Let \((u_n)\) be a sequence of real numbers, \(L\) an additive limitable method with some property, and \(\mathcal{U}\) and \(\mathcal{V}\) different spaces of sequences related to each other. We prove that if the classical control modulo of the oscillatory behavior of \((u_n)\) in \(\mathcal{U}\) is a Tauberian condition for \(L\), then the general control modulo of the oscillatory behavior of integer order \(m\) of \((u_n)\) in \(\mathcal{U}\) or \(\mathcal{V}\) is also a Tauberian condition for \(L\).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, \(u_n = O(1)\) and \(u_n = o(1)\) denote \(O(1)\) as \(n \to \infty\) and \(o(1)\) as \(n \to \infty\), respectively. Let \(\mathcal{N}, \mathcal{B}, \mathcal{S},\) and \(\mathcal{M}\) denote the space of sequences converging to 0, bounded, slowly oscillating, and moderately oscillating, respectively.

The classical control modulo of the oscillatory behavior of \((u_n)\) is denoted by \(\omega_n^{(0)}(u) = n\Delta u_n\) and the general control modulo of the oscillatory behavior of order \(m\) of \((u_n)\) is defined by \(\omega_n^{(m)}(u) = \omega_n^{(m-1)}(u) - \sigma_n^{(1)}(\omega^{(m-1)}(u))\), where

\[
\Delta u_n = \begin{cases} u_n - u_{n-1}, & n \geq 1, \\ u_0, & n = 0, \end{cases} \quad \sigma_n^{(1)}(u) = \frac{1}{n+1} \sum_{k=0}^{n} u_k. \tag{1.1}
\]

Tauber [10] proved that if \((u_n)\) is Abel limitable and

\[(\omega_n^{(0)}(u)) \in \mathcal{N}, \tag{1.2}\]

then \((u_n)\) is convergent. The condition (1.2) on the sequence \((u_n)\) is called a Tauberian condition for Abel limitable method and the resulting theorem is called a Tauberian theorem.
Tauberian conditions for a general limitable method

Tauber [10] further proved that the condition
\[(\sigma_n^{(1)}(\omega^0(u))) \in \mathcal{N}\] (1.3)
is also a Tauberian condition. It was shown by Littlewood [6] that the condition (1.2) could be replaced by
\[(\omega_n^0(u)) \in \mathcal{B}.\] (1.4)

Hardy and Littlewood [5] improved Littlewood’s theorem replacing (1.4) by onesided boundedness of \((\omega_n^0(u)).\)

Stanojević [9] reformulated the definition of slow oscillation given by Schmidt [8] in a more suitable form and then proved that the conditions (1.2) and (1.3) could be replaced by
\[(\omega_n^0(u)) \in \mathcal{F},\] (1.5)
\[(\sigma_n^{(1)}(\omega^0(u))) \in \mathcal{F},\] (1.6)
respectively.

A generalization of slow oscillation, moderate oscillation, was introduced by Stanojević and it was proved by Dik [4] that (1.5) could be replaced by
\[(\omega_n^0(u)) \in \mathcal{M},\] (1.7)
and (1.6) could not be replaced by
\[(\sigma_n^{(1)}(\omega^0(u))) \in \mathcal{M}.\] (1.8)

Recently, Čanak and Totur [3] have shown that for any nonnegative integer \(m \geq 1,\)
\[(\omega_n^m(u)) \in \mathcal{M}\] (1.9)
is a Tauberian condition for Abel limitable method.

Meyer-König and Tietz [7] proved that if (1.2) is a Tauberian conditions for an additive and regular limitability method, then (1.3) is a Tauberian condition for \(L\). Čanak et al. [1] extended and generalized Meyer-König and Tietz’s [7] result and obtained the following theorems for an additive and \((C,1)\) regular method \(L\).

Theorem 1.1. If \((\omega_n^0(u)) \in \mathcal{F}\) is a Tauberian condition for an additive and \((C,1)\) regular limitable method \(L\), then \((\omega_n^{(1)}(u)) \in \mathcal{F}\) is a Tauberian condition for \(L\).

Theorem 1.2. If \((\omega_n^0(u)) \in \mathcal{B}\) is a Tauberian condition for an additive and \((C,1)\) regular limitable method \(L\), then \((\omega_n^{(1)}(u)) \in \mathcal{B}\) is a Tauberian condition for \(L\).

Let \(\mathcal{U}\) and \(\mathcal{V}\) be distinct spaces of sequences related to each other. In this paper, we prove that if the classical control modulo of the oscillatory behavior of \((u_n)\) in \(\mathcal{U}\) is a Tauberian condition for an additive and \((C,1)\) limitable method \(L\), then the general control modulo of the oscillatory behavior of integer order \(m\) of \((u_n)\) in \(\mathcal{U}\) or \(\mathcal{V}\) is also a Tauberian condition for \(L\).
2. Notations and definitions

Throughout this paper, let \(u = (u_n) \) be a sequence of real numbers. For each integer \(m \geq 0 \) and for all nonnegative integers \(n \) denote \(\sigma^{(m)}_n(u) \) by

\[
\sigma^{(m)}_n(u) = \begin{cases}
\frac{1}{n+1} \sum_{k=0}^{n} \sigma^{(m-1)}_k(u) = u_0 + \sum_{k=1}^{n} \frac{V^{(m-1)}_k(\Delta u)}{k}, & m \geq 1, \\
0, & m = 0,
\end{cases}
\]

(2.1)

where

\[
V^{(m)}_n(\Delta u) = \begin{cases}
\sigma^{(1)}(n)(V^{(m-1)}(\Delta u)), & m \geq 1, \\
\frac{1}{n+1} \sum_{k=0}^{n} k \Delta u_k, & m = 0.
\end{cases}
\]

(2.2)

The identity

\[u_n - \sigma^{(1)}(u) = V^{(0)}_n(\Delta u) \]

(2.3)

is well known and will be extensively used. We define inductively for each integer \(m \geq 1 \) and for all nonnegative integers \(n \),

\[(n\Delta)_mu_n = n\Delta((n\Delta)_{m-1}u_n), \quad \text{where } (n\Delta)_0u_n = u_n.\]

(2.4)

It is proved in [2] that for each integer \(m \geq 1 \),

\[
\omega^{(m)}_n(u) = (n\Delta)_m V^{(m-1)}_n(\Delta u).
\]

(2.5)

Definition 2.1. A sequence \(u = (u_n) \) is Abel limitable to \(s \) if the limit \(\lim_{x \to 1^-} (1-x) \sum_{n=0}^{\infty} u_n x^n = s \).

Definition 2.2. A sequence \(u = (u_n) \) is \(L \) limitable to \(s \) if \(L - \lim_n u_n = s \).

A limitation method \(L \) is called additive if \(L - \lim_n u_n + v_n = s + t \) imply that \(L - \lim_n (u_n + v_n) = s + t \). A limitation method \(L \) is called regular if the \(L - \) limit of every convergent sequence is equal to its limit. \(L \) is called \((C,1) \) regular if \(L - \lim_n (\sigma^{(1)}(u)) = s \) implies \(L - \lim_n \sigma^{(1)}(u) = s \). It is clear that every regular limitable method is \((C,1) \) regular.

Definition 2.3. A sequence \(u = (u_n) \) is one-sidedly bounded if for some \(C \geq 0 \) and for each nonnegative integer \(n \), \(u_n \geq -C \).

Definition 2.4. A sequence \(u = (u_n) \) is slowly oscillating [9] if

\[
\lim_{\lambda \to 1^+} \lim_{n \to \infty} \max_{n+1 \leq k \leq [\lambda n]} \left| \sum_{j=n+1}^{k} \Delta u_j \right| = 0,
\]

(2.6)

where \([\lambda n]\) denotes the integer part of \(\lambda n\).
4 Tauberian conditions for a general limitable method

A sequence \(u = (u_n) \in \mathcal{S} \) if and only if \((V_n^{(0)}(\Delta u)) \in \mathcal{S}\) and \((V_n^{(0)}(\Delta u)) \in \mathcal{B}\) (see [4]).

The next definition is a generalization of slow oscillation.

Definition 2.5. A sequence \(u = (u_n) \) is moderately oscillating [9] if for \(\lambda > 1 \),

\[
\lim_{n} \max_{n+1 \leq k \leq [\lambda n]} \left| \sum_{j=n+1}^{k} \Delta u_j \right| < \infty. \tag{2.7}
\]

A sequence \((u_n) \in \mathcal{M} \) if and only if \((V_n^{(0)}(\Delta u)) \in \mathcal{B}\) (see [4]).

3. Results and proofs

Theorem 3.1. If \((\omega_n^{(0)}(u)) \in \mathcal{M}\) is a Tauberian condition for \(L \), then for any integer \(m \geq 1 \),

\((\omega_n^{(m)}(u)) \in \mathcal{M}\) is also a Tauberian condition for \(L \).

Proof. Assume that \((\omega_n^{(0)}(u)) \in \mathcal{M}\) is a Tauberian condition for \(L \). Let \(L - \lim_n u_n = s \). Since \(L \) is \((C, 1)\) regular, it follows by (2.3) that \(L - \lim_n V_n^{(0)}(\Delta u) = 0 \). It is obvious that \(L - \lim_n u_n = s \) implies \(L - \lim_n (n\Delta_{m-1}V_n^{(m-1)}(\Delta u)) = 0 \). Since

\[
(\omega_n^{(m)}(u)) = (n\Delta((n\Delta)_{m-1}V_n^{(m-1)}(\Delta u))) \in \mathcal{M}, \tag{3.1}
\]

by assumption, we have

\[
(n\Delta)_{m-1}V_n^{(m-1)}(\Delta u) = o(1). \tag{3.2}
\]

By the same reasoning, we deduce that

\[
(n\Delta)_{m-1}V_n^{(m-1)}(\Delta u) = n\Delta((n\Delta)_{m-2}V_n^{(m-1)}(\Delta u)) = o(1) \tag{3.3}
\]

and \(L - \lim_n (n\Delta)_{m-2}V_n^{(m-1)}(\Delta u) = 0 \). Again by assumption, we have

\[
(n\Delta)_{m-2}V_n^{(m-1)}(\Delta u) = o(1). \tag{3.4}
\]

From the identity

\[
(n\Delta)_{m-1}V_n^{(m-1)}(\Delta u) = (n\Delta)_{m-2}V_n^{(m-2)}(\Delta u) - (n\Delta)_{m-2}V_n^{(m-1)}(\Delta u), \tag{3.5}
\]

(3.2), and (3.4), we have

\[
(n\Delta)_{m-2}V_n^{(m-2)}(\Delta u) = o(1). \tag{3.6}
\]

Continuing in this vein, we have

\[
n\Delta V_n^{(1)}(\Delta u) = o(1). \tag{3.7}
\]

Since \(L - \lim_n V_n^{(1)}(\Delta u) = 0 \), it follows by (3.7) that

\[
V_n^{(1)}(\Delta u) = o(1). \tag{3.8}
\]
From (3.7) and (3.8), we have $V^{(0)}_n(\Delta u) = o(1)$. Let $L = \lim_n u_n = s$. Since $L = \lim_{m \to \infty} u_n$ (or $m \in \mathbb{N}$) imply that $\lim_{m \to \infty} u_n = s$. Hence, by (2.3), (u_n) converges to s. □

Theorem 3.2. If $(\omega^{(0)}_n(u)) \in B$ is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega^{(m)}_n(u)) \in B$ is also a Tauberian condition for L.

Proof. Assume that $\omega^{(0)}_n(u) = O(1)$ is a Tauberian condition for L. Let $L = \lim_n u_n = s$. Since $L = \lim_{m \to \infty} u_n$ (or $m \in \mathbb{N}$) imply that $\lim_{m \to \infty} u_n = s$, (u_n) converges to s. The rest of the proof is as in the proof of Theorem 3.1. □

Theorem 3.3. If for some $C \geq 0$, $\omega^{(0)}_n(u) \geq -C$ is a Tauberian condition for L, then for any integer $m \geq 1$, $\omega^{(m)}_n(u) \geq -C$ is also a Tauberian condition for L.

Proof. Assume that $\omega^{(0)}_n(u) \geq -C$ for some $C \geq 0$ is a Tauberian condition for L. Let $L = \lim_n u_n = s$. Since $L = \lim_{m \to \infty} u_n$ (or $m \in \mathbb{N}$) imply that $\lim_{m \to \infty} u_n = s$, (u_n) converges to s. The rest of the proof is as in the proof of Theorem 3.1. □

We now prove that if $(\omega^{(0)}_n(u)) \in M$ (or $\in B$) is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega^{(m)}_n(u)) \in B$ (or $\in M$) is a Tauberian condition for L, respectively.

Theorem 3.4. If $(\omega^{(0)}_n(u)) \in M$ is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega^{(m)}_n(u)) \in B$ is also a Tauberian condition for L.

Proof. It is sufficient to note that $\omega^{(m)}_n(u) = (n\Delta)_m V^{(m-1)}_n(\Delta u) = V^{(0)}_n(\Delta \omega^{(m-1)}(u)) = O(1)$ implies $\omega^{(m-1)}_n(u) \in M$. Proof now follows from Theorem 3.1. □

Theorem 3.5. If $(\omega^{(0)}_n(u)) \in B$ is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega^{(m)}_n(u)) \in M$ is also a Tauberian condition for L.

Proof. It is sufficient to note that $\omega^{(m)}_n(u) \in M$ implies $V^{(0)}_n(\Delta \omega^{(m)}(u)) = \omega^{(m+1)}_n(u) = O(1)$. Proof now follows from Theorem 3.4. □

Remark 3.6. Because of the inclusion $\mathcal{N} \subset \mathcal{F} \subset M$, the condition “belonging to M” can be replaced by “belonging to \mathcal{F}” or “belonging to \mathcal{N}.”

In Theorems 3.1, 3.2, and 3.3, taking $m = 1$ and replacing M by \mathcal{F}, we have [1, Theorems 4.1, 4.2, and 4.4] by Çanak et al.

Acknowledgment

This research was supported by Adnan Menderes University under Grant FEF-06011.

References

6 Tauberian conditions for a general limitable method

İbrahim Çanak: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey
E-mail address: icanak@adu.edu.tr

Ümit Totur: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey
E-mail address: utotur@adu.edu.tr
Submit your manuscripts at http://www.hindawi.com