Research Article

Some Properties of Multiple Generalized q-Genocchi Polynomials with Weight α and Weak Weight β

J. Y. Kang

Department of Mathematics, Hannam University, Daejeon 306-791, Republic of Korea

Correspondence should be addressed to J. Y. Kang, rkdwjdnnr2002@yahoo.co.kr

Received 28 May 2012; Revised 21 August 2012; Accepted 22 August 2012

Academic Editor: Cheon Ryoo

Copyright © 2012 J. Y. Kang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present paper deals with the various q-Genocchi numbers and polynomials. We define a new type of multiple generalized q-Genocchi numbers and polynomials with weight α and weak weight β by applying the method of p-adic q-integral. We will find a link between their numbers and polynomials with weight α and weak weight β. Also we will obtain the interesting properties of their numbers and polynomials with weight α and weak weight β. Moreover, we construct a Hurwitz-type zeta function which interpolates multiple generalized q-Genocchi polynomials with weight α and weak weight β and find some combinatorial relations.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper \mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C}, and \mathbb{C}_p denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the completion of the algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = 1/p$ (see [1–21]). When one talks of q-extension, q is variously considered as an indeterminate, a complex $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then one normally assumes $|q| < 1$. If $q \in \mathbb{C}_p$, then we assume that $|q-1|_p < 1$.

Throughout this paper, we use the following notation:

$$[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}. \quad (1.1)$$

Hence $\lim_{q \to 1} [x]_q = x$ for all $x \in \mathbb{Z}_p$ (see [1–14, 16, 18, 20, 21]).
We say that \(g : \mathbb{Z}_p \to \mathbb{C}_p \) is uniformly differentiable function at a point \(a \in \mathbb{Z}_p \) and we write \(g \in \text{UD}(\mathbb{Z}_p) \) if the difference quotients \(\Phi_g : \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{C}_p \) such that

\[
\Phi_g(x, y) = \frac{g(x) - g(y)}{x - y}
\]

have a limit \(g'(a) \) as \((x, y) \to (a, a) \).

Let \(d \) be a fixed integer, and let \(p \) be a fixed prime number. For any positive integer \(N \), we set

\[
X = X_d = \lim_{N \to \infty} \left[\frac{\mathbb{Z}}{dp^N \mathbb{Z}} \right], \quad X_1 = \mathbb{Z}_p,
\]

\[
X^* = \bigcup_{0 < a < dp} (a + dp\mathbb{Z}_p),
\]

\[
a + dp^N\mathbb{Z}_p = \left\{ x \in X \mid x \equiv a \pmod{dp^N} \right\},
\]

where \(a \in \mathbb{Z} \) lies in \(0 \leq a < dp^N \).

For any positive integer \(N \),

\[
\mu_q(a + dp^N\mathbb{Z}_p) = \frac{q^a}{[dp^N]_q} \tag{1.4}
\]

is known to be a distribution on \(X \).

For \(g \in \text{UD}(\mathbb{Z}_p) \), Kim defined the \(q \)-deformed fermionic \(p \)-adic integral on \(\mathbb{Z}_p \):

\[
I_{-q}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N-1} g(x)(-q)^x. \tag{1.5}
\]

(see \([1-13]\)), and note that

\[
\int_{\mathbb{Z}_p} g(x) d\mu_{-q}(x) = \int_{\times} g(x) d\mu_{-q}(x). \tag{1.6}
\]

We consider the case \(q \in (-1, 0) \) corresponding to \(q \)-deformed fermionic certain and annihilation operators and the literature given there in \([9, 13, 14]\).

In \([9, 12, 14, 19]\), we introduced multiple generalized Genocchi number and polynomials. Let \(\chi \) be a primitive Dirichlet character of conductor \(f \in \mathbb{N} \). We assume that \(f \)}
is odd. Then the multiple generalized Genocchi numbers, $G^{(r)}_{n,\chi}$, and the multiple generalized Genocchi polynomials, $G^{(r)}_{n,\chi}(x)$, associated with χ, are defined by

$$F^{(r)}_{\chi}(t) = \left(\frac{2t \sum_{a=0}^{r-1} X(a)(-1)^a e^{at}}{e^{at} + 1} \right)^r = \sum_{n=0}^{\infty} G^{(r)}_{n,\chi} \frac{t^n}{n!},$$

$$F^{(r)}_{\chi}(t,x) = \left(\frac{2t \sum_{a=0}^{r-1} X(a)(-1)^a e^{at}}{e^{at} + 1} e^{tx} \right)^r = \sum_{n=0}^{\infty} G^{(r)}_{n,\chi}(x) \frac{t^n}{n!}. \tag{1.7}$$

In the special case $x = 0$, $G^{(r)}_{n,\chi} = G^{(r)}_{n,\chi}(0)$ are called the nth multiple generalized Genocchi numbers attached to χ.

Now, having discussed the multiple generalized Genocchi numbers and polynomials, we were ready to multiple-generalize them to their q-analogues. In generalizing the generating functions of the Genocchi numbers and polynomials to their respective q-analogues; it is more useful than defining the generating function for the Genocchi numbers and polynomials (see [12]).

Our aim in this paper is to define multiple generalized q-Genocchi numbers $G^{(a,\beta,r)}_{n,\chi,q}$ and polynomials $G^{(a,\beta,r)}_{n,\chi,q}(x)$ with weight α and weak weight β. We investigate some properties which are related to multiple generalized q-Genocchi numbers $G^{(a,\beta,r)}_{n,\chi,q}$ and polynomials $G^{(a,\beta,r)}_{n,\chi,q}(x)$ with weight α and weak weight β. We also derive the existence of a specific interpolation function which interpolate multiple generalized q-Genocchi numbers $G^{(a,\beta,r)}_{n,\chi,q}$ and polynomials $G^{(a,\beta,r)}_{n,\chi,q}(x)$ with weight α and weak weight β at negative integers.

2. The Generating Functions of Multiple Generalized q-Genocchi Numbers and Polynomials with Weight α and Weak Weight β

Many mathematicians constructed various kinds of generating functions of the q-Genocchi numbers and polynomials by using p-adic q-Vokenborn integral. First we introduce multiple generalized q-Genocchi numbers and polynomials with weight α and weak weight β.

Let us define the generalized q-Genocchi numbers $G^{(a,\beta)}_{n,\chi,q}$ and polynomials $G^{(a,\beta)}_{n,\chi,q}(x)$ with weight α and weak weight β, respectively,

$$F_{\chi,q}^{(a,\beta)}(t) = \sum_{n=0}^{\infty} G^{(a,\beta)}_{n,\chi,q} \frac{t^n}{n!} = \int_{X} t^\chi(x) e^{[x]_{\alpha,t}} d \mu_{-\varphi}(x),$$

$$F_{\chi,q}^{(a,\beta)}(t,x) = \sum_{n=0}^{\infty} G^{(a,\beta)}_{n,\chi,q}(x) \frac{t^n}{n!} = \int_{X} t^\chi(y) e^{[x+y]_{\alpha,t}} d \mu_{-\varphi}(y). \tag{2.1}$$

By using the Taylor expansion of $e^{[x]_{\alpha,t}}$, we have

$$\sum_{n=0}^{\infty} \int_{X} \chi(x) [x]_{\alpha,t}^n d \mu_{-\varphi}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} G^{(a,\beta)}_{n,\chi,q} \frac{t^{n-1}}{n!} = G^{(a,\beta)}_{0,\chi,q} + \sum_{n=0}^{\infty} G^{(a,\beta)}_{n+1,\chi,q} \frac{t^n}{n+1} \frac{1}{n!}. \tag{2.2}$$
By comparing the coefficient of both sides of $t^n/n!$ in (2.2), we get

$$G^{(\alpha, \beta)}_{n+1, X,q} \frac{n}{n+1} = \frac{[2]_q}{(1 - q^n)^2} \sum_{a=0}^{n-1} (-1)^a q^a \chi(a) \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{l+a} \left(1 + q^{(l+a)} \right).$$

From (2.2) and (2.3), we can easily obtain that

$$\sum_{n=0}^{\infty} G^{(\alpha, \beta)}_{n, X,q} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(t \int_X \chi(x) [x]_q^n \mu_{q-\phi} (x) \right) \frac{t^n}{n!} = [2]_q \sum_{l=0}^{\infty} (-1)^l q^l \chi(l) e^{l \cdot \phi}.$$

Therefore, we obtain

$$F^{(\alpha, \beta)}_{X,q} (t) = [2]_q \sum_{l=0}^{\infty} (-1)^l q^l \chi(l) e^{l \cdot \phi} = \sum_{n=0}^{\infty} G^{(\alpha, \beta)}_{n, X,q} \frac{t^n}{n!}.$$

Similarly, we find the generating function of generalized q-Genocchi polynomials with weight α and weak weight β:

$$G^{(\alpha, \beta)}_{0, X,q} (x) = 0,
G^{(\alpha, \beta)}_{n+1, X,q} (x) = \int_X \chi(y) [x + y]_q^n \mu_{q-\phi} (y) = [2]_q \sum_{l=0}^{\infty} (-1)^l q^l \chi(l) [x + l]_q^n.$$

From (2.6), we have

$$F^{(\alpha, \beta)}_{X,q} (t, x) = [2]_q \sum_{l=0}^{\infty} (-1)^l q^l \chi(l) e^{l \cdot \phi} = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} G^{(\alpha, \beta)}_{n, X,q} (x) \frac{t^n}{n!}.$$

Observe that $F^{(\alpha, \beta)}_{X,q} (t) = F^{(\alpha, \beta)}_{X,q} (t, 0)$. Hence we have $G^{(\alpha, \beta)}_{n, X,q} = G^{(\alpha, \beta)}_{n, X,q} (0)$. If $q \to 1$ into (2.7), then we easily obtain $F^{(\alpha, \beta)}_{X,q} (t, x)$.

First, we define the multiple generalized q-Genocchi numbers $G^{(\alpha, \beta, r)}_{n, X,q}$ with weight α and weak weight β:

$$F^{(\alpha, \beta, r)}_{X,q} (t) = [2]_q \sum_{k_1, \ldots, k_r=0}^{\infty} (-1)^{\sum_{i=1}^{r} k_i} q^{\sum_{i=1}^{r} k_i} \left(\prod_{i=1}^{r} \chi(k_i) \right) e^{\sum_{i=1}^{r} k_i \cdot \phi} \int_X \chi(x_1) \cdots \chi(x_r) e^{(x_1 + \cdots + x_r) \cdot \phi} d \mu_{q-\phi} (x_1) \cdots d \mu_{q-\phi} (x_r).$$

$$= \sum_{n=0}^{\infty} G^{(\alpha, \beta, r)}_{n, X,q} \frac{t^n}{n!}.$$
Let $$\text{Theorem 2.1.}$$

Then we have

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{r=1}^{\infty} G_{n,r}^{(x_1, \ldots, x_r)} \cdot \frac{t^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{r=1}^{\infty} G_{n,r}^{(x_1, \ldots, x_r)} \cdot \frac{t^n}{n!} \right)$$

(2.9)

where $$\binom{n+r}{r} = \frac{(n+r)!}{n!r!}.$$

By comparing the coefficients on the both sides of (2.9), we obtain the following theorem.

Theorem 2.1. Let $$q \in \mathbb{C}_p$$ with $$|1-q|_p < 1$$ and $$n \in \mathbb{Z}_+.$$ Then one has

$$G_{n+r,\chi,\lambda}^{(a,\beta,r)}(x) = \sum_{r=1}^{n+r} G_{n+r,\chi,\lambda}^{(a,\beta,r)} = \cdots = G_{n+r-1,\chi,\lambda}^{(a,\beta,r)} = 0,$$

(2.10)

From now on, we define the multiple generalized $$q$$-Genocchi polynomials $$G_{n,\chi,q}^{(a,\beta,r)}(x)$$ with weight $$a$$ and weak weight $$\beta.$$

$$F_{\chi,q}^{(a,\beta,r)}(t, x) = [2]_q^r \frac{t^r}{r!} \sum_{k_1, \ldots, k_r=0}^{\infty} (-1)^{\sum_{i=1}^{r} k_i} q^{\sum_{i=1}^{r} k_i} \prod_{i=1}^{r} \chi(k_i) e^{\sum_{i=1}^{r} k_i x_i t}$$

(2.11)
Then we have

\[
\sum_{n=0}^{\infty} \int_X \cdots \int_X x_1^n \cdots x_r^n [x + y_1 + \cdots + y_r]_q^n d\mu_{-\varphi} \left((y_1) \cdots d\mu_{-\varphi} \left((y_r) \right) \right) \\
= \sum_{n=0}^{\infty} G_n(x) \frac{t^{n-r}}{n!} = \sum_{n=0}^{r-1} G_{n-1} \left(x \right) \frac{t^n}{n!} + \sum_{n=0}^{\infty} G_{n+r} \left(x \right) \frac{t^n}{(n+r)! n!}
\]

(2.12)

where \(\binom{n+r}{r} = \frac{(n+r)!}{n!r!} \).

By comparing the coefficients on the both sides of (2.12), we have the following theorem.

Theorem 2.2. Let \(q \in \mathbb{C} \) with \(|1 - q|_p < 1 \) and \(n \in \mathbb{Z}_+ \). Then one has

\[
G_n^{(a, \beta, r)} (x) = G_{n-1}^{(a, \beta, r)} (x) = \cdots = G_{r-1}^{(a, \beta, r)} (x) = 0,
\]

\[
\frac{G_n^{(a, \beta, r)} (x)}{(n+r)!} = \int_X \cdots \int_X x_1^n \cdots x_r^n [x + y_1 + \cdots + y_r]_q^n d\mu_{-\varphi} \left((y_1) \cdots d\mu_{-\varphi} \left((y_r) \right) \right)
\]

(2.13)

In (2.11), we simply identify that

\[
\lim_{q \to 1} F_n^{(a, \beta, r)} (t, x) = 2^r t^r \sum_{k_1, \ldots, k_r=0}^{\infty} (-1)^{\sum_{i=1}^r k_i} \left(\prod_{i=1}^r \chi(k_i) \right) e^t \left(\sum_{i=1}^r k_i + x \right) t^r
\]

(2.14)

So far, we have studied the generating functions of the multiple generalized \(q \)-
Genocchi numbers \(G_n^{(a, \beta, r)} \) and polynomials \(G_n^{(a, \beta, r)} (x) \) with weight \(\alpha \) and weak weight \(\beta \).
3. Modified Multiple Generalized q-Genocchi Polynomials with Weight α and Weak Weight β

In this section, we will investigate about modified multiple generalized q-Genocchi numbers and polynomials with weight α and weak weight β. Also, we will find their relations in multiple generalized q-Genocchi numbers and polynomials with weight α and weak weight β.

Firstly, we modify generating functions of $G_{n,x,q}^{(a,\beta,r)}$ and $G_{n,x,q}^{(a,\beta,r)}(x)$. We access some relations connected to these numbers and polynomials with weight α and weak weight β. For this reason, we assign generating function of modified multiple generalized q-Genocchi numbers and polynomials with weight α and weak weight β which are implied by $G_{n,x,q}^{(a,\beta,r)}$ and $G_{n,x,q}^{(a,\beta,r)}(x)$. We give relations between these numbers and polynomials with weight α and weak weight β.

We modify (2.11) as follows:

$$\tilde{G}^{(a,\beta,r)}_{n,x,q}(t, x) = F^{(a,\beta,r)}_{n,x,q}(q^{-ax}t, x), \tag{3.1}$$

where $F^{(a,\beta,r)}_{n,x,q}(t, x)$ is defined in (2.11).

From the above we know that

$$\tilde{G}^{(a,\beta,r)}_{n,x,q}(t, x) = \sum_{n=0}^{\infty} q^{-ax} G^{(a,\beta,r)}_{n,x,q}(x) \frac{t^n}{n!}. \tag{3.2}$$

After some elementary calculations, we attain

$$\tilde{G}^{(a,\beta,r)}_{n,x,q}(t, x) = q^{-ax} e^{q^{-ax}[x]_{q^a} t} F^{(a,\beta,r)}_{n,x,q}(t), \tag{3.3}$$

where $F^{(a,\beta,r)}_{n,x,q}(t)$ is defined in (2.8).

From the above, we can assign the modified multiple generalized q-Genocchi polynomials $e_{n,x,q}^{(a,\beta,r)}(x)$ with weight α and weak weight β as follows:

$$\tilde{G}^{(a,\beta,r)}_{n,x,q}(t, x) = \sum_{n=0}^{\infty} e_{n,x,q}^{(a,\beta,r)}(x) \frac{t^n}{n!}. \tag{3.4}$$

Then we have

$$e_{n,x,q}^{(a,\beta,r)}(x) = q^{-ax} G^{(a,\beta,r)}_{n,x,q}(x). \tag{3.5}$$

Theorem 3.1. For $r \in \mathbb{N}$ and $n \in \mathbb{Z}$, one has

$$e_{n,x,q}^{(a,\beta,r)}(x) = q^{-(n+r)x} \sum_{i=0}^{n} \binom{n}{i} q^{ax} [x]_{q^a}^{n-i} G^{(a,\beta,r)}_{i,x,q}. \tag{3.6}$$
Corollary 3.2. For $r \in \mathbb{N}$ and $n \in \mathbb{Z}_+$, by using (3.7), one easily obtains

$$
\mathcal{G}^{(\alpha,\beta,r)}_{n,\chi,q}(x) = q^{-(n+r)x} \sum_{m=0}^{\infty} \sum_{j=0}^{n} \sum_{l=0}^{n-j} \binom{n}{j,l,n-j-l} \binom{n-j+m-1}{m} (-1)^{\ell} q^{a_{(j+l)x+m}} G^{(\alpha,\beta,r)}_{j,l,q}. \tag{3.7}
$$

Secandly, by using generating function of the multiple generalized q-Genocchi polynomials with weight α and weak weight β, which is defined by (2.11), we obtain the following identities.

By using (2.13), we find that

$$
\begin{align*}
\mathcal{G}^{(\alpha,\beta,r)}_{n+r,\chi,q}(x) &= [2]^i q^r \sum_{m=0}^{\infty} \sum_{a_1,\ldots,a_n=0}^{f-1} \left(m + r - 1 \right) \frac{(-1)^{\sum a_i+m}}{m} \\
& \times q^{\beta \sum a_i + fm} \left(\prod_{i=1}^{r} \chi(a_i) \right) \left[\sum_{i=1}^{r} a_i + fm + x \right]^{n} q^{x} \\
& = [2]^i q^r \sum_{a_1,\ldots,a_n=0}^{f-1} \sum_{a_0=0}^{n} \left(a_i - a_i, n-l \right) (-1)^{\sum a_i} q^{\alpha(a+n-l)+\beta} \sum_{i=1}^{r} a_i \\
& \times \left(\prod_{i=1}^{r} \chi(a_i) \right) \frac{[x]^{n-l}}{(1-q^{x})(1+q^{f(a+n-l)+\beta})^r}. \tag{3.8}
\end{align*}
$$

Thus we have the following theorem.

Theorem 3.3. Let $q \in \mathbb{C}_p$ with $|1-q|_p < 1$ and $r \in \mathbb{N}$. Then one has

$$
\begin{align*}
\mathcal{G}^{(\alpha,\beta,r)}_{n+r,\chi,q}(x) &= [2]^i q^r \sum_{a_1,\ldots,a_n=0}^{f-1} \sum_{a_0=0}^{n} \sum_{a_i=0}^{l} \left(a_i - a_i, n-l \right) (-1)^{\sum a_i} q^{\alpha(a+n-l)+\beta} \sum_{i=1}^{r} a_i \\
& \times \left(\prod_{i=1}^{r} \chi(a_i) \right) \frac{[x]^{n-l}}{(1-q^{x})(1+q^{f(a+n-l)+\beta})^r}. \tag{3.9}
\end{align*}
$$

By using (2.13), we have

$$
\mathcal{F}^{(\alpha,\beta,r)}_{\chi,q}(t,x) = [2]^i q^r \sum_{n=0}^{\infty} \sum_{l=0}^{n} \binom{n}{l} (-1)^{\ell} q^{a_l x} \sum_{a_1,\ldots,a_n=0}^{f-1} (-1)^{\sum a_i} a_i \\
& \times q^{(\alpha+\beta)\sum a_i} \left(\prod_{i=1}^{r} \chi(a_i) \right) \sum_{m=0}^{\infty} \binom{m+r-1}{m} (-q^{f(\alpha+\beta)})^{m} \frac{t^n}{n!}. \tag{3.10}
$$
Thus we have

\[
\sum_{n=0}^{\infty} G_{\alpha,\beta,r}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left[2 \sum_{l=0}^{n} \frac{n!}{l!} \right] (-1)^l q^{alx} (1 - q^x)^{-\alpha} \sum_{a_1,\ldots,a_l=0}^{f-1} (-1) \prod_{i=1}^{r} (1 + q^{f(1+\beta)})^{-r} \frac{t^n}{n!}. \tag{3.11}
\]

By comparing the coefficients of both sides of \((n + r)!/t^{n+r}\) in the above, we arrive at the following theorem.

Theorem 3.4. Let \(q \in \mathbb{C}_p\) with \(|1 - q|_p < 1\), \(r \in \mathbb{N}\). Then one has

\[
\frac{C_{\alpha,\beta,r}(x)}{(n+r)!} = \left[2 \sum_{l=0}^{n} \frac{n!}{l!} \right] \sum_{a_1,\ldots,a_l=0}^{f-1} (-1) \prod_{i=1}^{r} (1 + q^{f(1+\beta)})^{-r} \frac{t^n}{n!}. \tag{3.12}
\]

From (2.12), we easily know that

\[
\sum_{n=0}^{\infty} G_{\alpha,\beta,r}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left[2 \sum_{l=0}^{n} \frac{n!}{l!} \right] \sum_{k_1,\ldots,k_l=0}^{r} (-1) \prod_{i=1}^{l} (1 + q^{f(1+\beta)})^{-r} \frac{t^n}{n!}. \tag{3.13}
\]

From the above, we get the following theorem.

Theorem 3.5. Let \(r \in \mathbb{N}, k \in \mathbb{Z}_+\). Then one has

\[
C_{\alpha,\beta,r}(x) = C_{1,\alpha,\beta,r}(x) = \cdots = C_{r-1,\alpha,\beta,r}(x) = 0,
\]

\[
G_{l+r,\alpha,\beta,r}(x) = [2]_{q^f}^{(l+r)} \sum_{k_1,\ldots,k_l=0}^{r} (-1)^l q^{\sum_{i=1}^{l} k_i} \prod_{i=1}^{l} (1 + q^{f(1+\beta)})^{-r} \frac{t^n}{n!}. \tag{3.14}
\]
From (2.13), we have

\[
\sum_{n=0}^{\infty} G_{n,j,q}(x) \frac{t^n}{n!} \sum_{n=0}^{\infty} G_{n,j,q}(x) \frac{t^n}{n!} = 2 [q^f t^{r+s} \sum_{a_1,\ldots,a_r=0}^{f-1} \sum_{b_1,\ldots,b_s=0}^{f-1} \sum_{m=0}^{\infty} \left(\begin{array}{c} m + r - 1 \\ m \end{array} \right) (-1)^{\sum_{i=1}^{r+1} a_i + m} q^{\sum_{i=1}^{r+1} a_i + fm} \\
\times \left(\prod_{i=1}^{r} \chi(a_i) \right) e^{\sum_{i=1}^{r} a_i + fm + x} t^r \sum_{b_1,\ldots,b_s=0}^{f-1} \sum_{k=0}^{\infty} \left(\begin{array}{c} k + s - 1 \\ k \end{array} \right) (-1)^{\sum_{i=1}^{r+1} b_i + k} \\
\times q^{\sum_{i=1}^{r+1} b_i + fk} \left(\prod_{i=1}^{s} \chi(b_i) \right) e^{\sum_{i=1}^{s} b_i + fk + x} t^s \right].
\]

(3.15)

By using Cauchy product in (3.15), we obtain

\[
\sum_{n=0}^{\infty} \sum_{j=0}^{n} \left(\begin{array}{c} n \\ j \end{array} \right) G_{n,j,q}(x) G_{n-j,j,q}(x) \frac{t^n}{n!} = 2 [q^f t^{r+s} \sum_{n=0}^{\infty} \sum_{j=0}^{n} \sum_{a_1,\ldots,a_r=0}^{j-1} \sum_{b_1,\ldots,b_s=0}^{j-1} \sum_{m=0}^{\infty} \left(\begin{array}{c} j + r - 1 \\ j \end{array} \right) \left(\begin{array}{c} n - j + s - 1 \\ n - j \end{array} \right) \\
\times (-1)^{\sum_{i=1}^{r+1} a_i + \sum_{i=1}^{s} b_i + r} q^{\sum_{i=1}^{r+1} a_i + \sum_{i=1}^{s} b_i + fm} \left(\prod_{i=1}^{r} \chi(a_i) \right) \left(\prod_{i=1}^{s} \chi(b_i) \right) \\
\times e^{\sum_{i=1}^{r} a_i + fm + x} t^r \sum_{b_1,\ldots,b_s=0}^{j-1} \sum_{k=0}^{\infty} \left(\begin{array}{c} k + s - 1 \\ k \end{array} \right) (-1)^{\sum_{i=1}^{r+1} b_i + k} \\
\times e^{\sum_{i=1}^{s} b_i + fk + x} t^s \right].
\]

(3.16)

From (3.16), we have

\[
\sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} \left(\begin{array}{c} m \\ j \end{array} \right) G_{j,j,q}(x) G_{m-j,j,q}(x) \right) \frac{t^m}{m!} = 2 [q^f t^{r+s} \sum_{n=0}^{\infty} \sum_{j=0}^{n} \sum_{a_1,\ldots,a_r=0}^{j-1} \sum_{b_1,\ldots,b_s=0}^{j-1} \sum_{m=0}^{\infty} \left(\begin{array}{c} j + r - 1 \\ j \end{array} \right) \left(\begin{array}{c} n - j + s - 1 \\ n - j \end{array} \right) \\
\times (-1)^{\sum_{i=1}^{r+1} a_i + \sum_{i=1}^{s} b_i + r} q^{\sum_{i=1}^{r+1} a_i + \sum_{i=1}^{s} b_i + fm} \left(\prod_{i=1}^{r} \chi(a_i) \right) \left(\prod_{i=1}^{s} \chi(b_i) \right) \\
\times \left[\sum_{i=1}^{r} a_i + fj + x \right] \frac{t^r}{q^f} \sum_{b_1,\ldots,b_s=0}^{j-1} \sum_{k=0}^{\infty} \left(\begin{array}{c} k + s - 1 \\ k \end{array} \right) (-1)^{\sum_{i=1}^{r+1} b_i + k} \\
\times \left[\sum_{i=1}^{s} b_i + f(n - j) + x \right] \frac{t^s}{q^s} \right].
\]

(3.17)

By comparing the coefficients of both sides of \(t^{m+r+s} / (m + r + s)! \) in (3.17), we have the following theorem.
Theorem 3.6. Let \(r \in \mathbb{N} \) and \(s \in \mathbb{Z}_+ \). Then one has

\[
\sum_{j=0}^{l+r+s} \binom{l+r+s}{j} G_{[r,\chi,q]}^{(\alpha,\beta,r)}(x) G_{[l+r+s-j,\chi,q]}^{(\alpha,\beta,s)}(x)
\]

\[
= [2]^r q^s \sum_{j=0}^{\infty} \sum_{j=0}^{f-1} \sum_{j=0}^{f-1} \sum_{j=0}^{r} (-1)^{l+j} \binom{j+r-1}{j} \binom{n-j}{n-j} \binom{n+j}{n+j}
\]

\[
\times \left(\sum_{i=1}^{\infty} \binom{a_i+fj+x}{r} q^s + \left[\sum_{i=1}^{n} b_i + f(n-j) + x \right] q^s \right). \tag{3.18}
\]

Corollary 3.7. In (3.18) setting \(s = 1 \), one has

\[
\sum_{j=0}^{l+r+1} \binom{l+r+1}{j} G_{[r+1,\chi,q]}^{(\alpha,\beta,r)}(x) G_{[l+r+1-j,\chi,q]}^{(\alpha,\beta,s)}(x)
\]

\[
= [2]^{r+1} q^s \sum_{j=0}^{\infty} \sum_{j=0}^{f-1} \sum_{j=0}^{f-1} \sum_{j=0}^{r} (-1)^{l+j} \binom{j+r-1}{j} \binom{n-j}{n-j} \binom{n+j}{n+j}
\]

\[
\times \left(\chi(b_1) \prod_{i=1}^{r} \chi(a_i) \right) \left(\left[\sum_{i=1}^{r} a_i + fj + x \right] q^s + \left[b_i + f(n-j) + x \right] q^s \right). \tag{3.19}
\]

By using (2.13) we have the following theorem.

Theorem 3.8. Distribution theorem is as follows:

\[
G_{[n+r,\chi,q]}^{(\alpha,\beta,r)} = \left[\frac{f^n}{[f]_{-q}^n} \right] \sum_{a_1, \ldots, a_r=0}^{\infty} (-1)^{\sum_{i=1}^{r} a_i} q^\sum_{i=1}^{r} a_i \left(\prod_{i=1}^{r} \chi(a_i) \right) c_{[n+r,\chi,q]}^{(\alpha,\beta,r)} \left(\frac{a_1 + \cdots + a_r}{f} \right),
\]

\[
G_{[n+r,\chi,q]}^{(\alpha,\beta,s)}(x) = \left[\frac{f^n}{[f]_{-q}^n} \right] \sum_{a_1, \ldots, a_r=0}^{\infty} (-1)^{\sum_{i=1}^{r} a_i} q^\sum_{i=1}^{r} a_i \left(\prod_{i=1}^{r} \chi(a_i) \right) c_{[n+r,\chi,q]}^{(\alpha,\beta,s)} \left(x + \frac{a_1 + \cdots + a_r}{f} \right). \tag{3.20}
\]

4. Interpolation Function of Multiple Generalized \(q \)-Genocchi Polynomials with Weight \(\alpha \) and Weak Weight \(\beta \)

In this section, we see interpolation function of multiple generalized \(q \)-Genocchi polynomials with weak weight \(\alpha \) and find some relations.
Let us define interpolation function of the $G_{k+r,q}^{(a,b,r)}(x)$ as follows.

Definition 4.1. Let $q, s \in \mathbb{C}$ with $|q| < 1$ and $0 < x \leq 1$. Then one defines

$$
\xi_{X,q}^{(a,b,r)}(s,x) = [2]_q^{s} \sum_{k_1,\ldots,k_r=0}^{\infty} \frac{(-1)^{\sum k_i} q^{\sum k_i} \left(\prod_{i=1}^{r} \chi(k_i) \right)}{[x + \sum_{i=1}^{r} k_i]_{q^s}}.
$$

(4.1)

We call $\xi_{X,q}^{(a,b,r)}(s,x)$ the multiple generalized Hurwitz type q-zeta function.

In (4.1), setting $r = 1$, we have

$$
\xi_{X,q}^{(a,b,1)}(s,x) = [2]_q^{s} \sum_{l=0}^{\infty} \frac{(-1)^l q^l \chi(l)}{[x + l]_{q^s}} = \xi_{X,q}^{(a,b)}(s,x).
$$

(4.2)

Remark 4.2. It holds that

$$
\lim_{q \to 1} \xi_{X,q}^{(a,b,r)}(s,x) = 2^r \sum_{k_1,\ldots,k_r=0}^{\infty} \frac{(-1)^{\sum k_i} \left(\prod_{i=1}^{r} \chi(k_i) \right)}{[x + \sum_{i=1}^{r} k_i]_{q^s}}.
$$

(4.3)

Substituting $s = -n, n \in \mathbb{Z}_+$ into (4.1), then we have,

$$
\xi_{X,q}^{(a,b,r)}(-n,x) = [2]_q^{s} \sum_{k_1,\ldots,k_r=0}^{\infty} \frac{(-1)^{\sum k_i} q^{\sum k_i} \left(\prod_{i=1}^{r} \chi(k_i) \right)}{[x + \sum_{i=1}^{r} k_i]_{q^s}}.
$$

(4.4)

Setting (3.14) into the above, we easily get the following theorem.

Theorem 4.3. Let $r \in \mathbb{N}, n \in \mathbb{Z}_+$. Then one has

$$
\xi_{X,q}^{(a,b,r)}(-n,x) = \frac{G_{n+r,q}^{(a,b,r)}(x)}{(-n!)^r r!}.
$$

(4.5)

References

