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Abstract. 
We study lightlike hypersurfaces of a semi-Riemannian product manifold. We introduce a class of lightlike hypersurfaces called screen semi-invariant lightlike hypersurfaces and radical anti-invariant lightlike hypersurfaces. We consider lightlike hypersurfaces with respect to a quarter-symmetric nonmetric connection which is determined by the product structure. We give some equivalent conditions for integrability of distributions with respect to the Levi-Civita connection of semi-Riemannian manifolds and the quarter-symmetric nonmetric connection, and we obtain some results.


1. Introduction
The theory of degenerate submanifolds of semi-Riemannian manifolds is one of important topics of differential geometry. The geometry of lightlike submanifolds of a semi-Riemannian manifold, was presented in [1] (see also [2, 3]) by Duggal and Bejancu. In [4], Atçeken and Kılıç introduced semi-invariant lightlike submanifolds of a semi-Riemannian product manifold. In [5], Kılıç and Şahin introduced radical anti-invariant lightlike submanifolds of a semi-Riemannian product manifold and gave some examples and results for lightlike submanifolds. The lightlike hypersurfaces have been studied by many authors in various spaces (for example [6, 7]).
In [8], Hayden introduced a metric connection with nonzero torsion on a Riemannian manifold. The properties of Riemannian manifolds with semisymmetric (symmetric) and nonmetric connection have been studied by many authors [9–14]. In [15], Yaşar et al. have studied lightlike hypersurfaces in semi-Riemannian manifolds with semisymmetric nonmetric connection. The idea of quarter-symmetric linear connections in a differential manifold was introduced by Golab [11]. A linear connection is said to be a quarter-symmetric connection if its torsion tensor
	
		
			
				
			
			

				𝑇
			

		
	
is of the form:
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				
			
			
				𝑇
				(
				𝑋
				,
				𝑌
				)
				=
				𝑢
				(
				𝑌
				)
				𝜑
				𝑋
				−
				𝑢
				(
				𝑋
				)
				𝜑
				𝑌
				,
			

		
	

					for any vector fields 
	
		
			
				𝑋
				,
				𝑌
			

		
	
 on a manifold, where 
	
		
			

				𝑢
			

		
	
 is a 
	
		
			
				1
				-
			

		
	
form and 
	
		
			

				𝜑
			

		
	
 is a tensor of type (1,1).
In this paper, we study lightlike hypersurfaces of a semi-Riemannian product manifold. As a first step, in Section 3, we introduce screen semi-invariant lightlike hypersurfaces and radical anti-invariant lightlike hypersurfaces of a semi-Riemannian product manifold. We give some examples and study their geometric properties. In Section 4, we consider lightlike hypersurfaces of a semi-Riemannian product manifold with quarter-symmetric nonmetric connection determined by the product structure. We compute the Riemannian curvature tensor with respect to the quarter-symmetric nonmetric connection and give some results.
2. Lightlike Hypersurfaces
Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be an 
	
		
			
				(
				𝑚
				+
				2
				)
				-
			

		
	
dimensional semi-Riemannian manifold with 
	
		
			
				i
				n
				d
				e
				x
				(
			

			
				
			
			
				𝑔
				)
				=
				𝑞
				≥
				1
			

		
	
 and let 
	
		
			
				(
				𝑀
				,
				𝑔
				)
			

		
	
 be a hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
, with 
	
		
			
				𝑔
				=
			

			
				
			
			

				𝑔
			

			

				|
			

			

				𝑀
			

		
	
. If the induced metric 
	
		
			

				𝑔
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 is degenerate, then 
	
		
			

				𝑀
			

		
	
 is called a lightlike (null or degenerate) hypersurface [1] (see also [2, 3]). Then there exists a null vector field 
	
		
			
				𝜉
				≠
				0
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 such that
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				𝑔
				(
				𝜉
				,
				𝑋
				)
				=
				0
				,
				∀
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
				.
			

		
	

					The radical or the null space of 
	
		
			

				𝑇
			

			

				𝑥
			

			

				𝑀
			

		
	
, at each point 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
, is a subspace 
	
		
			
				R
				a
				d
				𝑇
			

			

				𝑥
			

			

				𝑀
			

		
	
 defined by
						
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				R
				a
				d
				𝑇
			

			

				𝑥
			

			
				
				𝑀
				=
				𝜉
				∈
				𝑇
			

			

				𝑥
			

			
				𝑀
				|
				|
				𝑔
			

			

				𝑥
			

			
				
				,
				(
				𝜉
				,
				𝑋
				)
				=
				0
				,
				∀
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	

					whose dimension is called the nullity degree of 
	
		
			

				𝑔
			

		
	
. We recall that the nullity degree of 
	
		
			

				𝑔
			

		
	
 for a lightlike hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
 is 
	
		
			

				1
			

		
	
. Since 
	
		
			

				𝑔
			

		
	
 is degenerate and any null vector being perpendicular to itself, 
	
		
			

				𝑇
			

			

				𝑥
			

			

				𝑀
			

			

				⟂
			

		
	
 is also null and
						
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				R
				a
				d
				𝑇
			

			

				𝑥
			

			
				𝑀
				=
				𝑇
			

			

				𝑥
			

			
				𝑀
				∩
				𝑇
			

			

				𝑥
			

			

				𝑀
			

			

				⟂
			

			

				.
			

		
	

					Since 
	
		
			
				d
				i
				m
				𝑇
			

			

				𝑥
			

			

				𝑀
			

			

				⟂
			

			
				=
				1
			

		
	
 and 
	
		
			
				d
				i
				m
				R
				a
				d
				𝑇
			

			

				𝑥
			

			
				𝑀
				=
				1
			

		
	
, we have 
	
		
			
				R
				a
				d
				𝑇
			

			

				𝑥
			

			
				𝑀
				=
				𝑇
			

			

				𝑥
			

			

				𝑀
			

			

				⟂
			

		
	
. We call 
	
		
			
				R
				a
				d
				𝑇
				𝑀
			

		
	
 a radical distribution and it is spanned by the null vector field 
	
		
			

				𝜉
			

		
	
. The complementary vector bundle 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 of 
	
		
			
				R
				a
				d
				𝑇
				𝑀
			

		
	
 in 
	
		
			
				𝑇
				𝑀
			

		
	
 is called the screen bundle of 
	
		
			

				𝑀
			

		
	
. We note that any screen bundle is nondegenerate. This means that
						
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				𝑇
				𝑀
				=
				R
				a
				d
				𝑇
				𝑀
				⟂
				𝑆
				(
				𝑇
				𝑀
				)
				.
			

		
	

					Here 
	
		
			

				⟂
			

		
	
 denotes the orthogonal-direct sum. The complementary vector bundle 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

			

				⟂
			

		
	
 of
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 in 
	
		
			

				𝑇
			

			
				
			
			

				𝑀
			

		
	
 is called screen transversal bundle and it has rank 
	
		
			

				2
			

		
	
. Since 
	
		
			
				R
				a
				d
				𝑇
				𝑀
			

		
	
is a lightlike subbundle of 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

			

				⟂
			

		
	
 there exists a unique local section 
	
		
			

				𝑁
			

		
	
 of 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

			

				⟂
			

		
	
 such that
						
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				
			
			
				𝑔
				(
				𝑁
				,
				𝑁
				)
				=
				0
				,
			

			
				
			
			
				𝑔
				(
				𝜉
				,
				𝑁
				)
				=
				1
				.
			

		
	

					Note that 
	
		
			

				𝑁
			

		
	
 is transversal to 
	
		
			

				𝑀
			

		
	
 and 
	
		
			
				{
				𝜉
				,
				𝑁
				}
			

		
	
 is a local frame field of 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

			

				⟂
			

		
	
 and there exists a line subbundle 
	
		
			
				l
				t
				r
				(
				𝑇
				𝑀
				)
			

		
	
 of 
	
		
			

				𝑇
			

			
				
			
			

				𝑀
			

		
	
, and it is called the lightlike transversal bundle, locally spanned by 
	
		
			

				𝑁
			

		
	
. Hence we have the following decomposition:
						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝑇
			

			
				
			
			
				𝑀
				=
				𝑇
				𝑀
				⊕
				l
				t
				r
				(
				𝑇
				𝑀
				)
				=
				𝑆
				(
				𝑇
				𝑀
				)
				⟂
				R
				a
				d
				𝑇
				𝑀
				⊕
				l
				t
				r
				(
				𝑇
				𝑀
				)
				,
			

		
	

					where 
	
		
			

				⊕
			

		
	
 is the direct sum but not orthogonal [1, 3]. From the above decomposition of a semi-Riemannian manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 along a lightlike hypersurface 
	
		
			

				𝑀
			

		
	
, we can consider the following local quasiorthonormal field of frames of 
	
		
			
				
			
			

				𝑀
			

		
	
 along 
	
		
			

				𝑀
			

		
	
:
						
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				
				𝑋
			

			

				1
			

			
				,
				…
				,
				𝑋
			

			

				𝑚
			

			
				
				,
				,
				𝜉
				,
				𝑁
			

		
	

					where 
	
		
			
				{
				𝑋
			

			

				1
			

			
				,
				…
				,
				𝑋
			

			

				𝑚
			

			

				}
			

		
	
 is an orthonormal basis of 
	
		
			
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
			

		
	
. According to the splitting (2.6), we have the following Gauss and Weingarten formulas, respectively:
						
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝑌
				+
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑁
				=
				−
				𝐴
			

			

				𝑁
			

			
				𝑋
				+
				∇
			

			
				𝑡
				𝑋
			

			
				𝑁
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
, where 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑌
				,
				𝐴
			

			

				𝑁
			

			
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
 and 
	
		
			
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				∇
			

			
				𝑡
				𝑋
			

			
				𝑁
				∈
				Γ
				(
				l
				t
				r
				(
				𝑇
				𝑀
				)
				)
			

		
	
. If we set 
	
		
			
				𝐵
				(
				𝑋
				,
				𝑌
				)
				=
			

			
				
			
			
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝜉
				)
			

		
	
 and 
	
		
			
				𝜏
				(
				𝑋
				)
				=
			

			
				
			
			
				𝑔
				(
				∇
			

			
				𝑡
				𝑋
			

			
				𝑁
				,
				𝜉
				)
			

		
	
, then (2.8) become
						
	
 		
 			
				(
				2
				.
				9
				)
			
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝑌
				+
				𝐵
				(
				𝑋
				,
				𝑌
				)
				𝑁
				,
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑁
				=
				−
				𝐴
			

			

				𝑁
			

			
				𝑋
				+
				𝜏
				(
				𝑋
				)
				𝑁
				.
			

		
	

	
		
			

				𝐵
			

		
	
 and 
	
		
			

				𝐴
			

		
	
 are called the second fundamental form and the shape operator of the lightlike hypersurface 
	
		
			

				𝑀
			

		
	
, respectively [1]. Let 
	
		
			

				𝑃
			

		
	
 be the projection of 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 on 
	
		
			

				𝑀
			

		
	
. Then, for any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
, we can write
						
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				𝑋
				=
				𝑃
				𝑋
				+
				𝜂
				(
				𝑋
				)
				𝜉
				,
			

		
	

					where 
	
		
			

				𝜂
			

		
	
 is a 
	
		
			
				1
				-
			

		
	
form given by
						
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				𝜂
				(
				𝑋
				)
				=
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝑁
				)
				.
			

		
	

From (2.9), we get
						
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				
				∇
			

			

				𝑋
			

			
				𝑔
				
				(
				𝑌
				,
				𝑍
				)
				=
				𝐵
				(
				𝑋
				,
				𝑌
				)
				𝜂
				(
				𝑍
				)
				+
				𝐵
				(
				𝑋
				,
				𝑍
				)
				𝜂
				(
				𝑌
				)
				,
				∀
				𝑋
				,
				𝑌
				,
				𝑍
				∈
				Γ
				(
				𝑇
				𝑀
				)
				,
			

		
	

					and the induced connection 
	
		
			

				∇
			

		
	
 is a nonmetric connection on 
	
		
			

				𝑀
			

		
	
. From (2.4), we have
						
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				∇
			

			

				𝑋
			

			
				𝑊
				=
				∇
			

			
				∗
				𝑋
			

			
				𝑊
				+
				ℎ
			

			

				∗
			

			
				(
				𝑋
				,
				𝑊
				)
				=
				∇
			

			
				∗
				𝑋
			

			
				∇
				𝑊
				+
				𝐶
				(
				𝑋
				,
				𝑊
				)
				𝜉
				,
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
				,
				𝑊
				∈
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
				,
			

			

				𝑋
			

			
				𝜉
				=
				−
				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				−
				𝜏
				(
				𝑋
				)
				𝜉
				,
			

		
	

					where 
	
		
			

				∇
			

			
				∗
				𝑋
			

			

				𝑊
			

		
	
 and 
	
		
			

				𝐴
			

			
				∗
				𝜉
			

			

				𝑋
			

		
	
 belong to 
	
		
			
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
			

		
	
. 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝐴
			

			
				∗
				𝜉
			

		
	
 and 
	
		
			

				∇
			

			

				∗
			

		
	
 are called the local second fundamental form, the local shape operator and the induced connection on 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
, respectively. Also, we have the following identities:
						
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				𝑔
				
				𝐴
			

			
				∗
				𝜉
			

			
				
				
				𝐴
				𝑋
				,
				𝑊
				=
				𝐵
				(
				𝑋
				,
				𝑊
				)
				,
				𝑔
			

			
				∗
				𝜉
			

			
				
				
				𝐴
				𝑋
				,
				𝑁
				=
				0
				,
				𝐵
				(
				𝑋
				,
				𝜉
				)
				=
				0
				,
				𝑔
			

			

				𝑁
			

			
				
				𝑋
				,
				𝑁
				=
				0
				.
			

		
	

					Moreover, from the first and third equations of (2.15) we have
						
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝜉
				=
				0
				.
			

		
	

Now, we will denote 
	
		
			
				
			
			

				𝑅
			

		
	
 and 
	
		
			

				𝑅
			

		
	
 the curvature tensors of the Levi-Civita connection 
	
		
			
				
			
			

				∇
			

		
	
 on 
	
		
			
				
			
			

				𝑀
			

		
	
 and the induced connection 
	
		
			

				∇
			

		
	
 on 
	
		
			

				𝑀
			

		
	
. Then the Gauss equation of 
	
		
			

				𝑀
			

		
	
 is given by
						
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				
			
			
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				=
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				+
				𝐴
			

			
				ℎ
				(
				𝑋
				,
				𝑍
				)
			

			
				𝑌
				−
				𝐴
			

			
				ℎ
				(
				𝑌
				,
				𝑍
				)
			

			
				𝑋
				+
				
				∇
			

			

				𝑋
			

			
				ℎ
				
				
				∇
				(
				𝑌
				,
				𝑍
				)
				−
			

			

				𝑌
			

			
				ℎ
				
				(
				𝑋
				,
				𝑍
				)
				,
				∀
				𝑋
				,
				𝑌
				,
				𝑍
				∈
				Γ
				(
				𝑇
				𝑀
				)
				,
			

		
	

					where 
	
		
			
				(
				∇
			

			

				𝑋
			

			
				ℎ
				)
				(
				𝑌
				,
				𝑍
				)
				=
				∇
			

			
				𝑡
				𝑋
			

			
				(
				ℎ
				(
				𝑌
				,
				𝑍
				)
				)
				−
				ℎ
				(
				∇
			

			

				𝑋
			

			
				𝑌
				,
				𝑍
				)
				−
				ℎ
				(
				𝑌
				,
				∇
			

			

				𝑋
			

			
				𝑍
				)
			

		
	
. Then the Gauss-Codazzi equations of a lightlike hypersurface are given by
						
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				
			
			
				𝑔
				
			

			
				
			
			
				
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑃
				𝑊
				=
				𝑔
				(
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑃
				𝑊
				)
				+
				𝐵
				(
				𝑋
				,
				𝑍
				)
				𝐶
				(
				𝑌
				,
				𝑃
				𝑊
				)
				−
				𝐵
				(
				𝑌
				,
				𝑍
				)
				𝐶
				(
				𝑋
				,
				𝑃
				𝑊
				)
				,
			

			
				
			
			
				𝑔
				
			

			
				
			
			
				
				=
				
				∇
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝜉
			

			

				𝑋
			

			
				𝐵
				
				(
				
				∇
				𝑌
				,
				𝑍
				)
				−
			

			

				𝑌
			

			
				𝐵
				
				(
				𝑋
				,
				𝑍
				)
				+
				𝐵
				(
				𝑌
				,
				𝑍
				)
				𝜏
				(
				𝑋
				)
				−
				𝐵
				(
				𝑋
				,
				𝑍
				)
				𝜏
				(
				𝑌
				)
				,
			

			
				
			
			
				𝑔
				
			

			
				
			
			
				
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑁
				=
				𝑔
				(
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑁
				)
				,
			

			
				
			
			
				𝑔
				
			

			
				
			
			
				𝑅
				
				
				(
				𝑋
				,
				𝑌
				)
				𝜉
				,
				𝑁
				=
				𝑔
				(
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝜉
				,
				𝑁
				)
				=
				𝐶
				𝑌
				,
				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				
				
				−
				𝐶
				𝑋
				,
				𝐴
			

			
				∗
				𝜉
			

			
				𝑌
				
				−
				2
				𝑑
				𝜏
				(
				𝑋
				,
				𝑌
				)
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				,
				𝑍
				,
				𝑊
				∈
				Γ
				(
				𝑇
				𝑀
				)
				,
				𝜉
				∈
				Γ
				(
				R
				a
				d
				𝑇
				𝑀
				)
			

		
	
.
For geometries of lightlike submanifolds, hypersurfaces and curves, we refer to [1–3].
2.1. Product Manifolds
Let 
	
		
			
				
			
			

				𝑀
			

		
	
 be an 
	
		
			
				𝑛
				-
			

		
	
dimensional differentiable manifold with a tensor field 
	
		
			

				𝐹
			

		
	
 of type (1,1) on 
	
		
			
				
			
			

				𝑀
			

		
	
 such that
								
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			

				𝐹
			

			

				2
			

			
				=
				𝐼
				.
			

		
	

							Then 
	
		
			
				
			
			

				𝑀
			

		
	
is called an almost product manifold with almost product structure 
	
		
			

				𝐹
			

		
	
. If we put
								
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				1
				𝜋
				=
			

			
				
			
			
				2
				1
				(
				𝐼
				+
				𝐹
				)
				,
				𝜎
				=
			

			
				
			
			
				2
				(
				𝐼
				−
				𝐹
				)
				,
			

		
	

							then we have
								
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				𝜋
				+
				𝜎
				=
				𝐼
				,
				𝜋
			

			

				2
			

			
				=
				𝜋
				,
				𝜎
			

			

				2
			

			
				=
				𝜎
				,
				𝜎
				𝜋
				=
				𝜋
				𝜎
				=
				0
				,
				𝐹
				=
				𝜋
				−
				𝜎
				.
			

		
	

							Thus 
	
		
			

				𝜋
			

		
	
 and 
	
		
			

				𝜎
			

		
	
 define two complementary distributions and 
	
		
			

				𝐹
			

		
	
 has the eigenvalue of
	
		
			
				+
				1
			

		
	
 or 
	
		
			
				−
				1
			

		
	
. If an almost product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 admits a semi-Riemannian metric 
	
		
			
				
			
			

				𝑔
			

		
	
 such that
								
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝐹
				𝑌
				)
				=
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝑌
				)
				,
			

		
	

							for any vector fields 
	
		
			
				𝑋
				,
				𝑌
			

		
	
 on 
	
		
			
				
			
			

				𝑀
			

		
	
, then 
	
		
			
				
			
			

				𝑀
			

		
	
 is called a semi-Riemannian almost product manifold. From (2.19) and (2.22), we have
								
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝑌
				)
				=
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝐹
				𝑌
				)
				.
			

		
	

If, for any vector fields 
	
		
			
				𝑋
				,
				𝑌
			

		
	
 on 
	
		
			
				
			
			

				𝑀
			

		
	
,
								
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			
				
			
			
				∇
				𝐹
				=
				0
				,
				t
				h
				a
				t
				i
				s
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝐹
				𝑌
				=
				𝐹
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑌
				,
			

		
	

							then 
	
		
			
				
			
			

				𝑀
			

		
	
 is called a semi-Riemannian product manifold, where 
	
		
			
				
			
			

				∇
			

		
	
 is the Levi-Civita connection on 
	
		
			
				
			
			

				𝑀
			

		
	
.
3. Lightlike Hypersurfaces of Semi-Riemannian Product Manifolds
Let 
	
		
			

				𝑀
			

		
	
 be a lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
. For any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
 we can write
						
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				𝐹
				𝑋
				=
				𝑓
				𝑋
				+
				𝑤
				(
				𝑋
				)
				𝑁
				,
			

		
	

					where 
	
		
			

				𝑓
			

		
	
 is a (1,1) tensor field and 
	
		
			

				𝑤
			

		
	
 is a 1-form on 
	
		
			

				𝑀
			

		
	
 given by 
	
		
			
				𝑤
				(
				𝑋
				)
				=
			

			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝜉
				)
				=
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝐹
				𝜉
				)
			

		
	
.
Definition 3.1. Let 
	
		
			

				𝑀
			

		
	
 be a lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
:(i)if 
	
		
			
				𝐹
				R
				a
				d
				𝑇
				𝑀
				⊂
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 and 
	
		
			
				𝐹
				l
				t
				r
				(
				𝑇
				𝑀
				)
				⊂
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 then we say that 
	
		
			

				𝑀
			

		
	
 is a screen semi-invariant lightlike hypersurface;(ii)if 
	
		
			
				𝐹
				𝑆
				(
				𝑇
				𝑀
				)
				=
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 then we say that 
	
		
			

				𝑀
			

		
	
 is a screen invariant lightlike hypersurface;(iii)if 
	
		
			
				𝐹
				R
				a
				d
				𝑇
				𝑀
				=
				l
				t
				r
				(
				𝑇
				𝑀
				)
			

		
	
 then we say that 
	
		
			

				𝑀
			

		
	
 is a radical anti-invariant lightlike hypersurface.We note that a radical anti-invariant lightlike hypersurface is a screen invariant lightlike hypersurface.
Remark 3.2. We recall that there are some lightlike hypersurfaces of a semi-Riemannian product manifold which differ from the above definition, that is, this definition does not cover all lightlike hypersurfaces of a semi-Riemannian product manifold 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
. In this paper we will study the hypersurfaces determined above.
Now, let 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold. If we set 
	
		
			

				𝔻
			

			

				1
			

			
				=
				𝐹
				R
				a
				d
				𝑇
				𝑀
				,
				𝔻
			

			

				2
			

			
				=
				𝐹
				l
				t
				r
				(
				𝑇
				𝑀
				)
			

		
	
 then we can write
						
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				
				𝔻
				𝑆
				(
				𝑇
				𝑀
				)
				=
				𝔻
				⟂
			

			

				1
			

			
				⊕
				𝔻
			

			

				2
			

			
				
				,
			

		
	

					where 
	
		
			

				𝔻
			

		
	
 is a 
	
		
			
				(
				𝑚
				−
				2
				)
				-
			

		
	
dimensional distribution. Hence we have the following decomposition:
						
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				
				𝔻
				𝑇
				𝑀
				=
				𝔻
				⟂
			

			

				1
			

			
				⊕
				𝔻
			

			

				2
			

			
				
				𝑇
				⟂
				R
				a
				d
				𝑇
				𝑀
				,
			

			
				
			
			
				
				𝔻
				𝑀
				=
				𝔻
				⟂
			

			

				1
			

			
				⊕
				𝔻
			

			

				2
			

			
				
				⟂
				{
				R
				a
				d
				𝑇
				𝑀
				⊕
				l
				t
				r
				(
				𝑇
				𝑀
				)
				}
				.
			

		
	

Proposition 3.3.  The distribution 
	
		
			

				𝔻
			

		
	
 is an invariant distribution with respect to 
	
		
			

				𝐹
			

		
	
.
Proof. For any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝔻
				)
			

		
	
 and 
	
		
			
				𝑈
				∈
				Γ
				(
				𝔻
			

			

				1
			

			
				)
				,
				𝑉
				∈
				Γ
				(
				𝔻
			

			

				2
			

			

				)
			

		
	
 we obtain 
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝑈
				)
				=
				𝑔
				(
				𝑋
				,
				𝐹
				𝑈
				)
				=
				0
				,
				𝑔
				(
				𝐹
				𝑋
				,
				𝑉
				)
				=
				𝑔
				(
				𝑋
				,
				𝐹
				𝑉
				)
				=
				0
				.
			

		
	

						Thus there are no components of 
	
		
			
				𝐹
				𝑋
			

		
	
 in 
	
		
			

				𝔻
			

			

				1
			

		
	
 and 
	
		
			

				𝔻
			

			

				2
			

		
	
. Furthermore, we have 
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝜉
				)
				=
				𝑔
				(
				𝑋
				,
				𝐹
				𝜉
				)
				=
				0
				,
				𝑔
				(
				𝐹
				𝑋
				,
				𝑁
				)
				=
				𝑔
				(
				𝑋
				,
				𝐹
				𝑁
				)
				=
				0
				.
			

		
	

						Proof is completed.
If we set 
	
		
			
				
			
			
				𝔻
				=
				𝔻
				⟂
				R
				a
				d
				𝑇
				𝑀
				⟂
				𝐹
				R
				a
				d
				𝑇
				𝑀
			

		
	
, we can write
						
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				𝑇
				𝑀
				=
			

			
				
			
			
				𝔻
				⊕
				𝔻
			

			

				2
			

			

				.
			

		
	

					From the above proposition we have the following corollary.
Corollary 3.4.  The distribution 
	
		
			
				
			
			

				𝔻
			

		
	
 is invariant with respect to 
	
		
			

				𝐹
			

		
	
.
Example 3.5. Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				=
				𝑅
			

			
				5
				2
			

			

				,
			

			
				
			
			

				𝑔
			

		
	
) be a 5-dimensional semi-Euclidean space with signature
	
		
			
				(
				−
				,
				+
				,
				−
				,
				+
				,
				+
				)
			

		
	
 and 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝑠
				,
				𝑡
				)
			

		
	
 be the standard coordinate system of 
	
		
			

				𝑅
			

			
				5
				2
			

		
	
. If we set 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝑠
				,
				𝑡
				)
				=
				(
				𝑥
				,
				𝑦
				,
				−
				𝑧
				,
				−
				𝑠
				,
				−
				𝑡
				)
			

		
	
, then 
	
		
			

				𝐹
			

			

				2
			

			
				=
				𝐼
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 is a product structure on 
	
		
			

				𝑅
			

			
				5
				2
			

		
	
. Consider a hypersurface 
	
		
			

				𝑀
			

		
	
 in 
	
		
			
				
			
			

				𝑀
			

		
	
 by the equation:
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				𝑡
				=
				𝑥
				+
				𝑦
				+
				𝑧
				.
			

		
	

						Then 
	
		
			
				𝑇
				𝑀
				=
				S
				p
				a
				n
				{
				𝑈
			

			

				1
			

			
				,
				𝑈
			

			

				2
			

			
				,
				𝑈
			

			

				3
			

			
				,
				𝑈
			

			

				4
			

			

				}
			

		
	
, where
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				𝑈
			

			

				1
			

			
				=
				𝜕
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑥
			

			
				
			
			
				𝜕
				𝑡
				,
				𝑈
			

			

				2
			

			
				=
				𝜕
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑦
			

			
				
			
			
				𝜕
				𝑡
				,
				𝑈
			

			

				3
			

			
				=
				𝜕
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑧
			

			
				
			
			
				𝜕
				𝑡
				,
				𝑈
			

			

				4
			

			
				=
				𝜕
			

			
				
			
			
				.
				𝜕
				𝑠
			

		
	

						It is easy to check that 
	
		
			

				𝑀
			

		
	
 is a lightlike hypersurface and
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				𝑇
				𝑀
			

			

				⟂
			

			
				
				=
				S
				p
				a
				n
				𝜉
				=
				𝑈
			

			

				1
			

			
				−
				𝑈
			

			

				2
			

			
				+
				𝑈
			

			

				3
			

			
				
				.
			

		
	

						Then take a lightlike transversal vector bundle as follow:
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				
				1
				l
				t
				r
				(
				𝑇
				𝑀
				)
				=
				S
				p
				a
				n
				𝑁
				=
				−
			

			
				
			
			
				4
				
				𝜕
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑥
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑦
			

			
				
			
			
				−
				𝜕
				𝜕
				𝑧
			

			
				
			
			
				.
				𝜕
				𝑡
				
				
			

		
	

						It follows that the corresponding screen distribution 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 is spanned by
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				
				𝑊
			

			

				1
			

			
				=
				𝑈
			

			

				4
			

			
				,
				𝑊
			

			

				2
			

			
				=
				𝑈
			

			

				1
			

			
				−
				𝑈
			

			

				2
			

			
				−
				𝑈
			

			

				3
			

			
				,
				𝑊
			

			

				3
			

			
				=
				𝑈
			

			

				1
			

			
				+
				𝑈
			

			

				2
			

			
				−
				𝑈
			

			

				3
			

			
				
				.
			

		
	

						If we set 
	
		
			
				𝔻
				=
				S
				p
				a
				n
				{
				𝑊
			

			

				1
			

			

				}
			

		
	
, 
	
		
			

				𝔻
			

			

				1
			

			
				=
				S
				p
				a
				n
				{
				𝑊
			

			

				2
			

			

				}
			

		
	
 and 
	
		
			

				𝔻
			

			

				2
			

			
				=
				S
				p
				a
				n
				{
				𝑊
			

			

				3
			

			

				}
			

		
	
, then it can be easily checked that 
	
		
			

				𝑀
			

		
	
 is a screen semi-invariant lightlike hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
.
Example 3.6. Let 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝑡
				)
			

		
	
 be the standard coordinate system of 
	
		
			

				𝑅
			

			

				4
			

		
	
 and 
	
		
			
				𝑑
				𝑠
			

			

				2
			

			
				=
				−
				𝑑
				𝑥
			

			

				2
			

			
				−
				𝑑
				𝑦
			

			

				2
			

			
				+
				𝑑
				𝑧
			

			

				2
			

			
				+
				𝑑
				𝑡
			

			

				2
			

		
	
 be a semi-Riemannian metric on 
	
		
			

				𝑅
			

			

				4
			

		
	
 with 
	
		
			
				2
				-
			

		
	
index. Let 
	
		
			

				𝐹
			

		
	
 be a product structure on 
	
		
			

				𝑅
			

			

				4
			

		
	
 given by 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝑡
				)
				=
				(
				𝑧
				,
				𝑡
				,
				𝑥
				,
				𝑦
				)
			

		
	
. We consider the hypersurface 
	
		
			

				𝑀
			

		
	
 given by 
	
		
			
				𝑡
				=
				𝑥
				+
				(
				1
				/
				2
				)
				(
				𝑦
				+
				𝑧
				)
			

			

				2
			

		
	
 [1]. One can easily see that 
	
		
			

				𝑀
			

		
	
 is a lightlike hypersurface and
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝜕
				R
				a
				d
				𝑇
				𝑀
				=
				S
				p
				a
				n
				𝜉
				=
			

			
				
			
			
				𝜕
				𝜕
				𝑥
				+
				(
				𝑦
				+
				𝑧
				)
			

			
				
			
			
				𝜕
				𝜕
				𝑦
				−
				(
				𝑦
				+
				𝑧
				)
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑧
			

			
				
			
			
				
				,
				
				1
				𝜕
				𝑡
				l
				t
				r
				(
				𝑇
				𝑀
				)
				=
				S
				p
				a
				n
				𝑁
				=
				−
			

			
				
			
			
				2
				
				1
				+
				(
				𝑦
				+
				𝑧
				)
			

			

				2
			

			
				
				
				𝜕
			

			
				
			
			
				𝜕
				𝜕
				𝑥
				+
				(
				𝑦
				+
				𝑧
				)
			

			
				
			
			
				𝜕
				𝜕
				𝑦
				+
				(
				𝑦
				+
				𝑧
				)
			

			
				
			
			
				−
				𝜕
				𝜕
				𝑧
			

			
				
			
			
				
				
				,
				
				𝑊
				𝜕
				𝑡
				𝑆
				(
				𝑇
				𝑀
				)
				=
				S
				p
				a
				n
			

			

				1
			

			
				𝜕
				=
				−
				(
				𝑦
				+
				𝑧
				)
			

			
				
			
			
				+
				𝜕
				𝜕
				𝑥
			

			
				
			
			
				𝜕
				𝑦
				,
				𝑊
			

			

				2
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝜕
				𝑧
				+
				(
				𝑦
				+
				𝑧
				)
			

			
				
			
			
				
				.
				𝜕
				𝑡
			

		
	

						We can easily check that
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				𝐹
				𝜉
				=
				𝑊
			

			

				1
			

			
				+
				𝑊
			

			

				2
			

			
				1
				,
				𝐹
				𝑁
				=
			

			
				
			
			
				2
				
				1
				+
				(
				𝑦
				+
				𝑧
				)
			

			

				2
			

			
				
				
				𝑊
			

			

				1
			

			
				−
				𝑊
			

			

				2
			

			
				
				.
			

		
	

						Thus 
	
		
			

				𝑀
			

		
	
 is a screen semi-invariant lightlike hypersurface with 
	
		
			
				𝔻
				=
				{
				0
				}
			

		
	
, 
	
		
			

				𝔻
			

			

				1
			

			
				=
				S
				p
				a
				n
				{
				𝐹
				𝜉
				}
			

		
	
 and 
	
		
			

				𝔻
			

			

				2
			

			
				=
				S
				p
				a
				n
				{
				𝐹
				𝑁
				}
			

		
	
.
Example 3.7. Let 
	
		
			
				(
				𝑅
			

			
				4
				2
			

			

				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be a 4-dimensional semi-Euclidean space with signature 
	
		
			
				(
				−
				,
				−
				,
				+
				,
				+
				)
			

		
	
 and 
	
		
			
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				3
			

			
				,
				𝑥
			

			

				4
			

			

				)
			

		
	
 be the standard coordinate system of 
	
		
			

				𝑅
			

			
				4
				2
			

		
	
. Consider a Monge hypersurface 
	
		
			

				𝑀
			

		
	
 of 
	
		
			

				𝑅
			

			
				4
				2
			

		
	
 given by
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				4
			

			
				=
				𝐴
				𝑥
			

			

				1
			

			
				+
				𝐵
				𝑥
			

			

				2
			

			
				+
				𝐶
				𝑥
			

			

				3
			

			
				,
				𝐴
			

			

				2
			

			
				+
				𝐵
			

			

				2
			

			
				−
				𝐶
			

			

				2
			

			
				=
				1
				,
				𝐴
				,
				𝐵
				,
				𝐶
				∈
				𝑅
				.
			

		
	

						Then the tangent bundle 
	
		
			
				𝑇
				𝑀
			

		
	
 of the hypersurface 
	
		
			

				𝑀
			

		
	
 is spanned by
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				
				𝑈
			

			

				1
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				1
			

			
				𝜕
				+
				𝐴
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				,
				𝑈
			

			

				2
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				𝜕
				+
				𝐵
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				,
				𝑈
			

			

				3
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				3
			

			
				𝜕
				+
				𝐶
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				
				.
			

		
	

						It is easy to check that 
	
		
			

				𝑀
			

		
	
 is a lightlike hypersurface (p.196, Ex.1, [3]) whose radical distribution 
	
		
			
				R
				a
				d
				𝑇
				𝑀
			

		
	
 is spanned by
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				𝜉
				=
				𝐴
				𝑈
			

			

				1
			

			
				+
				𝐵
				𝑈
			

			

				2
			

			
				−
				𝐶
				𝑈
			

			

				3
			

			
				𝜕
				=
				𝐴
			

			
				
			
			
				𝜕
				𝑥
			

			

				1
			

			
				𝜕
				+
				𝐵
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				𝜕
				−
				𝐶
			

			
				
			
			
				𝜕
				𝑥
			

			

				3
			

			
				+
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			

				.
			

		
	

						Furthermore, the lightlike transversal vector bundle is given by
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				
				1
				l
				t
				r
				(
				𝑇
				𝑀
				)
				=
				S
				p
				a
				n
				𝑁
				=
				−
			

			
				
			
			
				2
				
				𝐶
			

			

				2
			

			
				
				
				𝐴
				𝜕
				+
				1
			

			
				
			
			
				𝜕
				𝑥
			

			

				1
			

			
				𝜕
				+
				𝐵
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				𝜕
				+
				𝐶
			

			
				
			
			
				𝜕
				𝑥
			

			

				3
			

			
				−
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				
				
				.
			

		
	

						It follows that the corresponding screen distribution 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 is spanned by
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝑊
			

			

				1
			

			
				=
				1
			

			
				
			
			

				𝐴
			

			

				2
			

			
				+
				𝐵
			

			

				2
			

			
				
				𝐵
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				1
			

			
				𝜕
				−
				𝐴
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				
				,
				𝑊
			

			

				2
			

			
				=
				1
			

			
				
			
			

				𝐴
			

			

				2
			

			
				+
				𝐵
			

			

				2
			

			
				
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				3
			

			
				𝜕
				+
				𝐶
			

			
				
			
			
				𝜕
				𝑥
			

			

				4
			

			
				.
				
				
			

		
	

						If we define a mapping 
	
		
			

				𝐹
			

		
	
 by 
	
		
			
				𝐹
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				3
			

			
				,
				𝑥
			

			

				4
			

			
				)
				=
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				−
				𝑥
			

			

				3
			

			
				,
				−
				𝑥
			

			

				4
			

			

				)
			

		
	
 then 
	
		
			

				𝐹
			

			

				2
			

			
				=
				𝐼
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 is a product structure on 
	
		
			

				𝑅
			

			
				4
				2
			

		
	
. One can easily check that 
	
		
			
				𝐹
				𝑆
				(
				𝑇
				𝑀
				)
				=
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 and 
	
		
			
				𝐹
				R
				a
				d
				𝑇
				𝑀
				=
				l
				t
				r
				(
				𝑇
				𝑀
				)
			

		
	
. Thus 
	
		
			

				𝑀
			

		
	
 is a radical anti-invariant lightlike hypersurface of 
	
		
			

				𝑅
			

			
				4
				2
			

		
	
. Furthermore, this lightlike hypersurface is a screen invariant lightlike hypersurface.
Theorem 3.8.  Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be a semi-Riemannian product manifold and 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
. Then the following assertions are equivalent. (i)The distribution 
	
		
			
				
			
			

				𝔻
			

		
	
 is integrable with respect to the induced connection 
	
		
			

				∇
			

		
	
 of 
	
		
			

				𝑀
			

		
	
.(ii)
	
		
			
				𝐵
				(
				𝑋
				,
				𝑓
				𝑌
				)
				=
				𝐵
				(
				𝑌
				,
				𝑓
				𝑋
				)
			

		
	
, for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
.(iii)
	
		
			
				𝑔
				(
				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				,
				𝑃
				𝑓
				𝑌
				)
				=
				𝑔
				(
				𝐴
			

			
				∗
				𝜉
			

			
				𝑌
				,
				𝑃
				𝑓
				𝑋
				)
			

		
	
, for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
.
Proof. For any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
, from (2.9), (2.24), and (3.1), we obtain
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				𝑓
				∇
			

			

				𝑋
			

			
				
				∇
				𝑌
				+
				𝑤
			

			

				𝑋
			

			
				𝑌
				
				𝑁
				+
				𝐵
				(
				𝑋
				,
				𝑌
				)
				𝐹
				𝑁
				=
				∇
			

			

				𝑋
			

			
				𝑓
				𝑌
				+
				𝐵
				(
				𝑋
				,
				𝑓
				𝑌
				)
				𝑁
				.
			

		
	

						Interchanging role of 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 we have
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				𝑓
				∇
			

			

				𝑌
			

			
				
				∇
				𝑋
				+
				𝑤
			

			

				𝑌
			

			
				𝑋
				
				𝑁
				+
				𝐵
				(
				𝑌
				,
				𝑋
				)
				𝐹
				𝑁
				=
				∇
			

			

				𝑌
			

			
				𝑓
				𝑋
				+
				𝐵
				(
				𝑌
				,
				𝑓
				𝑋
				)
				𝑁
				.
			

		
	

						From (3.19), (3.20) we get
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				𝑤
				(
				[
				]
				𝑋
				,
				𝑌
				)
				=
				𝐵
				(
				𝑋
				,
				𝑓
				𝑌
				)
				−
				𝐵
				(
				𝑌
				,
				𝑓
				𝑋
				)
			

		
	

						and this is 
	
		
			
				(
				i
				)
				⇔
				(
				i
				i
				)
			

		
	
. From the first equation of (2.15), we conclude 
	
		
			
				(
				i
				i
				)
				⇔
				(
				i
				i
				i
				)
			

		
	
. Thus we have our assertion.
From the decomposition (3.6), we can give the following definition.
Definition 3.9. Let 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. If 
	
		
			
				𝐵
				(
				𝑋
				,
				𝑌
				)
				=
				0
			

		
	
, for any 
	
		
			
				𝑋
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
,
	
		
			
				𝑌
				∈
				Γ
				(
				𝔻
			

			

				2
			

			

				)
			

		
	
, then we say that 
	
		
			

				𝑀
			

		
	
 is a mixed geodesic lightlike hypersurface.
Theorem 3.10.  Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be a semi-Riemannian product manifold and 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
. Then the following assertions are equivalent. (i)
	
		
			

				𝑀
			

		
	
 is mixed geodesic.(ii)There is no 
	
		
			

				𝔻
			

			

				2
			

			

				-
			

		
	
component of 
	
		
			

				𝐴
			

			

				𝑁
			

		
	
.(iii)There is no 
	
		
			

				𝔻
			

			

				1
			

			

				-
			

		
	
component of 
	
		
			

				𝐴
			

			
				∗
				𝜉
			

		
	
.
Proof. Suppose that 
	
		
			

				𝑀
			

		
	
 is mixed geodesic screen semi-invariant lightlike hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
 with respect to the Levi-Civita connection 
	
		
			
				
			
			

				∇
			

		
	
. From (2.24), (2.9), (2.10), and (3.1), we obtain
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			

				∇
			

			

				𝑋
			

			
				𝐹
				𝑁
				+
				𝐵
				(
				𝑋
				,
				𝐹
				𝑁
				)
				𝑁
				=
				−
				𝑓
				𝐴
			

			

				𝑁
			

			
				
				𝐴
				𝑋
				+
				𝜏
				(
				𝑋
				)
				𝐹
				𝑁
				−
				𝑤
			

			

				𝑁
			

			
				𝑋
				
				𝑁
				,
			

		
	

						for any 
	
		
			
				𝑋
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
. If we take tangential and transversal parts of this last equation we have
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			

				∇
			

			

				𝑋
			

			
				𝐹
				𝑁
				=
				−
				𝑓
				𝐴
			

			

				𝑁
			

			
				
				𝐴
				𝑋
				+
				𝜏
				(
				𝑋
				)
				𝐹
				𝑁
				,
				𝐵
				(
				𝑋
				,
				𝐹
				𝑁
				)
				=
				−
				𝑤
			

			

				𝑁
			

			
				𝑋
				
				.
			

		
	

						Furthermore, since 
	
		
			
				𝑤
				(
				𝐴
			

			

				𝑁
			

			
				𝑋
				)
				=
				𝑔
				(
				𝐴
			

			

				𝑁
			

			
				𝑋
				,
				𝐹
				𝜉
				)
			

		
	
, we get 
	
		
			
				(
				i
				)
				⇔
				(
				i
				i
				)
			

		
	
. Since 
	
		
			
				
			
			
				𝑔
				(
				𝐹
				𝑁
				,
				𝜉
				)
				=
			

			
				
			
			
				𝑔
				(
				𝑁
				,
				𝐹
				𝜉
				)
				=
				0
			

		
	
, we obtain
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				𝑔
				
				𝐴
			

			

				𝑁
			

			
				
				
				𝐴
				𝑋
				,
				𝐹
				𝜉
				=
				−
				𝑔
			

			
				∗
				𝜉
			

			
				
				.
				𝑋
				,
				𝐹
				𝑁
			

		
	

						This is 
	
		
			
				(
				i
				i
				)
				⇔
				(
				i
				i
				i
				)
			

		
	
.
From the decomposition (3.6), we have the following theorem.
Theorem 3.11.  Let 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Then 
	
		
			

				𝑀
			

		
	
 is a locally product manifold according to the decomposition (3.6) if and only if 
	
		
			

				𝑓
			

		
	
 is parallel with respect to induced connection 
	
		
			

				∇
			

		
	
, that is 
	
		
			
				∇
				𝑓
				=
				0
			

		
	
.
Proof. Let 
	
		
			

				𝑀
			

		
	
 be a locally product manifold. Then the leaves of distributions 
	
		
			
				
			
			

				𝔻
			

		
	
 and 
	
		
			

				𝔻
			

			

				2
			

		
	
 are both totally geodesic in 
	
		
			

				𝑀
			

		
	
. Since the distribution 
	
		
			
				
			
			

				𝔻
			

		
	
 is invariant with respect to 
	
		
			

				𝐹
			

		
	
 then, for any 
	
		
			
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
, 
	
		
			
				𝐹
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
. Thus 
	
		
			

				∇
			

			

				𝑋
			

			

				𝑌
			

		
	
 and 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑓
				𝑌
			

		
	
 belong to 
	
		
			
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
, for any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
. From the Gauss formula, we obtain
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			

				∇
			

			

				𝑋
			

			
				𝑓
				𝑌
				+
				𝐵
				(
				𝑋
				,
				𝑓
				𝑌
				)
				𝑁
				=
				𝑓
				∇
			

			

				𝑋
			

			
				
				∇
				𝑌
				+
				𝑤
			

			

				𝑋
			

			
				𝑌
				
				𝑁
				+
				𝐵
				(
				𝑋
				,
				𝑌
				)
				𝐹
				𝑁
				.
			

		
	

						Comparing the tangential and normal parts with respect to 
	
		
			
				
			
			

				𝔻
			

		
	
 of (3.25), we have 
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			

				∇
			

			

				𝑋
			

			
				𝑓
				𝑌
				=
				𝑓
				∇
			

			

				𝑋
			

			
				
				∇
				𝑌
				,
				t
				h
				a
				t
				i
				s
			

			

				𝑋
			

			
				𝑓
				
				𝑌
				=
				0
				,
				𝐵
				(
				𝑋
				,
				𝑌
				)
				=
				0
				.
			

		
	

						Since 
	
		
			
				𝑓
				𝑍
				=
				0
			

		
	
, for any 
	
		
			
				𝑍
				∈
				Γ
				(
				𝔻
			

			

				2
			

			

				)
			

		
	
, we get 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑓
				𝑍
				=
				0
			

		
	
 and 
	
		
			
				𝑓
				∇
			

			

				𝑋
			

			
				𝑍
				=
				0
			

		
	
, that is 
	
		
			
				(
				∇
			

			

				𝑋
			

			
				𝑓
				)
				𝑍
				=
				0
			

		
	
. Thus we have 
	
		
			
				∇
				𝑓
				=
				0
			

		
	
 on 
	
		
			

				𝑀
			

		
	
.Conversely, we assume that 
	
		
			
				∇
				𝑓
				=
				0
			

		
	
 on 
	
		
			

				𝑀
			

		
	
. Then we have 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑓
				𝑌
				=
				𝑓
				∇
			

			

				𝑋
			

			

				𝑌
			

		
	
, for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
 and 
	
		
			

				∇
			

			

				𝑈
			

			
				𝑓
				𝑊
				=
				𝑓
				∇
			

			

				𝑈
			

			
				𝑊
				=
				0
			

		
	
, for any 
	
		
			
				𝑈
				,
				𝑊
				∈
				Γ
				(
				𝔻
			

			

				2
			

			

				)
			

		
	
. Thus it follows that 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑓
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
 and 
	
		
			

				∇
			

			

				𝑈
			

			
				𝑊
				∈
				Γ
				(
				𝔻
			

			

				2
			

			

				)
			

		
	
. Hence, the leaves of the distributions 
	
		
			
				
			
			

				𝔻
			

		
	
 and 
	
		
			

				𝔻
			

			

				2
			

		
	
 are totally geodesic in 
	
		
			

				𝑀
			

		
	
.
From Theorem 3.11 and (3.27) we have the following corollary.
Corollary 3.12.  Let 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. If 
	
		
			

				𝑀
			

		
	
 has a local product structure, then it is a mixed geodesic lightlike hypersurface.
Let 
	
		
			

				𝑀
			

		
	
 be a radical anti-invariant lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Then we have the following decomposition: 
						
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			

				𝑇
			

			
				
			
			
				𝑀
				=
				𝑆
				(
				𝑇
				𝑀
				)
				⟂
				{
				R
				a
				d
				𝑇
				𝑀
				⊕
				𝐹
				R
				a
				d
				𝑇
				𝑀
				}
				.
			

		
	

Theorem 3.13.  Let 
	
		
			

				𝑀
			

		
	
 be a radical anti-invariant lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Then the screen distribution 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 of 
	
		
			

				𝑀
			

		
	
 is an integrable distribution if and only if 
	
		
			
				𝐵
				(
				𝑋
				,
				𝐹
				𝑌
				)
				=
				𝐵
				(
				𝑌
				,
				𝐹
				𝑋
				)
			

		
	
.
Proof. If a vector field 
	
		
			

				𝑋
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 belongs to 
	
		
			
				𝑆
				(
				𝑇
				𝑀
				)
			

		
	
 if and only if 
	
		
			
				𝜂
				(
				𝑋
				)
				=
				0
			

		
	
. Since 
	
		
			

				𝑀
			

		
	
 is a radical anti-invariant lightlike hypersurface, for any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
			

		
	
, 
	
		
			
				𝐹
				𝑋
				∈
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
			

		
	
. For any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
			

		
	
, we can write
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝐹
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝐹
				𝑌
				+
				𝐵
				(
				𝑋
				,
				𝐹
				𝑌
				)
				𝑁
				.
			

		
	

						In this last equation interchanging role of 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
, we obtain 
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			
				𝐹
				[
				]
				𝑋
				,
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝐹
				𝑌
				−
				∇
			

			

				𝑌
			

			
				𝐹
				𝑋
				+
				(
				𝐵
				(
				𝑋
				,
				𝐹
				𝑌
				)
				−
				𝐵
				(
				𝑌
				,
				𝐹
				𝑋
				)
				)
				𝑁
				.
			

		
	

						Since 
	
		
			
				𝜂
				(
				[
				𝑋
				,
				𝑌
				]
				)
				=
			

			
				
			
			
				𝑔
				(
				[
				𝑋
				,
				𝑌
				]
				,
				𝑁
				)
				=
			

			
				
			
			
				𝑔
				(
				𝐹
				[
				𝑋
				,
				𝑌
				]
				,
				𝐹
				𝑁
				)
			

		
	
, we get 
							
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			
				[
				]
				𝜂
				(
				𝑋
				,
				𝑌
				)
				=
				(
				𝐵
				(
				𝑋
				,
				𝐹
				𝑌
				)
				−
				𝐵
				(
				𝑌
				,
				𝐹
				𝑋
				)
				)
			

			
				
			
			
				𝑔
				(
				𝑁
				,
				𝐹
				𝑁
				)
				.
			

		
	

						Since 
	
		
			
				
			
			
				𝑔
				(
				𝑁
				,
				𝐹
				𝑁
				)
				≠
				0
			

		
	
, 
	
		
			
				𝜂
				(
				[
				𝑋
				,
				𝑌
				]
				)
				=
				0
			

		
	
 if and only if 
	
		
			
				𝐵
				(
				𝑋
				,
				𝐹
				𝑌
				)
				=
				𝐵
				(
				𝑌
				,
				𝐹
				𝑋
				)
			

		
	
. This is our assertion.
4. Quarter-Symmetric Nonmetric Connections
Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				,
				𝐹
				)
			

		
	
 be a semi-Riemannian product manifold and 
	
		
			
				
			
			

				∇
			

		
	
 be the Levi-Civita connection on 
	
		
			
				
			
			

				𝑀
			

		
	
. If we set
						
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝑌
				=
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑌
				+
				𝑢
				(
				𝑌
				)
				𝐹
				𝑋
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
			

			
				
			
			
				𝑀
				)
			

		
	
, then 
	
		
			
				
			
			

				𝐷
			

		
	
 is a linear connection on 
	
		
			
				
			
			

				𝑀
			

		
	
, where 
	
		
			

				𝑢
			

		
	
 is a 1-form on 
	
		
			
				
			
			

				𝑀
			

		
	
 with 
	
		
			

				𝑈
			

		
	
 as associated vector field, that is
						
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑋
				)
				=
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝑈
				)
				.
			

		
	

					The torsion tensor of 
	
		
			
				
			
			

				𝐷
			

		
	
 on 
	
		
			
				
			
			

				𝑀
			

		
	
 denoted by 
	
		
			
				
			
			

				𝑇
			

		
	
. Then we obtain
						
	
 		
 			
				(
				4
				.
				3
				)
			
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			
				
			
			
				
				𝑇
				(
				𝑋
				,
				𝑌
				)
				=
				𝑢
				(
				𝑌
				)
				𝐹
				𝑋
				−
				𝑢
				(
				𝑋
				)
				𝐹
				𝑌
				,
			

			
				
			
			

				𝐷
			

			

				𝑋
			

			
				
			
			
				𝑔
				
				(
				𝑌
				,
				𝑍
				)
				=
				−
				𝑢
				(
				𝑌
				)
			

			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝑍
				)
				−
				𝑢
				(
				𝑍
				)
			

			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝑌
				)
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
			

			
				
			
			
				𝑀
				)
			

		
	
. Thus 
	
		
			
				
			
			

				𝐷
			

		
	
 is a quarter-symmetric nonmetric connection on 
	
		
			
				
			
			

				𝑀
			

		
	
. From (2.24) and (4.1) we have
						
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝐹
				
				𝑌
				=
				𝑢
				(
				𝐹
				𝑌
				)
				𝐹
				𝑋
				−
				𝑢
				(
				𝑌
				)
				𝑋
				.
			

		
	

					Replacing 
	
		
			

				𝑋
			

		
	
 by 
	
		
			
				𝐹
				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 by 
	
		
			
				𝐹
				𝑌
			

		
	
 in (4.5) and using (2.19) we obtain
						
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				𝐷
			

			
				𝐹
				𝑋
			

			
				𝐹
				
				𝐹
				𝑌
				=
				𝑢
				(
				𝑌
				)
				𝑋
				−
				𝑢
				(
				𝐹
				𝑌
				)
				𝐹
				𝑋
				.
			

		
	

					Thus we have
						
	
 		
 			
				(
				4
				.
				7
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝐹
				
				
				𝑌
				+
			

			
				
			
			

				𝐷
			

			
				𝐹
				𝑋
			

			
				𝐹
				
				𝐹
				𝑌
				=
				0
				.
			

		
	

					If we set
						
	
 		
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			

				
			

			
				𝐹
				(
				𝑋
				,
				𝑌
				)
				=
			

			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝑌
				)
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
			

			
				
			
			
				𝑀
				)
			

		
	
, from (4.1) we get
						
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				𝐷
			

			
				𝑋
				
			

			
				𝐹
				
				
				(
				𝑌
				,
				𝑍
				)
				=
			

			
				
			
			

				∇
			

			
				𝑋
				
			

			
				𝐹
				
				(
				𝑌
				,
				𝑍
				)
				−
				𝑢
				(
				𝑌
				)
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝑍
				)
				−
				𝑢
				(
				𝑍
				)
			

			
				
			
			
				𝑔
				(
				𝑋
				,
				𝑌
				)
				.
			

		
	

					From (4.1) the curvature tensor 
	
		
			
				
			
			

				𝑅
			

			

				𝐷
			

		
	
 of the quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
 is given by
						
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑋
				,
				𝑌
				)
				𝑍
				=
			

			
				
			
			
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				+
			

			
				
			
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				𝐹
				𝑌
				−
			

			
				
			
			
				𝜆
				(
				𝑌
				,
				𝑍
				)
				𝐹
				𝑋
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				,
				𝑍
				∈
				Γ
				(
				𝑇
			

			
				
			
			
				𝑀
				)
			

		
	
, where 
	
		
			
				
			
			

				𝜆
			

		
	
 is a 
	
		
			
				(
				0
				,
				2
				)
			

		
	
-tensor given by 
	
		
			
				
			
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				=
				(
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑢
				)
				(
				𝑍
				)
				−
				𝑢
				(
				𝑍
				)
				𝑢
				(
				𝐹
				𝑋
				)
			

		
	
. If we set 
	
		
			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑋
				,
				𝑌
				,
				𝑍
				,
				𝑊
				)
				=
			

			
				
			
			
				𝑔
				(
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑊
				)
			

		
	
, then, from (4.10), we obtain
						
	
 		
 			
				(
				4
				.
				1
				1
				)
			
 		
	

	
		
			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑋
				,
				𝑌
				,
				𝑍
				,
				𝑊
				)
				=
				−
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑌
				,
				𝑋
				,
				𝑍
				,
				𝑊
				)
				.
			

		
	

					We note that the Riemannian curvature tensor 
	
		
			
				
			
			

				𝑅
			

			

				𝐷
			

		
	
 of 
	
		
			
				
			
			

				𝐷
			

		
	
 does not satisfy the other curvature-like properties. But, from (4.10), we have
						
	
 		
 			
				(
				4
				.
				1
				2
				)
			
 		
	

	
		
			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑋
				,
				𝑌
				)
				𝑍
				+
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				(
				𝑌
				,
				𝑍
				)
				𝑋
				+
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				
				(
				𝑍
				,
				𝑋
				)
				𝑌
				=
			

			
				
			
			
				𝜆
				(
				𝑍
				,
				𝑌
				)
				−
			

			
				
			
			
				
				+
				
				𝜆
				(
				𝑌
				,
				𝑍
				)
				𝐹
				𝑋
			

			
				
			
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				−
			

			
				
			
			
				
				+
				
				𝜆
				(
				𝑍
				,
				𝑋
				)
				𝐹
				𝑌
			

			
				
			
			
				𝜆
				(
				𝑌
				,
				𝑋
				)
				−
			

			
				
			
			
				
				𝜆
				(
				𝑋
				,
				𝑌
				)
				𝐹
				𝑍
				.
			

		
	

					Thus we have the following proposition.
Proposition 4.1.  Let 
	
		
			

				𝑀
			

		
	
 be a lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Then the first Bianchi identity of the quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 is provided if and only if 
	
		
			
				
			
			

				𝜆
			

		
	
 is symmetric.
Let 
	
		
			

				𝑀
			

		
	
 be a lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 with quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
. Then the Gauss and Weingarten formulas with respect to 
	
		
			
				
			
			

				𝐷
			

		
	
 are given by, respectively,
						
	
 		
 			
				(
				4
				.
				1
				3
				)
			
 			
				(
				4
				.
				1
				4
				)
			
 		
	

	
		
			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝑌
				=
				𝐷
			

			

				𝑋
			

			
				𝑌
				+
			

			
				
			
			
				𝐵
				(
				𝑋
				,
				𝑌
				)
				𝑁
			

			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝑁
				=
				−
			

			
				
			
			

				𝐴
			

			

				𝑁
			

			
				𝑋
				+
			

			
				
			
			
				𝜏
				(
				𝑋
				)
				𝑁
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
, where 
	
		
			

				𝐷
			

			

				𝑋
			

			

				𝑌
			

		
	
, 
	
		
			
				
			
			

				𝐴
			

			

				𝑁
			

			
				𝑋
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
, 
	
		
			
				
			
			
				𝐵
				(
				𝑋
				,
				𝑌
				)
				=
			

			
				
			
			
				𝑔
				(
			

			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝑌
				,
				𝜉
				)
			

		
	
, 
	
		
			
				
			
			
				𝜏
				(
				𝑋
				)
				=
			

			
				
			
			
				𝑔
				(
			

			
				
			
			

				𝐷
			

			

				𝑋
			

			
				𝑁
				,
				𝜉
				)
			

		
	
. Here, 
	
		
			

				𝐷
			

		
	
, 
	
		
			
				
			
			

				𝐵
			

		
	
 and 
	
		
			
				
			
			

				𝐴
			

			

				𝑁
			

		
	
 are called the induced connection on 
	
		
			

				𝑀
			

		
	
, the second fundamental form, and the Weingarten mapping with respect to 
	
		
			
				
			
			

				𝐷
			

		
	
. From (2.9), (2.10), (3.1), (4.1), (4.13), and (4.14) we obtain
						
	
 		
 			
				(
				4
				.
				1
				5
				)
			
 			
				(
				4
				.
				1
				6
				)
			
 			
				(
				4
				.
				1
				7
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑋
			

			
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝑌
				+
				𝑢
				(
				𝑌
				)
				𝑓
				𝑋
				,
			

			
				
			
			
				𝐵
				(
				𝑋
				,
				𝑌
				)
				=
				𝐵
				(
				𝑋
				,
				𝑌
				)
				+
				𝑢
				(
				𝑌
				)
				𝑤
				(
				𝑋
				)
				,
			

			
				
			
			

				𝐴
			

			

				𝑁
			

			
				𝑋
				=
				𝐴
			

			

				𝑁
			

			
				𝑋
				−
				𝑢
				(
				𝑁
				)
				𝑓
				𝑋
				,
			

			
				
			
			
				𝜏
				(
				𝑋
				)
				=
				𝜏
				(
				𝑋
				)
				+
				𝑢
				(
				𝑁
				)
				𝑤
				(
				𝑋
				)
				,
			

		
	

					for any 
	
		
			

				𝑋
			

		
	
, 
	
		
			
				𝑌
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
. From (4.1), (4.4), (4.13), and (4.16) we get 
						
	
 		
 			
				(
				4
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝐷
			

			

				𝑋
			

			
				𝑔
				
				(
				𝑌
				,
				𝑍
				)
				=
				𝐵
				(
				𝑋
				,
				𝑌
				)
				𝜂
				(
				𝑍
				)
				+
				𝐵
				(
				𝑋
				,
				𝑍
				)
				𝜂
				(
				𝑌
				)
				−
				𝑢
				(
				𝑌
				)
				𝑔
				(
				𝑓
				𝑋
				,
				𝑍
				)
				−
				𝑢
				(
				𝑍
				)
				𝑔
				(
				𝑓
				𝑋
				,
				𝑌
				)
				.
			

		
	

					On the other hand, the torsion tensor of the induced connection 
	
		
			

				𝐷
			

		
	
 is
						
	
 		
 			
				(
				4
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑇
			

			

				𝐷
			

			
				(
				𝑋
				,
				𝑌
				)
				=
				𝑢
				(
				𝑌
				)
				𝑓
				𝑋
				−
				𝑢
				(
				𝑋
				)
				𝑓
				𝑌
				.
			

		
	

					From last two equations we have the following proposition.
Proposition 4.2.  Let 
	
		
			

				𝑀
			

		
	
 be a lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 with quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
. Then the induced connection 
	
		
			

				𝐷
			

		
	
 is a quarter-symmetric nonmetric connection on the lightlike hypersurface 
	
		
			

				𝑀
			

		
	
.
For any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
, we can write
						
	
 		
 			
				(
				4
				.
				2
				0
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑋
			

			
				𝑃
				𝑌
				=
				𝐷
			

			
				∗
				𝑋
			

			
				𝑃
				𝑌
				+
			

			
				
			
			
				𝐷
				𝐶
				(
				𝑋
				,
				𝑃
				𝑌
				)
				𝜉
				,
			

			

				𝑋
			

			
				𝜉
				=
				−
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				+
				𝜀
				(
				𝑋
				)
				𝜉
				,
			

		
	

					where 
	
		
			

				𝐷
			

			
				∗
				𝑋
			

			
				𝑃
				𝑌
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				∈
				Γ
				(
				𝑆
				(
				𝑇
				𝑀
				)
				)
			

		
	
, 
	
		
			
				
			
			
				𝐶
				(
				𝑋
				,
				𝑃
				𝑌
				)
				=
			

			
				
			
			
				𝑔
				(
				𝐷
			

			

				𝑋
			

			
				𝑃
				𝑌
				,
				𝑁
				)
			

		
	
, and 
	
		
			
				𝜀
				(
				𝑋
				)
				=
			

			
				
			
			
				𝑔
				(
				𝐷
			

			

				𝑋
			

			
				𝜉
				,
				𝑁
				)
			

		
	
. From (2.14), (16), and (4.15), we obtain
						
	
 		
 			
				(
				4
				.
				2
				1
				)
			
 			
				(
				4
				.
				2
				2
				)
			
 		
	

	
		
			
				
			
			
				𝐶
				(
				𝑋
				,
				𝑃
				𝑌
				)
				=
				𝐶
				(
				𝑋
				,
				𝑃
				𝑌
				)
				+
				𝑢
				(
				𝑃
				𝑌
				)
				𝜂
				(
				𝑓
				𝑋
				)
				,
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				=
				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				−
				𝑢
				(
				𝜉
				)
				𝑃
				𝑓
				𝑋
				,
				𝜀
				(
				𝑋
				)
				=
				−
				𝜏
				(
				𝑋
				)
				+
				𝑢
				(
				𝜉
				)
				𝜂
				(
				𝑓
				𝑋
				)
				.
			

		
	

					Using (2.15), (4.16) and (4.22) we obtain
						
	
 		
 			
				(
				4
				.
				2
				3
				)
			
 		
	

	
		
			
				
			
			
				
				𝐵
				(
				𝑋
				,
				𝑃
				𝑌
				)
				=
				𝑔
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				
				𝑋
				,
				𝑃
				𝑌
				+
				𝑢
				(
				𝑃
				𝑌
				)
				𝑤
				(
				𝑋
				)
				+
				𝑢
				(
				𝜉
				)
			

			
				
			
			
				𝑔
				(
				𝐹
				𝑋
				,
				𝑃
				𝑌
				)
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
.
Now, we consider a screen semi-invariant lightlike hypersurface 
	
		
			

				𝑀
			

		
	
 of a semi-Rieamannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 with respect to the quarter symmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
 given by (4.1). Since 
	
		
			
				𝑤
				(
				𝑋
				)
				=
				𝑔
				(
				𝐹
				𝑋
				,
				𝜉
				)
			

		
	
, for any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝔻
				)
				,
				𝑤
				(
				𝑋
				)
				=
				0
			

		
	
. Thus we have the following propositions.
Proposition 4.3.  Let 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 with quarter-symmetric nonmetric connection. The second fundamental form 
	
		
			
				
			
			

				𝐵
			

		
	
 of quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
 is degenerate.
Proposition 4.4.  Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be a semi-Riemannian product manifold and 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurfaces of 
	
		
			
				
			
			

				𝑀
			

		
	
. If 
	
		
			

				𝑀
			

		
	
 is 
	
		
			

				𝔻
			

		
	
 totally geodesic with respect to 
	
		
			
				
			
			

				∇
			

		
	
, then 
	
		
			

				𝑀
			

		
	
 is 
	
		
			

				𝔻
			

		
	
 totally geodesic with respect to quarter-symmetric nonmetric connection.
Theorem 4.5.  Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be a semi-Riemannian product manifold and 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurfaces of 
	
		
			
				
			
			

				𝑀
			

		
	
. Then the following assertions are equivalent. (i)The distribution 
	
		
			
				
			
			

				𝔻
			

		
	
 is integrable with respect to the quarter symmetric nonmetric connection 
	
		
			

				𝐷
			

		
	
.(ii)
	
		
			
				
			
			
				𝐵
				(
				𝑋
				,
				𝑓
				𝑌
				)
				=
			

			
				
			
			
				𝐵
				(
				𝑌
				,
				𝑓
				𝑋
				)
			

		
	
, for any 
	
		
			

				𝑋
			

		
	
, 
	
		
			
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
.(iii)
	
		
			
				𝑔
				(
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				,
				𝑃
				𝑓
				𝑌
				)
				=
				𝑔
				(
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝑌
				,
				𝑃
				𝑓
				𝑋
				)
			

		
	
, for any 
	
		
			

				𝑋
			

		
	
, 
	
		
			
				𝑌
				∈
				Γ
				(
			

			
				
			
			
				𝔻
				)
			

		
	
.
The proof of this theorem is similar to the proof of the Theorem 3.8.
From (4.23), for any 
	
		
			
				𝑋
				∈
				Γ
				(
				𝔻
				)
			

		
	
 and 
	
		
			
				𝑌
				∈
				Γ
				(
				𝔻
			

			

				2
			

			

				)
			

		
	
, we have 
	
		
			
				
			
			
				𝐵
				(
				𝑋
				,
				𝑃
				𝑌
				)
				=
				𝑔
				(
			

			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

			
				𝑋
				,
				𝑃
				𝑌
				)
			

		
	
. If we set 
	
		
			

				𝔻
			

			

				
			

			
				=
				𝔻
				⟂
				𝔻
			

			

				2
			

		
	
, then, from Theorem 3.10, we have the following corollary.
Corollary 4.6.  Let 
	
		
			

				(
			

			
				
			
			
				𝑀
				,
			

			
				
			
			
				𝑔
				)
			

		
	
 be a semi-Riemannian product manifold and 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of 
	
		
			
				
			
			

				𝑀
			

		
	
. Then the distribution 
	
		
			

				𝔻
			

			

				
			

		
	
 is a mixed geodesic foliation defined with respect to quarter symmetric nonmetric connection if and only if there is no 
	
		
			

				𝔻
			

			

				1
			

		
	
 component of 
	
		
			
				
			
			

				𝐴
			

			
				∗
				𝜉
			

		
	
.
From (4.15), we obtain
						
	
 		
 			
				(
				4
				.
				2
				4
				)
			
 		
	

	
		
			

				𝑅
			

			

				𝐷
			

			
				∇
				(
				𝑋
				,
				𝑌
				)
				𝑍
				=
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				+
				𝑢
				(
				𝑍
				)
				
				
			

			

				𝑋
			

			
				𝑓
				
				
				∇
				𝑌
				−
			

			

				𝑌
			

			
				𝑓
				
				𝑋
				
				+
				𝜆
				(
				𝑋
				,
				𝑍
				)
				𝑓
				𝑌
				−
				𝜆
				(
				𝑌
				,
				𝑍
				)
				𝑓
				𝑋
				,
			

		
	

					where 
	
		
			

				𝜆
			

		
	
 is a 
	
		
			
				(
				0
				,
				2
				)
			

		
	
 tensor on 
	
		
			

				𝑀
			

		
	
 given by 
	
		
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				=
				(
				∇
			

			

				𝑋
			

			
				𝑢
				)
				(
				𝑍
				)
				−
				𝑢
				(
				𝑍
				)
				𝑢
				(
				𝑓
				𝑋
				)
			

		
	
.
From (4.24), we have the following proposition which is similar to the Proposition 4.1.
Proposition 4.7.  Let 
	
		
			

				𝑀
			

		
	
 be a lightlike hypersurface of a semi-Riemannian product manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. One assumes that 
	
		
			

				𝑓
			

		
	
 is parallel on 
	
		
			

				𝑀
			

		
	
. Then the first Bianchi identity of the quarter-symmetric nonmetric connection 
	
		
			

				𝐷
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 is provided if and only if 
	
		
			

				𝜆
			

		
	
 is symmetric.
Now we will compute Gauss-Codazzi equations of lightlike hypersurfaces with respect to the quarter-symmetric nonmetric connection:
						
	
 		
 			
				(
				4
				.
				2
				5
				)
			
 		
	

	
		
			
				
			
			
				𝑔
				
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				
				+
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑃
				𝑊
				=
				𝑔
				(
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑃
				𝑊
				)
				+
				𝐵
				(
				𝑋
				,
				𝑍
				)
				𝐶
				(
				𝑌
				,
				𝑃
				𝑊
				)
				−
				𝐵
				(
				𝑌
				,
				𝑍
				)
				𝐶
				(
				𝑋
				,
				𝑃
				𝑊
				)
			

			
				
			
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				𝑔
				(
				𝑓
				𝑌
				,
				𝑃
				𝑊
				)
				−
			

			
				
			
			
				𝜆
				(
				𝑌
				,
				𝑍
				)
				𝑔
				(
				𝑓
				𝑋
				,
				𝑃
				𝑊
				)
				,
			

			
				
			
			
				𝑔
				
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				
				=
				
				∇
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝜉
			

			

				𝑋
			

			
				𝐵
				
				
				∇
				(
				𝑌
				,
				𝑍
				)
				−
			

			

				𝑌
			

			
				𝐵
				
				+
				(
				𝑋
				,
				𝑍
				)
			

			
				
			
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				𝑤
				(
				𝑌
				)
				−
			

			
				
			
			
				𝜆
				(
				𝑌
				,
				𝑍
				)
				𝑤
				(
				𝑋
				)
				,
			

			
				
			
			
				𝑔
				
			

			
				
			
			

				𝑅
			

			

				𝐷
			

			
				
				+
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑁
				=
				𝑔
				(
				𝑅
				(
				𝑋
				,
				𝑌
				)
				𝑍
				,
				𝑁
				)
			

			
				
			
			
				𝜆
				(
				𝑋
				,
				𝑍
				)
				𝜂
				(
				𝑓
				𝑌
				)
				−
			

			
				
			
			
				𝜆
				(
				𝑌
				,
				𝑍
				)
				𝜂
				(
				𝑓
				𝑋
				)
				,
			

		
	

					for any 
	
		
			

				𝑋
			

		
	
, 
	
		
			

				𝑌
			

		
	
, 
	
		
			

				𝑍
			

		
	
, 
	
		
			
				𝑊
				∈
				Γ
				(
				𝑇
				𝑀
				)
			

		
	
.
Now, let 
	
		
			

				𝑀
			

		
	
 be a screen semi-invariant lightlike hypersurface of a 
	
		
			
				(
				𝑚
				+
				2
				)
				-
			

		
	
dimensional semi-Riemannian product manifold with the quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
 such that the tensor field 
	
		
			

				𝑓
			

		
	
 is parallel on 
	
		
			

				𝑀
			

		
	
. We consider the local quasiorthonormal basis 
	
		
			
				{
				𝐸
			

			

				𝑖
			

			
				,
				𝐹
				𝜉
				,
				𝐹
				𝑁
				,
				𝜉
				,
				𝑁
				}
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				…
				𝑚
				−
				2
			

		
	
, of 
	
		
			
				
			
			

				𝑀
			

		
	
 along 
	
		
			

				𝑀
			

		
	
, where 
	
		
			
				{
				𝐸
			

			

				1
			

			
				,
				…
				,
				𝐸
			

			
				𝑚
				−
				2
			

			

				}
			

		
	
 is an orthonormal basis of 
	
		
			
				Γ
				(
				𝔻
				)
			

		
	
. Then, the Ricci tensor of 
	
		
			

				𝑀
			

		
	
 with respect to 
	
		
			

				𝐷
			

		
	
 is given by
						
	
 		
 			
				(
				4
				.
				2
				6
				)
			
 		
	

	
		
			

				𝑅
			

			
				𝐷
				(
				0
				,
				2
				)
			

			
				(
				𝑋
				,
				𝑌
				)
				=
			

			
				𝑚
				−
				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜀
			

			

				𝑖
			

			
				𝑔
				
				𝑅
			

			

				𝐷
			

			
				
				𝑋
				,
				𝐸
			

			

				𝑖
			

			
				
				𝑌
				,
				𝐸
			

			

				𝑖
			

			
				
				
				𝑅
				+
				𝑔
			

			

				𝐷
			

			
				
				
				𝑅
				(
				𝑋
				,
				𝐹
				𝜉
				)
				𝑌
				,
				𝐹
				𝑁
				+
				𝑔
			

			

				𝐷
			

			
				
				
				𝑅
				(
				𝑋
				,
				𝐹
				𝑁
				)
				𝑌
				,
				𝐹
				𝜉
				+
				𝑔
			

			

				𝐷
			

			
				
				.
				(
				𝑋
				,
				𝜉
				)
				𝑌
				,
				𝑁
			

		
	

					From (4.24) we have
						
	
 		
 			
				(
				4
				.
				2
				7
				)
			
 		
	

	
		
			

				𝑅
			

			
				𝐷
				(
				0
				,
				2
				)
			

			
				(
				𝑋
				,
				𝑌
				)
				=
				𝑅
			

			
				(
				0
				,
				2
				)
			

			
				+
				(
				𝑋
				,
				𝑌
				)
			

			
				𝑚
				−
				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜀
			

			

				𝑖
			

			
				
				
				𝜆
				(
				𝑋
				,
				𝑌
				)
				𝑔
				𝑓
				𝐸
			

			

				𝑖
			

			
				,
				𝐸
			

			

				𝑖
			

			
				
				
				𝐸
				−
				𝜆
			

			

				𝑖
			

			
				
				𝑔
				
				,
				𝑌
				𝑓
				𝑋
				,
				𝐸
			

			

				𝑖
			

			
				
				
				−
				𝜆
				(
				𝐹
				𝜉
				,
				𝑌
				)
				𝜂
				(
				𝑋
				)
				−
				𝜆
				(
				𝜉
				,
				𝑌
				)
				𝜂
				(
				𝑓
				𝑋
				)
				,
			

		
	

					where 
	
		
			

				𝑅
			

			
				(
				0
				,
				2
				)
			

			
				(
				𝑋
				,
				𝑌
				)
			

		
	
 is the Ricci tensor of 
	
		
			

				𝑀
			

		
	
. Thus we have the following corollary.
Corollary 4.8.  Let 
	
		
			

				𝑀
			

		
	
 a screen semi-invariant lightlike hypersurface of a 
	
		
			
				(
				𝑚
				+
				2
				)
				-
			

		
	
dimensional semi-Riemannian product manifold with the quarter-symmetric nonmetric connection 
	
		
			
				
			
			

				𝐷
			

		
	
 such that the tensor field 
	
		
			

				𝑓
			

		
	
 is parallel on 
	
		
			

				𝑀
			

		
	
 and 
	
		
			

				𝑅
			

			
				(
				0
				,
				2
				)
			

			
				(
				𝑋
				,
				𝑌
				)
			

		
	
 is symmetric. Then 
	
		
			

				𝑅
			

			
				𝐷
				(
				0
				,
				2
				)
			

		
	
 is symmetric on the distribution 
	
		
			

				𝔻
			

		
	
 if and only if 
	
		
			

				𝜆
			

		
	
 is symmetric and 
	
		
			
				𝜆
				(
				𝑓
				𝑋
				,
				𝑌
				)
				=
				𝜆
				(
				𝑓
				𝑌
				,
				𝑋
				)
			

		
	
.
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