STRUCTURE OF RINGS WITH CERTAIN CONDITIONS ON ZERO DIVISORS

HAZAR ABU-KHUZAM AND ADIL YAQUB

Received 4 May 2004; Revised 17 September 2004; Accepted 24 July 2006

Let R be a ring such that every zero divisor x is expressible as a sum of a nilpotent element and a potent element of R: $x = a + b$, where a is nilpotent, b is potent, and $ab = ba$. We call such a ring a D^*-ring. We give the structure of periodic D^*-ring, weakly periodic D^*-ring, Artinian D^*-ring, semiperfect D^*-ring, and other classes of D^*-ring.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Throughout this paper, R is an associative ring; and N, C, $C(R)$, and J denote, respectively, the set of nilpotent elements, the center, the commutator ideal, and the Jacobson radical. An element x of R is called potent if $x^n = x$ for some positive integer $n = n(x) > 1$. A ring R is called periodic if for every x in R, $x^m = x^n$ for some distinct positive integers $m = m(x)$, $n = n(x)$. A ring R is called weakly periodic if every element of R is expressible as a sum of a nilpotent element and a potent element of R: $R = N + P$, where P is the set of potent elements of R. A ring R such that every zero divisor is nilpotent is called a D-ring. The structure of certain classes of D-rings was studied in [1]. Following [7], R is called normal if all of its idempotents are in C. A ring R is called a D^*-ring, if every zero divisor x in R can be written as $x = a + b$, where $a \in N$, $b \in P$, and $ab = ba$. Clearly every D-ring is a D^*-ring. In particular every nil ring is a D^*-ring, and every domain is a D^*-ring. A Boolean ring is a D^*-ring but not a D-ring. Our objective is to study the structure of certain classes of D^*-ring.

2. Main results

We start by stating the following known lemmas: Lemmas 2.1 and 2.2 were proved in [5], Lemmas 2.3 and 2.4 were proved in [4].

Lemma 2.1. Let R be a weakly periodic ring. Then the Jacobson radical J of R is nil. If, furthermore, $xR \subseteq N$ for all $x \in N$, then $N = J$ and R is periodic.

Lemma 2.2. If R is a weakly periodic division ring, then R is a field.
2 Structure of rings with certain conditions on zero divisors

Lemma 2.3. Let \(R \) be a periodic ring and \(x \) any element of \(R \). Then

(a) some power of \(x \) is idempotent;
(b) there exists an integer \(n > 1 \) such that \(x - x^n \in N \).

Lemma 2.4. Let \(R \) be a periodic ring and let \(\sigma : R \to S \) be a homomorphism of \(R \) onto a ring \(S \). Then the nilpotents of \(S \) coincide with \(\sigma(N) \), where \(N \) is the set of nilpotents of \(R \).

Definition 2.5. A ring is said to be a \(D \)-ring if every zero divisor is nilpotent. A ring \(R \) is called a \(D^\ast \)-ring if every zero divisor \(x \) in \(R \) can be written as \(x = a + b \), where \(a \in N \), \(b \in P \), and \(ab = ba \).

Theorem 2.6. A ring \(R \) is a \(D^\ast \)-ring if and only if every zero divisor of \(R \) is periodic.

Proof. Assume \(R \) is a \(D^\ast \)-ring and let \(x \) be any zero divisor. Then

\[
x = a + b, \quad a \in N, \ b \in P, \ ab = ba.
\] (2.1)

So, \((x - a) = b = b^n = (x - a)^n \). This implies, since \(x \) commutes with \(a \), that \((x - a) = (x - a)^n = x^n + \text{sum of pairwise commuting nilpotent elements} \).

Hence

\[
x - x^n \in N \quad \text{for every zero divisor} \; x. \tag{2.2}
\]

Since each such \(x \) is included in a subring of zero divisors, which is periodic by Chacron’s theorem, \(x \) is periodic.

Suppose, conversely, that each zero divisor is periodic. Then by the proof of [4, Lemma 1], \(R \) is a \(D^\ast \)-ring.

Theorem 2.7. If \(R \) is any normal \(D^\ast \)-ring, then either \(R \) is periodic or \(R \) is a \(D \)-ring. Moreover, \(aR \subseteq N \) for each \(a \in N \).

Proof. If \(R \) is a normal \(D^\ast \)-ring which is not a \(D \)-ring, then \(R \) has a central idempotent \(e \). Then \(R = eR \oplus A(e) \), where \(eR \) and \(A(e) \) both consist of zero divisors of \(R \), hence (in view of Theorem 2.6) are periodic. Therefore \(R \) is periodic.

Now consider \(a \in N \) and \(x \in R \). Since \(ax \) is a zero divisor, hence a periodic element, \((ax)^j = e \) is a central idempotent for some \(j \). Thus \((ax)^{j+1} = (ax)^j ax = a^2 y \) for some \(y \in R \). Repeating this argument, one can show that for each positive integer \(k \), there exists \(m \) such that \((ax)^m = a^2 w \) for some \(w \in R \). Therefore \(aR \subseteq N \).

Corollary 2.8. Let \(R \) be a \(D^\ast \)-ring which is not a \(D \)-ring. If \(N \subseteq C \), then \(R \) is commutative.

Proof. Since \(N \subseteq C \), \(R \) is normal. Therefore commutativity follows from Theorem 2.7 and a theorem of Herstein.

Now, we prove the following result for \(D^\ast \)-rings.

Theorem 2.9. Let \(R \) be a normal \(D^\ast \)-ring.

(i) If \(R \) is weakly periodic, then \(N \) is an ideal of \(R \), \(R \) is periodic, and \(R \) is a subdirect sum of nil rings and/or local rings \(R_i \). Furthermore, if \(N_i \) is the set of nilpotents of the local ring \(R_i \), then \(R_i/N_i \) is a periodic field.
(ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division rings.

Proof. (i) Using Theorem 2.7, we have

$$aR \subseteq N \quad \text{for every } a \in N. \quad (2.3)$$

This implies, using Lemma 2.1, that $N = J$ is an ideal of R, and R is periodic. As is well-known, we have

$$R \cong \text{a subdirect sum of subdirectly irreducible rings } R_i. \quad (2.4)$$

Let $\sigma : R \to R_i$ be the natural homomorphism of R onto R_i. Since R is periodic, R_i is periodic and by Lemma 2.4,

$$N_i = \text{the set of nilpotents of } R_i = \sigma(N) \text{ is an ideal of } R_i. \quad (2.5)$$

We now distinguish two cases.

Case 1 $1 \notin R_i$. Let $x_i \in R_i$, and let $\sigma : x \to x_i$. Then by Lemma 2.3, x^k is a central idempotent of R, and hence x_i^k is a central idempotent in the subdirectly irreducible ring R_i, for some positive integer k. Hence $x_i^k = 0$ ($1 \notin R_i$). Thus $R_i = N_i$ is a nil ring.

Case 2 $1 \in R_i$. The above argument in Case 1 shows that x_i^k is a central idempotent in the subdirectly irreducible ring R_i. Hence $x_i^k = 0$ or $x_i^k = 1$ for all $x_i \in R_i$. So, R_i is a local ring and for every $x_i + N_i \in R_i/N_i$,

$$x_i + N_i = N_i \quad \text{or} \quad (x_i + N_i)^k = 1 + N_i. \quad (2.6)$$

So R_i/N_i is a periodic division ring, and hence by Lemma 2.2, R_i/N_i is a periodic field.

(ii) Suppose R is Artinian. Using (2.3), aR is a nil right ideal for every $a \in N$. So, $N \subseteq J$. But $J \subseteq N$ since R is Artinian. Therefore $N = J$ is an ideal of R and $R/N = R/J$ is semisimple Artinian. This implies that R/N is isomorphic to a finite direct product $R_1 \times R_2 \times \cdots \times R_n$, where each R_i is a complete $t_i \times t_i$ matrix ring over a division ring D_i. Since R is Artinian, the idempotents of R/J lift to idempotents in R [2], and hence the idempotents of R/J are central. If $t_j > 1$, then $E_{11} \in R_j$, and $(0, \ldots, 0, E_{11}, 0, \ldots, 0)$ is an idempotent element of R/J which is not central in R/J. This is a contradiction. So $t_i = 1$ for every i. Therefore each R_i is a division ring and R/N is isomorphic to a finite direct product of division rings. □

The next result deals with a special kind of D^*-rings.

Theorem 2.10. Let R be a ring such that every zero divisor x can be written uniquely as $x = a + e$, where $a \in N$ and e is idempotent.

(i) If R is weakly periodic, then N is an ideal of R, and R/N is isomorphic to a subdirect sum of fields.

(ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division rings.
4 Structure of rings with certain conditions on zero divisors

Proof. Let \(e^2 = e \in R, x \in R, \) and let \(f = e + ex - exe. \) Then \(f^2 = f \) and hence \((ef - e)f = 0.\) So if \(f \) is not a zero divisor, then \(ef - e = 0.\) So \(ef = e, \) and thus \(f = e, \) which implies that \(ex = exe. \) The net result is \(ex - exe = 0 \) if \(f \) is not a zero divisor. Next, suppose \(f \) is a zero divisor. Then since

\[
\begin{align*}
f & = e + ex - exe, \\
f^2 & = f \\
(ef - e)f & = 0.
\end{align*}
\]

So if \(f \) is not a zero divisor, then \(ef - e = 0. \) So \(ef = e, \) and thus

\[
f = e, \quad \text{which implies that } \quad ex = exe.
\]

The net result is \(ex - exe = 0 \) if \(f \) is not a zero divisor. Next, suppose \(f \) is a zero divisor. Then since \(f = en + f \),

\[
(2.7)
\]

it follows from uniqueness that \(ex - exe = 0, \) and hence \(ex = exe \) in all cases. Similarly \(xe = exe, \) and thus

all idempotents of \(R \) are central, and hence \(R \) is a normal \(D^* \)-ring. \((2.8)\)

(i) Using \((2.8), \) \(R \) satisfies all the hypotheses of Theorem 2.9(i), and hence \(N \) is an ideal, and \(R \) is periodic. Using Lemma 2.2, for each \(x \in R, \) there exists an integer \(k > 1, \) such that

\[
(x + N)^k = (x + N), \quad k = k(x) > 1.
\]

\((2.9)\)

By a well-known theorem of Jacobson [6], \((2.9)\) implies that \(R/N \) is a subdirect sum of fields.

(ii) If \(R \) is Artinian, then using \((2.8), \) \(R \) satisfies the hypotheses of Theorem 2.9(ii). Therefore \(N \) is an ideal and \(R/N \) is a finite direct product of division rings. \(\square \)

Theorem 2.11. Let \(R \) be a semiprime \(D^* \)-ring with \(N \) commutative. Then \(R \) is either a domain or a \(J \)-ring.

Proof. As in the proof of [3, Theorem 1] we can show that if \(a^k = 0, \) then \((ar)^k = 0 \) for all \(r \in R. \) Therefore, by Levitzkii’s theorem, \(N = \{0\}. \) Assume \(R \) is not a domain, and let \(a \) be any nonzero divisor of zero. Then \(a \) is potent and \(aR \) consists of zero divisors, hence is a \(J \)-ring containing \(a. \) Therefore \([ax, a] = 0 \) for all \(x \in R, \) hence \((ax)^n = a^n x^n \) for all \(x \in R, \) and all \(n \geq 2. \) For \(x \) not a zero divisor, choose \(n > 1, \) such that \(a^n = a \) and \((ax)^n = ax. \) Then

\[
a^n x^n = ax, \quad \text{so } a(x^n - x) = 0 \quad \text{and } x^n - x \quad \text{is a zero divisor, hence is periodic. It follows by Chacron’s theorem that } \quad R \quad \text{is a periodic ring; and since } \quad N = \{0\}, \quad R \quad \text{is a } J \text{-ring.} \quad \square\)

Example 2.12. Let

\[
R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, \quad 0, 1 \in GF(2).
\]

\((2.10)\)

Then \(R \) is a normal weakly periodic \(D^* \)-ring with commuting nilpotents. \(R \) is not semiprime since the set of nilpotent elements \(N \) is a nonzero nilpotent ideal. This example shows that we cannot drop the hypothesis “\(R \) is semiprime” in Theorem 2.11.

In Theorem 2.14 below, we study the structure of a special kind of \(D^* \)-rings, the class of rings in which every zero divisor is potent. Recall that a ring is semiperfect [2] if and
only if \(R/J \) is semisimple (Artinian) and idempotents lift modulo \(J \). We need the following lemma.

Lemma 2.13. Let \(R \) be a ring in which every zero divisor is potent. Then \(N = \{0\} \) and \(R \) is normal. Moreover, if \(R \) is not a domain, then \(J = \{0\} \).

Proof. If \(a \in N \), then \(a \) is a zero divisor and hence potent by hypothesis. So \(a^n = a \) for some positive integer \(n \), and since \(a \in N \), there exists a positive integer \(k \) such that \(0 = a^{nk} = a \). So \(N = \{0\} \). Let \(e \) be any idempotent element of \(R \) and \(x \) is any element of \(R \). Then \(ex - exe \in N \), and hence \(ex - exe = 0 \). Similarly, \(xe = exe \). So \(ex = xe \) and \(R \) is normal.

Let \(x \) be a nonzero divisor of zero. Then \(xJ \) consists of zero divisors, which are potent. Therefore \(xJ = \{0\} \). But then \(J \) consists of zero divisors, hence potent elements, and therefore \(J = \{0\} \). \(\square \)

Theorem 2.14. Let \(R \) be a ring such that every zero divisor is potent.

(i) If \(R \) is weakly periodic, then every element of \(R \) is potent and \(R \) is a subdirect sum of fields.

(ii) If \(R \) is prime, then \(R \) is a domain.

(iii) If \(R \) is Artinian, then \(R \) is a finite direct product of division rings.

(iv) If \(R \) is semiperfect, then \(R/J \) is a finite direct product of division rings.

Proof. (i) Since \(R \) is weakly periodic, every element \(x \in R \) can be written as

\[x = a + b, \quad \text{where } a \in N, \ b \text{ is potent}. \tag{2.11} \]

But \(N = \{0\} \) (Lemma 2.13), so every \(x \in R \) is potent and hence \(R \) is isomorphic to a subdirect sum of fields by a well-known theorem of Jacobson.

(ii) Suppose \(R \) is a prime, then \(R \) is a prime ring with \(N = \{0\} \), and hence \(R \) is a domain.

(iii) Let \(R \) be an Artinian ring such that every zero divisor is potent. Since \(N = \{0\} \) (Lemma 2.13) and \(R \) is Artinian, \(J = N = \{0\} \). So \(R \) is semisimple Artinian and hence it is isomorphic to a finite direct product \(R_1 \times R_2 \times \cdots \times R_n \), where each \(R_i \) is a complete \(t_i \times t_i \) matrix ring over a division ring \(D_i \). If \(t_i > 1 \), then \(E_{11} \in R_j \), and \((0, \ldots, 0, E_{11}, 0, \ldots, 0) \) is an idempotent element of \(R \) which is not central in \(R \) contradicting Lemma 2.13. So \(t_i = 1 \) for every \(i \). Therefore each \(R_i \) is a division ring and \(R \) is isomorphic to a finite direct product of division rings.

(iv) Let \(R \) be a semiperfect ring such that every zero divisor is potent. Then \(R/J \) is semisimple Artinian and hence it is isomorphic to a finite direct product \(R_1 \times R_2 \times \cdots \times R_n \), where each \(R_i \) is a complete \(t_i \times t_i \) matrix ring over a division ring \(D_i \). Since \(R \) is semiperfect, the idempotents of \(R/J \) lift to idempotents in \(R \), and hence the argument of part (iii) above implies that each \(R_i \) is a division ring and \(R/J \) is isomorphic to a finite direct product of division rings. \(\square \)

Acknowledgment

We wish to express our indebtedness and gratitude to the referee for the helpful suggestions and valuable comments.
6 Structure of rings with certain conditions on zero divisors

References

Hazar Abu-Khuzam: Department of Mathematics, American University of Beirut, Beirut 1107 2020, Lebanon
E-mail address: hazar@aub.edu.lb

Adil Yaqub: Department of Mathematics, University of California, Santa Barbara, CA 93106-3080, USA
E-mail address: yaqub@math.ucsb.edu
Submit your manuscripts at
http://www.hindawi.com