Let R be a ring with center Z, Jacobson radical J, and set N of all nilpotent elements. Call R generalized periodic-like if for all $x \in R \setminus (N \cup J \cup Z)$ there exist positive integers m, n of opposite parity for which $x^m - x^n \in N \cap Z$. We identify some basic properties of such rings and prove some results on commutativity.
the set \([\{x, y \mid x \in X, y \in Y\}];\) and \(C(R)\) denotes the commutator ideal of \(R\). An element \(x \in R\) is called regular if it is not a zero divisor; it is called periodic if there exist distinct positive integers \(m, n\) for which \(x^m = x^n\); and it is called potent if there exists an integer \(n > 1\) for which \(x^n = x\). The set of all potent elements of \(R\) is denoted by \(P\) or \(P(R)\), and the prime radical by \(\Psi(R)\). Finally, \(R\) is called reduced if \(N(R) = \{0\}\).

Lemma 2.1. Let \(R\) be an arbitrary \(g\)–\(p\)–\(l\) ring.

(i) Every epimorphic image of \(R\) is a \(g\)–\(p\)–\(l\) ring.

(ii) \(N \subseteq J\).

(iii) If \([N, J] = \{0\}\), then \(N\) is an ideal.

(iv) \(C(R) \subseteq J\).

(v) If \(e\) is an idempotent, the additive order of which is not a power of 2, then \(e \in Z\).

Proof. (i) is clear, once we recall that if \(\sigma : R \rightarrow S\) is an epimorphism, then \(\sigma(J(R)) \subseteq J(S)\).

(ii) Let \(S = R/J(R)\). Then by (i), \(S\) is a \(g\)–\(p\)–\(l\) ring; and since \(J(S) = \{0\}\), \(S\) is a \(g\)–\(p\) ring. It follows from [1, Theorem 1] that \(N(S)\) is an ideal of \(S\), hence \(N(S) \subseteq J(S) = \{0\}\) and therefore \(N(R) \subseteq J(R)\).

(iii) Since \(N \subseteq J\), \(N\) is commutative and hence \((N, +)\) is an additive subgroup. Let \(a \in N\) and \(x \in R\). Then \(ax \in J\), so \([a, ax] = 0\), that is, \(a^2x = axa\). It follows that \((ax)^2 = a^2x^2\) and that \((ax)^n = a^n x^n\) for all positive integers \(n\). Therefore, \(ax \in N\).

(iv) As in (ii), \(R/J(R)\) is a \(g\)–\(p\) ring; hence, by [1, Lemma 2], \(C(R/J(R)) = \{0\}\). Therefore, \(C(R) \subseteq J(R)\).

(v) If \(e \notin Z\), then \(-e \notin J \cup Z\) and there exists \((m, n)\) such that \((-e)^m - (-e)^n \in N \cap Z\). Since \(m, n\) are of opposite parity, we get \(2e \in N\), so that \(2^ke = 0\) for some \(k\).

Lemma 2.2. Let \(R\) be an arbitrary \(g\)–\(p\)–\(l\) ring, and let \(x \in R\). Then either \(x \in J \cup Z\), or there exist a positive integer \(q\) and an idempotent \(e\) such that \(x^q = x^q e\).

Proof. If \(x \notin J \cup Z\), there exists \((m, n)\) such that \(x^m - x^n \in N \cap Z\). Therefore, there exist a positive integer \(q\) and \(g(t) \in Z[t]\) such that \(x^q = x^{q+1}g(x)\). It is now easy to verify that \(e = (xg(x))^q\) is an idempotent with \(x^q = x^q e\).

Lemma 2.3. Let \(R\) be a \(g\)–\(p\)–\(l\) ring and \(\sigma\) an epimorphism from \(R\) to \(S\). Then \(N(S) \subseteq \sigma(J(R)) \cup Z(S)\).

Proof. Let \(s \in N(S)\) with \(s^k = 0\) and let \(d \in R\) such that \(\sigma(d) = s\). If \(d \in J(R) \cup Z(R)\), then obviously \(s \in \sigma(J(R)) \cup Z(S)\); hence we may suppose that there exists \((m, n)\) with \(n > m\) such that \(d^m - d^n \in N(R) \cap Z(R)\). It is easy to show that \(d - d^h \in N\), where \(h = n - m + 1\); thus

\[
d - d^{k+1}d^{(k-1)} = d - d^h + d^{h-1}(d - d^h) + \cdots + (d^{h-1})^{k-1}(d - d^h)
\]

is a sum of commuting nilpotent elements, hence it is in \(N(R)\) and therefore in \(J(R)\). Consequently, \(s - s^{k+1}s^{(k-1)} \in \sigma(J(R))\); and since \(s^{k+1} = 0\), \(s \in \sigma(J(R))\).

We finish this section by stating two known results on periodic elements.
Lemma 2.4. Let R be an arbitrary ring, and let $N^* = \{x \in R \mid x^2 = 0\}$.

(i) [2, Lemma 1] If $x \in R$ is periodic, then $x \in P + N$.

(ii) [3, Theorem 2] If N^* is commutative and N is multiplicatively closed, then $PN \subseteq N$.

3. Commutativity results

Theorem 3.1. If R is a g–p–l ring with $J \subseteq Z$, then R is commutative.

Proof. Suppose $x \notin Z$. Then by Lemma 2.1(ii), we have $((m,n))$ with $n > m$ such that $x^m - x^n \in N \cap Z$. Consequently $x^{n-m+1} - x \in N$; and since $N \subseteq Z$, commutativity of R follows by a well-known theorem of Herstein [4].

Theorem 3.2. If R is any g–p–l ring with 1, then R is commutative.

Proof. We show that if R is g–p–l with 1, then $J \subseteq Z$. Suppose that $x \in J \cap Z$. Then $-1 + x \notin J \cup Z$, so there exists $((m,n))$ such that $(-1 + x)^m - (1 + x)^n \in N \cap Z$; and we may assume that m is even and n is odd. Since $N \subseteq J$, it follows that $2 \in J$; thus for every integer m, $2m \in J$, and hence $2m + 1$ is invertible.

Now consider $((m_1,n_1))$ such that $(1 + x)^{m_1} - (1 + x)^{n_1} \in N \cap Z$. Then $(m_1 - n_1)x + x^2p(x) \in N \cap Z$ for some $p(t) \in Z[t]$; and since $m_1 - n_1$ is central and invertible, we get $x + x^2w \in N \cap Z$ for some $w \in R$ with $[x,w] = 0$. Thus, we have a positive integer q and an element y in R such that $[x,y] = 0$ and $x^q = x^qy$. It follows that $e = (xy)^q$ is an idempotent such that $x^q = x^qe$; and since J contains no nonzero idempotents, x is in N.

Let α be the smallest positive integer for which $x^k \in Z$ for all $k \geq \alpha$, and note that, since $x \notin Z$, $\alpha \geq 2$. But $1 + x^{a-1} \notin J \cup Z$, so there exists $((m_2,n_2))$ such that $(1 + x^{a-1})^{m_2} - (1 + x^{a-1})^{n_2} \in N \cap Z$; hence $(m_2 - n_2)x^{a-1} \in Z$. But since $m_2 - n_2$ is invertible and central, we conclude that $x^{a-1} \in Z$—a contradiction.

Theorem 3.3. If R is a reduced g–p–l ring with $R \notin I$, then R is commutative.

Proof. If $R = J \cup Z$, then $R = Z$ and we are finished. Otherwise, if $x \in R \setminus (J \cup Z)$, there exists $((m,n))$ such that $x^m - x^n \in N \cap Z = \{0\}$; hence x is periodic, and by Lemma 2.4(i), $x \notin P$. Thus, $R = P \cup J \cup Z$; and to complete the proof we need only to show that $P \subseteq Z$.

Let $y \in P$, and let $k > 1$ be such that $y^k = y$. Then $e = y^{k-1}$ is an idempotent for which $y = ye$, and $e \in Z$ since $N = \{0\}$. Now eR is an ideal of R, so that $J(eR) = eR \cap J(R)$; hence eR is a g–p–l ring with 1, which is commutative by Theorem 3.2. Therefore, $[ey,ew] = 0$ for all $w \in R$; and since $ey = y$ and $e \in Z$, we conclude that $[y,w] = 0$ for all $w \in R$, that is, $y \in Z$.

Theorem 3.4. If R is a g–p–l ring in which J is commutative and all idempotents are central, then R is commutative.

Proof. We may express R as a subdirect product of subdirectly irreducible rings, each of which is an epimorphic image of R. Let R_a be such a subdirectly irreducible ring, and let $\sigma : R \to R_a$ be an epimorphism. Let $x_a \in R_a$ and let $x \in R$ such that $\sigma(x) = x_a$. By Lemma 2.2, $x \in J(R) \cup Z(R)$ or there exist an idempotent $e \in R$ and a positive integer q such that $x^q = x^q e$. Thus, either $x_a \in \sigma(J(R)) \cup Z(R_a)$ or $x_a^q = x^q_a e_a$, where $e_a = \sigma(e)$ is a central idempotent of R_a. But R_a is subdirectly irreducible, hence if R_a has a nonzero central idempotent, then R_a has 1 and is commutative by Theorem 3.2.
To complete the proof, we need only consider the case that for each $x_a \in R_a$, $x_a \in \sigma(f(R)) \cup Z(R_a) \cup N(R_a)$. Now by Lemma 2.3, $N(R_a) \subseteq \sigma(f(R)) \cup Z(R_a)$; hence $R_a = \sigma(f(R)) \cup Z(R_a)$, which is clearly commutative. Therefore, R is commutative.

Theorem 3.4 has two corollaries, the first of which is immediate when we recall Lemma 2.1(v).

Corollary 3.5. If R is a 2-torsion-free g–p–l ring with J commutative, then R is commutative.

Corollary 3.6. Let R be a g–p–l ring containing a regular central element c. If J is commutative, then R is commutative.

Proof. It suffices to show that $N \subseteq Z$ since this condition implies that idempotents are central. Consider first the case $c \in J$. Then $cf \subseteq J^2$, which is central since J is commutative. Since c is regular and central, it is immediate that $J \subseteq Z$, so certainly $N \subseteq Z$.

Now assume that $c \not\in J$, and suppose that $a \in N \setminus Z$. Then $c + a \not\in J \cup Z$, and there exists $((m, n))$ such that $(c + a)^m - (c + a)^n \in N \cap Z$. It follows that $c^m - c^n$ is a sum of commuting nilpotent elements, hence $c^m - c^n \in N$ and there exists q such that $c^q = c^{q + 1} p(c)$ for some $p(t) \in \mathbb{Z}[t]$. As before, we get an idempotent e such that $c^q = c^qe$ and $[c, e] = 0$. Now e cannot be a zero divisor, since that would force c to be a zero divisor; therefore, R has a regular idempotent, that is, R has 1. We have contradicted Theorem 3.2, so $N \subseteq Z$ as claimed.

4. Nil-commutator-ideal theorems

Theorem 4.1. Let R be a g–p–l ring. If $R \neq J$ and N is an ideal, then $C(R)$ is nil.

Proof. We may assume $R \neq J \cup Z$, since otherwise R is commutative. Let $\overline{R} = R/N$, and let the element $x + N$ of \overline{R} be denoted by \overline{x}. We need to show that \overline{R} is commutative—a conclusion that follows from Theorem 3.3 once we show that $J(\overline{R}) \neq \overline{R}$.

Suppose that $J(\overline{R}) = \overline{R}$, and let $x \in R \setminus (J \cup Z)$. By Lemma 2.2, there exists a positive integer q and an idempotent $e \in R$ such that $x^q = x^qe$; and it follows that \overline{e} is an idempotent of \overline{R} such that $\overline{x}^q = \overline{x}^q \overline{e}$. But $\overline{R} = J(\overline{R})$ contains no nonzero idempotents, so that $\overline{x}^q = 0 = \overline{x}$ and hence $x \in N(R)$. This contradicts the fact that $x \not\in J \cup Z$, hence $\overline{R} \neq J(\overline{R})$ as required.

Theorem 4.2. If R is a g–p–l ring and J is commutative, then $C(R)$ is nil.

Proof. If $R = J$, then R is commutative. If $R \neq J$, N is an ideal by Lemma 2.1(iii) and $C(R)$ is nil by Theorem 4.1.

In fact, we can improve this result as follows.

Theorem 4.3. Let R be a g–p–l ring with $R \neq J$. If N is commutative, then $C(R)$ is nil.

This result follows from Theorem 4.1, once we prove our final theorem.

Theorem 4.4. Let R be a g–p–l ring with $R \neq J$. If N is commutative, then N is an ideal.
Proof. Again we may assume that \(R \neq J \cup Z \). Since \(N \) is commutative, \(N \) is an additive subgroup of \(R \). To show that \(RN \subseteq N \), it is convenient to work with the ring \(\overline{R} = R/\mathfrak{P}(R) \). As in the proof of Theorem 4.1, we have \(J(\overline{R}) \neq \overline{R} \); and if \(\overline{R} = Z(\overline{R}) \), then \(C(\overline{R}) \subseteq \mathfrak{P}(\overline{R}) \subseteq N \). Therefore, we assume that \(\overline{R} \neq J(\overline{R}) \cup Z(\overline{R}) \). We note that if \(x + N = \overline{x} \in N(\overline{R}) \), then \(x \in N(R) \); consequently, \(N(\overline{R}) \) is commutative and hence is an additive subgroup of \(\overline{R} \).

Now \(\overline{R} \) is semiprime and therefore \(N(\overline{R}) \cap Z(\overline{R}) = \{0\} \). It follows that if \(\overline{x} \in \overline{R} \setminus (J(\overline{R}) \cup Z(\overline{R})) \), there exists \((m, n) \) such that \(\overline{x}^m = \overline{x}^n \), that is, \(x \) is periodic. Thus \(x \in P(\overline{R}) + N(\overline{R}) \) by Lemma 2.4(i); and by commutativity of \(N(\overline{R}) \) and Lemma 2.4(ii) we get \(\overline{x}N(\overline{R}) \subseteq N(\overline{R}) \). Moreover, if \(\overline{y} \in Z(\overline{R}) \), \(\overline{y}N(\overline{R}) \subseteq N(\overline{R}) \). Now let \(\overline{y} \in J(\overline{R}) \setminus Z(\overline{R}) \), and let \(\overline{x} \in \overline{R} \setminus (J(\overline{R}) \cup Z(\overline{R})) \). Then \(\overline{x} + \overline{y} \notin J(\overline{R}) \), hence it is in \(\overline{R} \setminus (J(\overline{R}) \cup Z(\overline{R})) \) or in \(Z(\overline{R}) \); and in either case \((\overline{x} + \overline{y})N(\overline{R}) \) and \(\overline{x}N(\overline{R}) \) are in \(N(\overline{R}) \), so that \(\overline{y}N(\overline{R}) \subseteq N(\overline{R}) \). We have shown that \(N(\overline{R}) \) is an ideal of \(\overline{R} \); therefore, if \(x \in R \) and \(a \in N(R) \), \(xa \in N(\overline{R}) \) and hence \(xa \in N(R) \). Thus, \(N(R) \) is an ideal of \(R \). \(\Box \)

Remark 4.5. There exist noncommutative g–p–l rings with \(J \) commutative. An accessible example is

\[
\left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \mid a, b \in GF(2) \right\}.
\] (4.1)

Acknowledgment

The first author was supported by the Natural Sciences and Engineering Research Council of Canada, Grant 3961.

References

Howard E. Bell: Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
Email address: hbell@brocku.ca

Adil Yaqub: Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
Email address: yaqub@math.ucsb.edu
Submit your manuscripts at http://www.hindawi.com