Research Article

Some Identities on the q-Genocchi Polynomials of Higher-Order and q-Stirling Numbers by the Fermionic p-Adic Integral on \mathbb{Z}_p

Seog-Hoon Rim, Jeong-Hee Jin, Eun-Jung Moon, and Sun-Jung Lee

Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

Correspondence should be addressed to Seog-Hoon Rim, shrim@knu.ac.kr

Received 25 September 2010; Accepted 8 November 2010

Academic Editor: H. Srivastava

Copyright © 2010 Seog-Hoon Rim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A systemic study of some families of q-Genocchi numbers and families of polynomials of Nörlund type is presented by using the multivariate fermionic p-adic integral on \mathbb{Z}_p. The study of these higher-order q-Genocchi numbers and polynomials yields an interesting q-analog of identities for Stirling numbers.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, $\mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C},$ and \mathbb{C}_p denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the completion of the algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = 1/p$.

When one talks of q-extension, q is variously considered as an indeterminate, a complex $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then one normally assumes $|q| < 1$. If $q \in \mathbb{C}_p$, then we assume $|q - 1|_p < 1$. In this paper, we use the following notation:

$$[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}, \quad (1.1)$$

see [1–10]. Hence $\lim_{q \to 1}[x]_q = x$ for all $x \in \mathbb{Z}_p$.

The q-factorial is defined as $[n]_q! = [n]_q[n - 1]_q \cdots [2]_q[1]_q$, and the Gaussian binomial coefficient is defined by the standard rule

\[
\binom{n}{k}_q = \frac{[n]_q!}{[n-k]_q! [k]_q!} = \frac{[n]_q[n-1]_q \cdots [n-k+1]_q!}{[k]_q!}, \tag{1.2}
\]

(see [7, 9]). Note that \(\lim_{q \to 1} \binom{n}{k}_q = \binom{n}{k} = n!/(n-k)!k! = n(n-1) \cdots (n-k+1)/k!\). It readily follows from (1.2) that

\[
\binom{n+1}{k}_q = \binom{n}{k-1}_q + q^k \binom{n}{k}_q = q^{n-k+1} \binom{n}{k-1}_q + \binom{n}{k}_q, \tag{1.3}
\]

(see [4, 7]).

The q-binomial formulas are known,

\[
(b; q)_n = (1-b)(1-bq) \cdots (1-bq^{n-1}) = \sum_{i=0}^{n} \binom{n}{i}_q q^i (-1)^i b^i,
\]

\[
\frac{1}{(b; q)_n} = \frac{1}{(1-b)(1-bq) \cdots (1-bq^{n-1})} = \sum_{i=0}^{\infty} \binom{n+i-1}{i}_q b^i. \tag{1.4}
\]

We say that $f : \mathbb{Z}_p \to \mathbb{C}_p$ is uniformly differentiable function at a point $a \in \mathbb{Z}_p$, and we write $f \in \text{UID}(\mathbb{Z}_p)$, if the difference quotients $\Phi_f : \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{C}_p$ such that $\Phi_f(x, y) = (f(x) - f(y))/(x - y)$ have a limit $f'(a)$ as $(x, y) \to (a, a)$. For $f \in \text{UID}(\mathbb{Z}_p)$, the q-deformed fermionic p-adic integral is defined as

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{p^{N-1} q} \sum_{x=0}^{p^{N-1}} f(x)(-q)^x, \tag{1.5}
\]

(see [7, 9]). Note that

\[
I_1(f) = \lim_{q \to 1} I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x). \tag{1.6}
\]

For $n \in \mathbb{N}$, write $f_n(x) = f(x+n)$. Then, we have

\[
I_1(f_n) = (-1)^n I_1(f) + 2 \sum_{l=0}^{n-1} (-1)^{n-1-l} f(l). \tag{1.7}
\]
Using (1.7), we can readily derive the Genocchi polynomials, $G_n(x)$, namely,

$$
\int_{\mathbb{R}} e^{(x+y)t} d\mu_{-1}(y) = \frac{2t}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!},
$$

(1.8)

(see [1-27]). Note that $G_n(0) = G_n$ are referred to as the nth Genocchi numbers. Let us now introduce the Genocchi polynomials of Nörlund type as follows:

$$
\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{(x+x_1+\cdots+x_r)t} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) = \left(\frac{2t}{e^t + 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} G_n^{(r)}(x) \frac{t^n}{n!},
$$

(1.9)

$$
\left(\frac{e^t + 1}{2t} \right)^r e^{xt} = \sum_{n=0}^{\infty} G_n^{(-r)}(x) \frac{t^n}{n!},
$$

(1.10)

(see [7, 9]). In the special case $x = 0$, $G_n^{(-r)}(0) = G_n^{(-r)}$, and $G_n^{(r)}(0) = G_n^{(r)}$ are referred to as the Genocchi numbers of Nörlund type. Let $(Eh)(x) = h(x + 1)$ be the shift operator. Then, the q-difference operator Δ_q is defined as

$$
\Delta_q^n = \prod_{i=1}^{n} \left(E - q^{i-1}I \right), \quad \text{where } (Ih)(x) = h(x),
$$

(1.11)

(see [4, 7, 9]). It follows from (1.11) that

$$
f(x) = \sum_{n=0}^{\infty} \binom{x}{n} \Delta_q^n f(0),
$$

(1.12)

where $\Delta_q^n f(0) = \sum_{k=0}^{n} \binom{n}{k} q^{\frac{k}{2}} f(n - k)$ (see [5, 6, 10]). The q-Stirling number of the second kind (as defined by Carlitz) is given by

$$
S_2(n, k; q) = \frac{q^{\frac{k}{2}}}{[k]_q!} \sum_{j=0}^{n} (-1)^j q^{\frac{j}{2}} \binom{k}{j} \binom{k-j}{q} [k-j]_q^n,
$$

(1.13)

(see [7, 10]). By (1.12) and (1.13), we see that

$$
S_2(n, k; q) = \frac{q^{-\frac{k}{2}}}{[k]_q!} \Delta_q^k 0^n,
$$

(1.14)

(see [6, 10]).

In this paper, the q-extensions of (1.9) are considered in several ways. Using these q-extensions, we derive some interesting identities and relations for Genocchi polynomials and
numbers of Nörlund type. The purpose of this paper is to present a systemic study of some families q-Genocchi numbers and polynomials of Nörlund type by using the multivariate fermionic p-adic integral on \mathbb{Z}_p.

2. q-Extensions of Genocchi Numbers and Polynomials of Nörlund Type

In this section, we assume that $q \in \mathbb{C}_p$ with $|1 - q|_p < 1$. We first consider the q-extensions of (1.8) given by the rule

$$
\sum_{n=0}^{\infty} G_{n,q}(x) \frac{t^n}{n!} = t \int_{\mathbb{Z}_p} e^{[x+y]_q} \frac{d\mu_1(y)}{1 + q^i}.
$$

(2.1)

Thus, we obtain the following lemma.

Lemma 2.1. If $n \geq 0$, then

$$
\frac{G_{n+1,q}(x)}{n+1} = 2 \sum_{m=0}^{\infty} (-1)^m [m + x]_q^n = 2 \sum_{i=0}^{n} \left(\frac{(-1)^i q^i}{1 + q^i} \right) \sum_{l=0}^{k} \left(\begin{array}{c} k \\ l \end{array} \right)_q (x - k)_q^{l}.
$$

(2.2)

By (1.14),

$$
[x]_q^n = \sum_{k=0}^{n} \left(\begin{array}{c} x \\ k \end{array} \right)_q [k]_q! S_2(k, n-k; q) q^{(k)}_q
$$

$$
= \sum_{k=0}^{n} [x]_q [x-1]_q \cdots [x-k+1]_q \frac{q^{(k)}_q \cdots (n-k)_q}{(n-k)_q!} \Delta_q^{n-k} 0^k
$$

(2.3)

Thus, we have

$$
\frac{G_{n+1,q}(x)}{n+1} = \sum_{k=0}^{n} \frac{q^{(k)}_q S_2(k, n-k; q) k^k}{(1-q)^k} \sum_{l=0}^{k} \left(\frac{k}{l} \right)_q q^{(l)}_q (-1)^l \sum_{m=0}^{l} \left(\begin{array}{c} l \\ m \end{array} \right)_q (q-1)^m \frac{G_{m+1,q}(1-k)}{m+1},
$$

(2.4)

and we obtain the following theorem.
Theorem 2.2. If \(n \geq 0 \), then

\[
\frac{G_{n+1,q}}{n+1} = \sum_{k=0}^{n} q^{\frac{k}{2}} S_2(k, n-k; q) \sum_{l=0}^{k} \binom{k}{l} q^{\frac{l}{2}} (-1)^l \sum_{m=0}^{l} \binom{l}{m} (q-1)^m \frac{G_{m+1,q}(1-k)}{m+1}, \tag{2.5}
\]

where \(G_{n,q} = G_{n,q}(0) \) stand for the \(n \)th Genocchi numbers.

Consider a \(q \)-extension in (1.9) such that \(G_{0,q}(x) = G_{1,q}(x) = \cdots = G_{r-1,q}(x) = 0 \) and

\[
\frac{G_{n+r,q}(x)}{r!(n+r)} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_r]_q d\mu_1(x_1) \cdots d\mu_1(x_r)
\]

\[
= \frac{2^r}{(1-q)^r} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{\frac{l}{2}} \left(\frac{1}{1+q^l} \right)^r = 2^r \sum_{m=0}^{\infty} \binom{m+r-1}{m} (-1)^m [m+x]_q^n.
\]

Let \(F_q^{(r)}(t,x) = \sum_{n=0}^{\infty} G_{n,q}^{(r)}(x) (t^n/n!) \). Then,

\[
F_q^{(r)}(t,x) = 2^r t^r \sum_{m=0}^{\infty} \binom{m+r-1}{m} (-1)^m e^{[m+x]_q^{t}}.
\]

In the special case \(x = 0 \), the numbers \(G_{n,q}^{(r)}(0) = G_{n,q}^{(r)} \) are referred to as \(q \)-extension of the Genocchi numbers of order \(r \). In the sense of the \(q \)-extension in (1.10), consider the \(q \)-extension of Genocchi polynomials of Nörlund type given by

\[
G_q^{(r)}(t,x) = F_q^{(-r)}(t,x) = \frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} e^{[m+x]_q^{t}} = \sum_{n=0}^{\infty} G_n^{(r)}(x) \frac{t^n}{n!}. \tag{2.8}
\]

By (2.8), \(G_{0,q}^{(-r)}(x) = G_{1,q}^{(-r)}(x) = \cdots = G_{r-1,q}^{(-r)}(x) = 0 \) and \(r!(r)G_{n-r,q}^{(-r)}(x) = (1/2^r) \sum_{m=0}^{r} \binom{r}{m} [m+x]_q^n \).

Therefore, we obtain the following theorem.

Theorem 2.3. For \(r \in \mathbb{N} \), and, \(n \geq 0 \), write

\[
2^r t^r \sum_{m=0}^{\infty} \binom{m+r-1}{m} (-1)^m e^{[m+x]_q^{t}} = \sum_{n=0}^{\infty} G_n^{(r)}(x) \frac{t^n}{n!}. \tag{2.9}
\]

Then,

\[
\frac{G_n^{(r)}(x)}{r!(n+r)} = \frac{2^r}{(1-q)^r} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{\frac{l}{2}} \left(\frac{1}{1+q^l} \right)^r = 2^r \sum_{m=0}^{\infty} \binom{m+r-1}{m} (-1)^m [m+x]_q^n,
\]

\[
r!(\binom{n}{r}) G_n^{(-r)}(x) = \frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} [m+x]_q^n.
\]

The numbers $G_{n,q}^{(h,r)}(0) = G_{n,q}^{(h,r)}$ are referred to as the q-extension of Genocchi numbers of Nörlund type. For $h \in \mathbb{Z}$ and $r \in \mathbb{N}$, introduce the extended higher-order q-Genocchi polynomials as follows:

$$G_{n+r,q}^{(h,r)}(x) = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} q^{\sum_{j=1}^{r}(h-j)x_j}[x + x_1 + \cdots + x_r]_q^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r). \quad (2.11)$$

Then,

$$G_{n+r,q}^{(h,r)}(x) = \frac{2^r}{r!} \sum_{r \neq 0} \frac{n!}{n!} \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (-1)^i q^i x^n \frac{2^r}{(1-q)^n} \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (-1)^i q^i x^n \left(\begin{array}{c} m + r - 1 \\ m \end{array} \right) q^{(h-r)m} [x + m]_q^n. \quad (2.12)$$

Let $F_{q}^{(h,r)}(t, x) = \sum_{n=0}^{\infty} C_{n,q}^{(h,r)}(x)(t^n/n!)$. Then, we can readily see that

$$F_{q}^{(h,r)}(t, x) = 2^r t \sum_{m=0}^{\infty} \left(\begin{array}{c} m + r - 1 \\ m \end{array} \right) q^{(h-r)m} e^{x+m}t. \quad (2.13)$$

Therefore, we obtain the following theorem.

Theorem 2.4. For $h \in \mathbb{Z}$ and $n \geq 0$, let

$$2^r t \sum_{m=0}^{\infty} \left(\begin{array}{c} m + r - 1 \\ m \end{array} \right) q^{(h-r)m} e^{x+m}t = \sum_{n=0}^{\infty} C_{n,q}^{(h,r)}(x) \frac{t^n}{n!}. \quad (2.14)$$

Then,

$$C_{n+r,q}^{(h,r)}(x) = \frac{2^r}{r!} \sum_{r \neq 0} \frac{n!}{n!} \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (-1)^i q^i x^n \frac{2^r}{(1-q)^n} \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (-1)^i q^i x^n \left(\begin{array}{c} m + r - 1 \\ m \end{array} \right) q^{(h-r)m} [x + m]_q^n. \quad (2.15)$$

Let us now define the extended higher-order Nörlund type q-Genocchi polynomials as follows:

$$r! \binom{n}{r} C_{n-r,q}^{(h,r)}(x) = \frac{1}{(1-q)^n} \sum_{i=0}^{n} \sum_{x_i} q^{\sum_{j=1}^{r}(h-j)x_j} \frac{(-1)^i q^i x^n}{(1-q)^n} \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (-1)^i q^i x^n \left(\begin{array}{c} m + r - 1 \\ m \end{array} \right) q^{(h-r)m} [x + m]_q^n. \quad (2.16)$$
By (2.16),
\[
\begin{align*}
\frac{r!}{r^r} \binom{n}{r} G_{n-r,q}^{(h-r)}(x) &= \frac{1}{2^r (1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x^{(h-r+l)q} \\
&= \frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} q^{m/2} q^{(h-r)m} [m + x]_q^n.
\end{align*}
\]

(2.17)

Let \(F_q^{(h-r)}(t, x) = \sum_{m=0}^{\infty} G_{n,q}^{(h-r)}(x) (t^n/n!) \). Then, we have
\[
F_q^{(h-r)}(t, x) = \frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} q^{m/2} q^{(h-r)m} e^{[m+x]_q^t},
\]

where, \(G_{0,q}^{(h-r)}(x) = G_{1,q}^{(h-r)}(x) = \cdots = G_{r-1,q}^{(h-r)}(x) = 0 \). Therefore, we obtain the following theorem.

Theorem 2.5. For \(h \in \mathbb{Z}, n \geq 0, \) and \(r \in \mathbb{N} \), write
\[
\frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} q^{m/2} q^{(h-r)m} e^{[m+x]_q^t} + \sum_{n=0}^{\infty} G_{n,q}^{(h-r)}(x) \frac{t^n}{n!}.
\]

(2.19)

Then,
\[
\begin{align*}
\frac{r!}{r^r} \binom{n}{r} G_{n-r,q}^{(h-r)}(x) &= \frac{1}{2^r (1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x^{(h-r+l)q} \\
&= \frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} q^{m/2} q^{(h-r)m} [m + x]_q^n,
\end{align*}
\]

(2.20)

where, \(G_{0,q}^{(h-r)}(x) = G_{1,q}^{(h-r)}(x) = \cdots = G_{r-1,q}^{(h-r)}(x) = 0 \).

For \(h = r \),
\[
\begin{align*}
\frac{G_{n+r,q}^{(h-r)}(x)}{r! \binom{n+r}{r}} &= \frac{2^r}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x^{(m+r-l)q} \\
&= \frac{1}{2^r} \sum_{m=0}^{\infty} \binom{m+r-1}{m} (-1) [m]_q^n,
\end{align*}
\]

(2.21)
\[
\begin{align*}
\frac{r! \binom{n}{r} G_{n-r,q}^{(h-r)}(x)}{r! \binom{n-r}{r}} &= \frac{1}{2^r (1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x^{(m-r-l)q} \\
&= \frac{1}{2^r} \sum_{m=0}^{r} \binom{r}{m} q^{m/2} [m + x]_q^n.
\end{align*}
\]

(2.22)
It can readily be seen that

\[
\frac{q^{mx}2^r}{(-q^{m-r}; q)_r} = \int_{z_p} \cdots \int_{z_p} q^{\sum_{j=1}^r (m-j)x_j + mx} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
= \int_{z_p} \cdots \int_{z_p} (x + x_1 + \cdots + x_r)_q (q-1)^m q^{\sum_{j=1}^r jx_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
= \sum_{l=0}^m {m \choose l} (q-1)^l \int_{z_p} \cdots \int_{z_p} [x + x_1 + \cdots + x_r]^l q^{\sum_{j=1}^r jx_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
= \sum_{l=0}^m {m \choose l} (q-1)^l c_{l+r,d}^{(0,r)}(x) \int_{l+r}^{(i_+ r)}.
\]

(2.23)

By (2.23), \(q^{mx}2^r/(-q^{m-r}; q)_r = \sum_{l=0}^m {m \choose l} (q-1)^l (G_{l+r,d}^{(0,r)}(x)/r!(i_+ r))\). As is known,

\[
\text{L}_1(f_1) + \text{L}_1(f) = 2f(0), \quad \text{where} \quad f_1(x) = f(x + 1).
\]

(2.24)

It follows from (2.24) that

\[
q^{h-1} \int_{z_p} \cdots \int_{z_p} [x + x_1 + \cdots + x_r]^n q^{\sum_{j=1}^r (h-j)x_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
= - \int_{z_p} \cdots \int_{z_p} [x + x_1 + \cdots + x_r]^n q^{\sum_{j=1}^r (h-j)x_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
+ 2 \int_{z_p} \cdots \int_{z_p} [x + x_2 + \cdots + x_r]^n q^{\sum_{j=1}^r (h-j)x_j} d\mu_{-1}(x_2) \cdots d\mu_{-1}(x_r).
\]

(2.25)

By (2.25),

\[
q^{h-1} \frac{C_{n+r,d}^{(h,r)}(x + 1)}{n + r} + \frac{C_{n+r,d}^{(h,r)}(x)}{n + r} = 2C_{n+r-1,d}^{(h-1,r-1)}(x).
\]

(2.26)

A simple manipulation shows that

\[
q^x \int_{z_p} \cdots \int_{z_p} [x + x_1 + \cdots + x_r]^n q^{\sum_{j=1}^r (h-j+1)x_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
= (q-1) \int_{z_p} \cdots \int_{z_p} [x + x_1 + \cdots + x_r]^{n+1} q^{\sum_{j=1}^r (h-j)x_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)
\]

\[
+ \int_{z_p} \cdots \int_{z_p} [x + x_1 + \cdots + x_r]^n q^{\sum_{j=1}^r (h-j)x_j} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r).
\]

(2.27)

By (2.27), \(q^x(G_{n+r,d}^{(h,r)}(x)/(n + 1)) = (q-1)(G_{n+r+1,d}^{(h,r)}(x)/(n + r + 1)) + (G_{n+r,d}^{(h,r)}(x)/(n + 1)).\)
Therefore, we obtain the following proposition.

Proposition 2.6. For \(h \in \mathbb{Z} \), \(r \in \mathbb{N} \) and \(n \geq 0 \), the following equations

\[
q^{h-1} \frac{G_{n+r,q}^{(h,r)}(x+1)}{n+r} + \frac{G_{n+r,q}^{(h,r)}(x)}{n+r} = 2G_{n+r-1,q}^{(h+1,r-1)}(x),
\]
\[
q^x \frac{G_{n+r,q}^{(h+1,r)}(x)}{n+1} = (q-1) \frac{G_{n+r+1,q}^{(h,r)}(x)}{n+r+1} + \frac{G_{n+r,q}^{(h,r)}(x)}{n+1} + \frac{G_{n+r,q}^{(h,r)}(x)}{n+1}
\]

hold. Moreover, \((q^{mx^2})/((q^{m-x}; q)_r) = \sum_{l=0}^{m} \binom{m}{l} (q-1)^l (G_{n+q}^{(r)}(x)/r^l)\).

By (2.21),

\[
\frac{G_{n+r,q}^{(r,r)}(r-x)}{r!(\binom{n+r}{r})} = \frac{2^r}{1-q^{-1}} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{l(r-x)} \sum_{i=0}^{l} \frac{1}{(-q^{-1}; q^{-1})} \]
\[
= (-1)^n q^{n+x(r)} \frac{2^r}{1-q^{-1}} \sum_{i=0}^{n} \binom{n}{l} (-1)^l q^x \frac{(-1)^n q^{n+x(r)}}{r!(\binom{n+r}{r})}.
\]

Hence,

\[
\int_{x_1} \cdots \int_{x_r} [r-x+x_1+\ldots+x_r]^{n+x(r)} q^{-\sum_{i=1}^{r} (r-x)_i} d\mu_1(x_1) \cdots d\mu_r(x_r)
\]
\[
= (-1)^n q^{n+x(r)} \int_{x_1} \cdots \int_{x_r} [x+x_1+\ldots+x_r]^{n+r} q^{\sum_{i=1}^{r} (r-x)_i} d\mu_1(x_1) \cdots d\mu_r(x_r).
\]

For \(h = r \), \(G_{n+r,q}^{(r,r)}(0) = (-1)^n q^{n+x(r)} C_{n+r,q}^{(r,r)}(r) \). It also follows from (2.26) that

\[
q^{r-1} \frac{G_{n+r,q}^{(r,r)}(x+1)}{n+r} + \frac{G_{n+r,q}^{(r,r)}(x)}{n+r} = 2G_{n+r-1,q}^{(r+1,r-1)}(x).
\]

The Stirling numbers of the first kind are defined as

\[
\prod_{k=1}^{n} (1 + [k]_q) = \sum_{k=0}^{n} S_1(n, k; q) z^k,
\]

(see [6, 9]),

\[
q^{\frac{m}{m+1}} \binom{r}{m}_q = \frac{q^{\frac{m}{m+1}} [m]_q \cdots [r-m+1]_q}{[m]_q!} = \frac{1}{[m]_q!} \prod_{k=0}^{m-1} ([r]_q - [k]_q).
\]
It can readily be seen that
\[
\prod_{k=0}^{n-1} (z - [k]_q) = z^n \prod_{k=0}^{n-1} \left(1 - \frac{[k]_q}{z} \right) = \sum_{k=0}^{n} S_1(n-1, k; q) (-1)^k z^{n-k}. \tag{2.34}
\]

By (2.33) and (2.34),
\[
\prod_{k=0}^{m-1} ([r]_q - [k]_q) = \sum_{k=0}^{m} S_1(m-1, k; q) (-1)^k [r]_q^{m-k}. \tag{2.35}
\]

Formulas (2.22) and (2.35) imply the following assertion.

Proposition 2.7. For \(r \in \mathbb{N} \) and \(n \in \mathbb{Z}_+ \),
\[
r! \binom{n}{r} G_{n-r,q}^{(r)}(x) = \frac{1}{2^r [m]_q^r} \sum_{m=0}^{r} \sum_{k=0}^{m} S_1(m-1, k; q) (-1)^k [r]_q^{m-k} [m + x]_q^n. \tag{2.36}
\]

The generalized Genocchi numbers and polynomials of Nörlund type are defined by
\[
\frac{2^r t^r}{(e^{w_1 t} + 1)(e^{w_2 t} + 1) \cdots (e^{w_r t} + 1)} e^{xt} = \sum_{n=0}^{\infty} G_{n}^{(r)}(x \mid w_1, \ldots, w_r) \frac{t^n}{n!}, \tag{2.37}
\]
and \(G_{n}^{(r)}(w_1, \ldots, w_r) = G_{n}^{(r)}(0 \mid w_1, \ldots, w_r) \). We can now also define a \(q \)-extension of (2.37) as follows. For \(w_1, \ldots, w_r \in \mathbb{Z}_p \) and \(\delta_1, \ldots, \delta_r \in \mathbb{Z} \), write
\[
G_{n+r,q}^{(r)}(x \mid w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x_1 w_1 + \cdots + x_r w_r + x]_q^n d\mu_{-q^{\delta_1}}(x_1) \cdots d\mu_{-q^{\delta_r}}(x_r), \tag{2.38}
\]
and \(G_{n+r,q}^{(r)}(w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) = G_{n+r,q}^{(r)}(0 \mid w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) \). Thus,
\[
G_{n+r,q}^{(r)}(x \mid w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) = \frac{[2]_{q^{\delta_1}} \cdots [2]_{q^{\delta_r}} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{lx}}{(1-q)^n (1+q^{\delta_1+w_1}) \cdots (1+q^{\delta_r+w_r})}. \tag{2.39}
\]

Another \(q \)-extension of Nörlund type generalized Genocchi numbers and polynomials is also of interest, namely,
\[
G_{n+r,q}^{(r)}(x \mid w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) \quad \begin{align*}
&= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x_1 w_1 + \cdots + x_r w_r + x]_q^{\delta_1+w_1+\cdots+\delta_r} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r), \tag{2.40}
\end{align*}
\]
and $G^{(r)}_{ntq}(w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) = G^{(r)}_{ntq}(0 \mid w_1, \ldots, w_r; \delta_1, \ldots, \delta_r)$. By (2.40),

$$
G^{(r)}_{ntq}(x \mid w_1, \ldots, w_r; \delta_1, \ldots, \delta_r) = \frac{2^r \sum_{i=0}^{n} \binom{n}{i}(-1)^i q^i}{(1-q)^n(1 + q^{n_1+lw_1}) \cdots (1 + q^{n_r+lw_r})}.
$$

(2.41)

3. Further Remarks

For $h = 0$, consider the following polynomials $G^{(0,r)}_{ntq}(x)/r!(n_r)$ and $r!(n_r)G^{(0,-r)}_{ntq}(x)$:

$$
\frac{G^{(0,r)}_{ntq}(x)}{r!(n_r)} = \int_{\mathbb{R}^r} \cdots \int_{\mathbb{R}^r} [x + x_1 + \cdots + x_r]^n q^{-\sum_{j=1}^{r} jx_j} d\mu_1(x_1) \cdots d\mu_r(x_r),
$$

(3.1)

Then,

$$
\frac{G^{(0,r)}_{n+q}(x)}{r!(n_r)} = \frac{2^r \sum_{m=0}^{\infty} \binom{m + r - 1}{m} q^{-m}(-1)^m [x + m]^n}{2^r \sum_{m=0}^{\infty} \binom{m + r - 1}{m} q^{-m}(-1)^m [x + m]^n}.
$$

(3.2)

Let $F^{(0,r)}_q(t, x) = \sum_{n=0}^{\infty} G^{(0,r)}_{ntq}(x)(t^n/n!)$ and let $F^{(0,-r)}_q(t, x) = \sum_{n=0}^{\infty} G^{(0,-r)}_{ntq}(x)(t^n/n!)$. Then,

$$
F^{(0,r)}_q(t, x) = 2^r t^r \sum_{m=0}^{\infty} \binom{m + r - 1}{m} q^{-m}(-1)^m e^{[x+m]_q t},
$$

$$
F^{(0,-r)}_q(t, x) = \frac{1}{2^r t^r} \sum_{m=0}^{\infty} \binom{m + r - 1}{m} q^{-m} e^{[x+m]_q t}. \tag{3.3}
$$

Consider the following polynomials:

$$
\frac{G^{(h,1)}_{ntq}(x)}{n + 1} = \int_{\mathbb{R}^r} q^{x_1/(h-1)} [x + x_1]^n d\mu_1(x_1) = \frac{2^r \sum_{i=0}^{n} \binom{n}{i}(-1)^i q^i}{(1-q)^n(1 + q^{n_1+h-1})}. \tag{3.4}
$$
A simple calculation of the fermionic \(p \)-adic invariant integral on \(\mathbb{Z}_p \) show that

\[
q^x \int_{\mathbb{Z}_p} [x + x_1]_q^n q^{x_1 (h-1)} d\mu_{-1}(x_1) \\
= (q - 1) \int_{\mathbb{Z}_p} [x + x_1]_q^{n+1} q^{x_1 (h-2)} d\mu_{-1}(x_1) + \int_{\mathbb{Z}_p} [x + x_1]_q^n q^{x_1 (h-2)} d\mu_{-1}(x_1).
\] (3.5)

By (3.5), \(q^x G^{(h,1)}_{n+1,q}(x) = (q - 1)(G^{(h-1,1)}_{n+2,q}(x)/2(n + 2)) + G^{(h-1,1)}_{n+1,q}(x) \). It can readily be proved that

\[
\int_{\mathbb{Z}_p} [x + x_1]_q^n q^{x_1 (h-1)} d\mu_{-1}(x_1) = \sum_{j=0}^n \binom{n}{j} [x]_q^{n-j} q^{jx} \int_{\mathbb{Z}_p} [x_1]_q^j q^{x_1 (h-1)} d\mu_{-1}(x_1).
\] (3.6)

By (3.6), \(G^{(h,1)}_{n+1,q}(x)/(n+1) = \sum_{j=0}^n \binom{n}{j} [x]_q^{n-j} q^{jx} (G^{(h,1)}_{j+1,q}/(j+1)) \). Using (2.24), we can also prove that

\[
\int_{\mathbb{Z}_p} [x + x_1 + 1]_q^n q^{x_1 (h-1)} d\mu_{-1}(x_1) + \int_{\mathbb{Z}_p} [x + x_1]_q^n q^{x_1 (h-1)} d\mu_{-1}(x_1) = 2[x]_q^n.
\] (3.7)

Thus, \(q^{h-1}(G^{(h,1)}_{n+1,q}(x)/(n+1)) + (G^{(h,1)}_{n+1,q}(x)/(n+1)) = 2[x]_q^n \). For \(x = 0 \), we have \(q^{h-1}(G^{(h,1)}_{n+1,q}(1)/(n+1)) + (G^{(h,1)}_{n+1,q}(1)/(n+1)) = 2\delta_{n,0} \), where \(\delta_{n,0} \) is the Kronecker delta.

It is easy to see that \(G^{(h,1)}_{1,q} = \int_{\mathbb{Z}_p} q^{x_1 (h-1)} d\mu_{-1}(x_1) = 2/(1 + q^{h-1}) = 2/[2 q^{h-1}] \). By (3.4),

\[
\frac{G^{(h,1)}_{n+1,q}(1-x)}{n+1} = \int_{\mathbb{Z}_p} [1 - x + x_1]_q^n q^{-x_1 (h-1)} d\mu_{-1}(x_1) \\
= (-1)^n q^{n+h-1} \frac{2}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l}(-1)^l q^{lx} \\
= (-1)^n q^{n+h-1} \frac{G^{(h,1)}_{n+1,q}(x)}{n+1}.
\] (3.8)

In particular, if \(x = 1 \), then \(G^{(h,1)}_{n+1,q-1}(0)/(n+1) = (-1)^n q^{n+h-1}(G^{(h,1)}_{n+1,q}(1)/(n+1)) = (-1)^n q^n(G^{(h,1)}_{n+1,q}/(n+1)) \) for \(n \geq 1 \).

Recently, Kim has studied \(p \)-adic fermionic integral on \(\mathbb{Z}_p \) connected with the problems of mathematical physics (see [6, 10, 11]), and our result are closely related to his results. In the future, we will try to study \(p \)-adic stochastic problems associated with our theorems. For example, \(p \)-adic \(q \)-Bernstein polynomials seem to be closely related to our results (see [6, 14, 20]).
References

Submit your manuscripts at http://www.hindawi.com