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It is shown that the likelihood ratio test for heteroscedasticity, assuming the Laplace distribution,
gives good results for Gaussian and fat-tailed data. The likelihood ratio test, assuming normality,
is very sensitive to any deviation from normality, especially when the observations are from a
distribution with fat tails. Such a likelihood test can also be used as a robust test for a constant
variance in residuals or a time series if the data is partitioned into groups.

1. Introduction

The likelihood ratio test for equal variances will be derived under the assumption of Laplace
or double exponential distributed observations or residuals. The excess kurtosis of this
distribution is three and it is leptokurtic. It is shown that the likelihood ratio test for the
equality of variances when assuming the Laplace distribution for the residuals is more robust
than the normal one. The distributional properties of this ratio are very similar to that
when normality is assumed, but with a better approximation in the asymptotic chi-square
approximation of the log-likelihood than the normal case.

One of the factors to consider when checking the fit of a model in time series is to
see if the residuals are white noise. The use of volatility models for log returns attracted
a lot of attention in the last few years, and ARCH and GARCH models are fitted when
heteroscedasticity is present. A test for a constant variance after partitioning the residuals,
suitable for observations from a distribution with fatter tails than a normal, can also be used
to check for white noise.

The tests of Levene [1], Brown and Forsythe [2], and Gastwirth et al. [3] are often
used as more robust tests than the normal likelihood ratio test for the equality of variances
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in general statistical tests for example, ANOVA’s. Bootstrap methods can be helpful to
investigate the distribution of test statistics in these problems. A review and some suggestions
are given in the paper of Boos and Brownie [4]. A simulation study comparing the methods
shows much more robust performance of the Laplace likelihood ratio than the normal
likelihood ratio and the Levene test.

Assume, that a total of n independent observations {ut}, t = 1, . . . , n, from a normal
distribution, are available. There are k groups with sample sizes n1, . . . , nk. When equal
sample sizes are under consideration, it will be assumed that n = kn0. Let njσ̂2

j =
∑nj

j=1(uj −
uj)2, j = 1, . . . , k denote the estimated variances for each partition, where uj denotes the
sample mean of the jth group or partition. The term njσ̂

2
j /σ

2 ∼ χ2
nj−1 is a gamma variable

with parameters (nj − 1)/2, 1/2.
In the case of equal variances, the σ2’s cancel in the likelihood ratio. The likelihood

ratio λN [5] for the hypothesis of the equality of variances,H0 : σ2
1 = · · · = σ2

k
= σ2, for normal

data is

λN =

∏k
j=1

(

σ̂2
j

)nj/2

(

∑k
j=1 nj σ̂

2
j /n

)n/2
. (1.1)

A weak point of the statistic is that it is very sensitive to deviations from normality.
The statistic and its asymptotic chi-square approximation, −2 log(λN), was studied widely
and many corrections were suggested to improve the approximation.

The ideas and results of Bartlett [6] and Box [7, 8] were the basis for many of the
asymptotic corrections later derived for the statistic. They considered the statisticM1:

M1 = (n − k) log
(

σ2
)

−
k
∑

j=1
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)

log
(

σ2
j

)

,
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(
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)
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j

(n − k) ,
(

nj − 1
)

σ̂2
j =

nj
∑

j

(

uj − uj
)2
, j = 1, . . . , k.

(1.2)

Let νj = nj −1, j = 1, . . . , k. M1 can be denoted in the normal case asM1 (0; ν1, . . . , νk),
where the zero indicates excess kurtosis of zero. The statistic can be generalized to
M1 (γ21, . . . , γ2k; ν1, . . . , νk), where each of the k variance estimates is from a population with
a different kurtosis, γ2j , j = 1, . . . , k. It is shown [8] that if the kurtosis is equal to γ2 for the
k samples, the statistic is distributed as δ−1M1(0; δν1, . . . , δνk), δ = (1 + (1/2)γ2)−1, in large
samples, for any distribution having finite cumulants. Or that the statistic is distributed as
(1 + (1/2)γ2)χ2

k−1 in large samples.
To find the moments of the log likelihood ratio was no problem, but the exact

distributions of λN and also log(λN) are both extremely complex and not practical to use.
The multivariate version of the normal likelihood tests concerning covariance matrices is
covered in detail in the book of Muirhead [9]. The equal-sized partitioned series can be put
in a sphericity test setting where the ellipticity statistic, which has a very similar form, is used.

The likelihood ratio λN is an interesting statistic, and λ2/nN can be viewed as the ratio
of the geometric mean of the estimated variances to the arithmetic mean of gamma variables,
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which is equal to one, only when the individual terms are independent and equal. The ratio
of the geometric mean to the arithmetic mean of gamma variables was studied by Glaser [10].
Another way to look at λN is to notice that it can bewritten as the product of Dirichlet random
variables, or in this work it will be considered as the product of beta random variables. Let

wj =
njσ̂

2
j

∑k
j=1

(

njσ̂
2
j

)

=
σ̂2
j

∑k
j=1 σ̂

2
j

for equal sample sizes.

(1.3)

This ratio has a beta distribution with parameters νj = (nj−1)/2, ν = (n−k)/2. The likelihood
ratio can be expressed in terms of the product of beta random variables and
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The product of beta and Dirichlet random variables was studied by Springer and Thompson
[11] and Rogers and Young [12]. The resulting density is complicated and expressed in terms
of the Meijer’s G and H-functions [13].

It will be shown that the likelihood test derived from residuals which have the Laplace
distribution can also be expressed as a product of beta random variables for large sample
sizes.

2. The Likelihood Ratio for Laplace Distributed Variables

The Laplace or double exponential density is given by

pX(x) =
1
2φ

exp
(

−|x − θ|
φ

)

, −∞ < x <∞, φ > 0. (2.1)

The variance is 2φ and the median of the observations is the maximum likelihood
estimate of the mean θ. The maximum likelihood estimate of φ is

∑n
j=1 |xj − ̂θ|/n for a sample
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of size n, where ̂θ denotes the estimatedmedian. For θ known,
∑n

j=1 |xj−θ|/n is distributed as

a (2n)−1φχ2
2n variable. The properties of the Laplace distribution are reviewed in the book of

Johnson et al. [14]. The variance of the median isO(n−1), and the absolute deviations |xj − ̂θ|,
j = 1, . . . , n, are asymptotically independent [15, page 335].

For the series u1, . . . , un partitioned into k parts, the likelihood ratio λL, for the test
H0 : φ1 = · · · = φk = φ, is

λL =

∏k
j=1

̂φ
nj
j

̂φn
, (2.2)

with ̂φj =
∑k

j=1 |xj − ̂θj |/nj and ̂φ = (1/n)(n1 ̂φ1 + · · · + nk ̂φk).
For equal sample sizes, n0, the ratio is simplified to

λL = kn
k

∏

j=1

⎛

⎝
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j=1
̂φj

⎞

⎠

n0

, (2.3)

and λ1/n is proportional to the geometric mean of the ratios. If θ was known, the ratio
̂φj/

∑k
j=1

̂φj has a beta distribution with parameters nj , n − nj . This variance is approximately
half that of the beta variable for the normal case.

Terms involving the distribution of the sum of the log of powers of beta random
variables are found in the normal and Laplace likelihood ratio. The moment-generating
function of the log of a beta variable with parameters nj and n − nj to a power is

ϕ(t) = E
(

log
(

et logx
h
))

= E
(

xth
)

=
Γ(n)Γ

(
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)

Γ(n + ht)Γ
(
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) ,

(2.4)

and the log of the moment-generating function of the sum of k such variables is

E
(

log
(

ϕ(t)
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= k log(Γ(n)) − k log(Γ(nj
))

+
k
∑
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(
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showing that the expected value of −2 log(λL) found from the cumulant generating function
is
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where xj denotes a beta variable with parameters nj , n − nj , and ψ is the digamma function,
the derivative of the log of the gamma function. By making use of the approximation of ψ
[13], ψ(n) ≈ log(n) − (1/n)(1/2 + 1/12n):

E
(−2 log(λL)

)

= k − 1 − 2n log(k) + 2
k
∑

j=1

(

nj log(n) − nj log
(

nj
))

+

∑k
j=1 1

(

1 + 6nj
) − 1

(1 + 6n)

≈ k − 1,

(2.7)

for n = kn0, n0 = n1 = · · · = nk, and large sample sizes, the expected value −2 log(λL) is equal
to that of a χ2

k−1 random variable. For the normal ratio, it would be νj = (nj − 1)/2 in place
of the nj ’s, showing that the large sample χ2 approximation for the Laplace likelihood ratio
would be a better approximation for the same sample size n, assuming the distributional
assumption concerning θ.

The assumption of an expected value of zero for log returns is often made in financial
time series of returns, but in most problems the expected value would be unknown, and the
median of the observations of a specific partition would be used. The median is a maximum
likelihood estimator and good approximations can be expected for reasonable large sample
sizes.

In Figure 1, the histogram of simulated and expected frequencies of 1000 ratios is
shown. The ratios were calculated using Gaussian white noise series. The ̂φ’s are estimated
using the median as the estimator of θ. A sample of 200 was partitioned into k = 5 equal
parts and a histogram of 1000 ratios, ̂φ1/

∑k
j=1

̂φj , is shown in Figure 1. The expected values
are from a beta distribution with parameters n1 = 40, n − n1 = 160. The estimated mean was
0.1995 compared with the theoretical value of 0.2, and the estimated variance 7.9835e − 004
compared with the theoretical value of 7.9602e − 004.

The sample size of n = 200 is not very large for a time series. It can be seen that the
ratios of the estimated φj ’s to the sum of the φj ’s are approximately beta distributed for this
sample size.

A simulation study was conducted to check and compare the asymptotic
χ2 approximations of λN , λL of the likelihood ratios and the Brown-Forsythe test. Series of
n = 200 observations, partitioned into k = 5, groups were simulated 1000 times and tested at
the α = 0.05 level. The median was used in the Brown-Forsythe variation of the Levene test.
The expected values for the normal and Laplace χ2 approximation are k − 1 = 4, and for the
Levene statistic, the expected value of a F4;196 variable is 1.0103.

The following data was generated: normal white noise, white noise from the Laplace
distribution, and independent values from the stable distribution with index α = 1.9 and 1.5.

These series were partitioned into 5 groups. Time series were generated to check
the results when the test is used for checking a constant variance in residuals. The series
generated were an AR(1) and a Garch series. The disturbance terms are normally distributed.
The Garch series is the IGARCH(1,1) fitted by Tsay [16] to the excess returns of the SP&500.
The results are shown in Table 1.

Both tests are sensitive to heteroskedasticity, but the Laplace test is less sensitive when
testing for a constant variance for non-Gaussian white noise. It is interesting to note that both
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Figure 1: Simulated ratios and the expected frequencies of the beta density.

Table 1: Results of simulation study comparing the likelihood ratio tests and the Levene test.

Laplace Normal Levene
Proportion
rejected

Mean of
−2 log(λL)

Proportion
rejected

Mean of
−2 log(λN)

Proportion
rejected

Mean of
Levene W

Gaussian White
Noise 0.0020 2.3277 0.0500 4.0783 0.0430 0.9455

Laplace White Noise 0.0570 4.0606 0.4250 9.7604 0.0840 1.0904
t-distribution
(df = 4)White Noise 0.0560 4.0253 0.5240 13.8947 0.1120 1.2181

Stable (α = 1.5) 0.4880 19.2967 0.9370 107.9499 0.3410 3.5335
Stable (α = 1.9) 0.0530 4.3012 0.3950 23.5564 0.1190 1.5190
AR(1) ρ1 = 0.1 0.0040 2.3710 0.0630 4.1258 0.0450 0.9491
AR(2) ρ1 = 0.5 0.0290 3.5989 0.2140 6.4760 0.1590 1.4636
IGARCH(1,1) 0.7890 34.6704 0.9410 83.8057 0.6970 7.9725

tests are sensitive to large autocorrelation in the series and also when the variance is infinite
for stable data with α < 2.00. The stable noise with index α = 1.9 is close to Gaussian, but
theoretically only E(xα) is finite. All the tests detect that the series with α = 1.5 is not second-
order stationary.

The tests are not very sensitive when autocorrelation is present as in the AR(1)models,
but the sensitivity increases as the first-order autocorrelation increases. All the tests easily
detect the heteroscedasticity in the IGARCH(1,1)model.

3. Conclusions and Suggestions

The Laplace likelihood test performs much better on data with heavier tails, and better than
the Brown-Forsythe variation of the Levene test for example, in the case of the t-distributed
series. The normal likelihood ratio test is only effective in the normal data case.
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It seems that these tests are sensitive for serial correlation and heteroskedasticity in
series and can be used as a check for white noise in residuals. The use of filtering [17] can be
applied to investigate and improve results when testing for heteroscedasticity where serial
correlation is present in time series models. An investigation into the use of size-adjustment
can improve the effectiveness of this test, especially when working with GARCH type series.
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