). Note that \(\ell_{R[x]}(I) = \ell_{R[x]}(I[x]) \). By assumption, \(\ell_{R[x]}(I) + \ell_{R[x]}(J) = \ell_{R[x]}(I[x]) + \ell_{R[x]}(J[x]) = \ell_{R[x]}(I[x] \cap J[x]) = \ell_{R[x]}((I \cap J)[x]) \). Then \(\ell_R((I \cap J)[x]) = \ell_R(I[x]) + \ell_R(J[x]) = (\ell_R(I) + \ell_R(J))[x] \) implies that \(\ell_R(I \cap J) = \ell_R(I) + \ell_R(J) \). So \(R \) is a right IN-ring.

Example 2.8. (i) Since \(Z \) is an Armendariz ring, \(Z \) is a right IN-ring if and only if \(Z[x] \) is an IN-ring.

(ii) Let \(R \) be a trivial extension of \(Z \) and the \(Z \)-module \(Z_{2^n} \), that is, \(R = Z \oplus Z_{2^n} \) with the following addition and multiplication:

\[
(n,a) + (m,b) = (n + m, a + b),
\]

\[
(n,a)(m,b) = (nm, nb + ma).
\]

Also \(R \) is the subring \{ \((a, n) \) : \(a \in Z, n \in Z_{2^n} \) \}. \(R \) is an IN-ring by [10]. As Lee and Zhou pointed out [8, Corollary 2.7], \(R \) is an Armendariz ring. We consider the right ideals \(I \) and \(J \) of \(R[x] \):

\[
I = \left\{ \begin{pmatrix} px^2 & u(x) \\ 0 & px^2 \end{pmatrix} : u(x) \in Z_{2^n}, \ p \text{ is prime} \right\},
\]

\[
J = \left\{ \begin{pmatrix} qx + qx^2 & 0 \\ 0 & qx + qx^2 \end{pmatrix} : q \text{ is prime and } (p,q) = 1 \right\}.
\]

Clearly, \(\ell_{R[x]}(I \cap J) = R[x] \) since \(p \) and \(q \) are primes with \((p,q) = 1 \) and so \(I \cap J = 0 \). But \(\ell_{R[x]}(I) \) and \(\ell_{R[x]}(J) \) do not contain constant. Therefore, \(\ell_{R[x]}(I) + \ell_{R[x]}(J) \neq \ell_{R[x]}(I \cap J) \). So \(R[x] \) is not a right IN-ring by Proposition 2.3.
Recall that, a ring R is called \textit{reduced ring} if it has no nonzero nilpotent elements, a ring R is called \textit{right p.p.-ring} for all $a \in R$, $r_R(a) = eR$, where $e^2 = e \in R$ and R is called \textit{Baer ring}, for all $I \leq_R R$, $r_R(I) = eR$, where $e^2 = e \in R$.

As a result of Theorem 2.7, we can say the following corollary.

Corollary 2.9. Let $R[x]$ be a right IN-ring. Then R is a right IN-ring in each of the following cases.

1. $R^2 = 0$.
2. R is a reduced ring.
3. R is an Abelian (if every idempotent of R is central) and von Neumann regular ring.
4. R is an Abelian right (left) p.p.-ring.
5. R is an Abelian Baer ring.

Proof. Assume $R[x]$ is a right IN-ring.

1. By [1], if $R^2 = 0$, then R is an Armendariz ring.
2. By [2], reduced rings are Armendariz.
3. Every Abelian von Neumann regular ring is a reduced ring.
4. By [1, Theorem 6] or [7, Lemma 7], if R is an Abelian right (left) p.p.-ring, then R is an Armendariz (a Reduced and so Armendariz) ring.
5. Every Abelian Baer ring is a reduced ring.

Hence R is a right IN-ring by Theorem 2.7.

Acknowledgments

The author wishes to express his sincere gratitude to his Ph.D. supervisor Professor Abdullah Harmanci (Hacettepe University, Turkey) for his encouragement and direction. The author would like to thank the referee and Professor Yiqiang Zhou (Memorial University, Canada) for valuable comments and suggestions which improved the presentation of the paper.

References

M. Tamer Koşan: Department of Mathematic, Faculty of Science-Literature, Kocatepe University, ANS Campus, Afyon 03200, Turkey

E-mail address: mtkosan@aku.edu.tr
Submit your manuscripts at
http://www.hindawi.com