Research Article

The Real and Complex Hermitian Solutions to a System of Quaternion Matrix Equations with Applications

Shao-Wen Yu

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

Correspondence should be addressed to Shao-Wen Yu, yushaowen@ecust.edu.cn

Received 9 October 2011; Accepted 17 November 2011

Academic Editor: Qing-Wen Wang

Copyright © 2012 Shao-Wen Yu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We establish necessary and sufficient conditions for the existence of and the expressions for the general real and complex Hermitian solutions to the classical system of quaternion matrix equations $A_1X = C_1$, $XB_1 = C_2$, and $A_3XA_3^* = C_3$. Moreover, formulas of the maximal and minimal ranks of four real matrices $X_1, X_2, X_3,$ and X_4 in solution $X = X_1 + X_2i + X_3j + X_4k$ to the system mentioned above are derived. As applications, we give necessary and sufficient conditions for the quaternion matrix equations $A_1X = C_1$, $XB_1 = C_2$, $A_3XA_3^* = C_3$, and $A_4XA_4^* = C_4$ to have real and complex Hermitian solutions.

1. Introduction

Throughout this paper, we denote the real number field by \mathbb{R}; the complex field by \mathbb{C}; the set of all $m \times n$ matrices over the quaternion algebra

$$\mathbb{H} = \left\{ a_0 + a_1i + a_2j + a_3k \mid i^2 = j^2 = k^2 = ijk = -1, a_0, a_1, a_2, a_3 \in \mathbb{R} \right\} \quad (1.1)$$

by $\mathbb{H}^{m \times n}$; the identity matrix with the appropriate size by I; the transpose, the conjugate transpose, the column right space, the row left space of a matrix A over \mathbb{H} by $A^T, A^*, \mathcal{R}(A), \mathcal{N}(A)$, respectively; the dimension of $\mathcal{R}(A)$ by $\dim \mathcal{R}(A)$, for $[1]$, a quaternion matrix A, $\dim \mathcal{R}(A) = \dim \mathcal{N}(A)$. $\dim \mathcal{R}(A)$ is called the rank of a quaternion matrix A and denoted by $r(A)$. The Moore-Penrose inverse of matrix A over \mathbb{H} by A^\dagger which satisfies four Penrose equations $AA^\dagger A = A, A^\dagger AA^\dagger = A^\dagger, (AA^\dagger)^* = AA^\dagger$, and $(A^\dagger A)^* = A^\dagger A$. In this case, A^\dagger is unique and $(A^\dagger)^* = (A^*)^\dagger$. Moreover, R_A and L_A stand for the two projectors $L_A = I - A^\dagger A$, $R_A = A^\dagger A$.

and \(R_A = I - AA^t \) induced by \(A \). Clearly, \(R_A \) and \(L_A \) are idempotent and satisfies \((R_A)^* = R_A, (L_A)^* = L_A, R_A = L_A^t, \) and \(R_A^* = L_A^t \).

Hermitian solutions to some matrix equations were investigated by many authors. In 1976, Khatri and Mitra [2] gave necessary and sufficient conditions for the existence of the Hermitian solutions to the matrix equations \(AX = B, AXB = C \)

over the complex field \(\mathbb{C} \), and presented explicit expressions for the general Hermitian solutions to them by generalized inverses when the solvability conditions were satisfied. Matrix equation that has symmetric patterns with Hermitian solutions appears in some solutions to them by generalized inverses when the solvability conditions were satisfied.

\[
A_1X = C_1, \quad XB_2 = C_2, \quad \text{over } \mathbb{C}
\]

over \(\mathbb{C} \) in terms of generalized inverses, respectively. In [10], Tian and Liu established the solvability conditions for

\[
A_3XA_3^* = C_3, \quad A_4XA_4^* = C_4
\]

to have a common Hermitian solution over \(\mathbb{C} \) by the ranks of coefficient matrices. In [11], Tian derived the general common Hermitian solution of (1.4). Wang and Wu in [12] gave some necessary and sufficient conditions for the existence of the common Hermitian solution to equations

\[
A_1X = C_1, \quad XB_2 = C_2, \quad A_3XA_3^* = C_3, \quad A_4XA_4^* = C_4,
\]

for operators between Hilbert \(C^* \)-modules by generalized inverses and range inclusion of matrices.

As is known to us, extremal ranks of some matrix expressions can be used to characterize nonsingularity, rank invariance, range inclusion of the corresponding matrix expressions, as well as solvability conditions of matrix equations ([3–7]). Real matrices and its extremal ranks in solutions to some complex matrix equation have been investigated by Tian and Liu ([9, 13–15]). Tian [13] gave the maximal and minimal ranks of two real matrices \(X_0 \) and \(X_1 \) in solution \(X = X_0 + iX_1 \) to \(AXB = C \) over \(\mathbb{C} \) with its applications. Liu et al. [9] derived the maximal and minimal ranks of the two real matrices \(X_0 \) and \(X_1 \) in a Hermitian solution \(X = X_0 + iX_1 \) of (1.3), where \(B^* = B \). In order to investigate the real and complex solutions to quaternion matrix equations, Wang and his partners have been studying the real matrices in solutions to some quaternion matrix equations such as \(AXB = C \),

\[
A_1XB_1 = C_1, \quad A_2XB_2 = C_2, \quad AXA^* + BXB^* = C,
\]

\[
A_1X = C_1, \quad XB_2 = C_2, \quad A_3XA_3^* = C_3, \quad A_4XA_4^* = C_4,
\]

\[
A_1X = C_1, \quad XB_2 = C_2, \quad A_3XA_3^* = C_3, \quad A_4XA_4^* = C_4,
\]
recently ([24–27]). To our knowledge, the necessary and sufficient conditions for (1.5) over \(\mathbb{H} \) to have the real and complex Hermitian solutions have not been given so far. Motivated by the work mentioned above, we in this paper investigate the real and complex Hermitian solutions to system (1.5) over \(\mathbb{H} \) and its applications.

This paper is organized as follows. In Section 2, we first derive formulas of extremal ranks of four real matrices \(X_1, X_2, X_3, \) and \(X_4 \) in quaternion solution \(X = X_1 + X_2i + X_3j + X_4k \) to (1.5) over \(\mathbb{H} \), then give necessary and sufficient conditions for (1.5) over \(\mathbb{H} \) to have real and complex solutions as well as the expressions of the real and complex solutions. As applications, we in Section 3 establish necessary and sufficient conditions for (1.6) over \(\mathbb{H} \) to have real and complex solutions.

2. The Real and Complex Hermitian Solutions to System (1.5) Over \(\mathbb{H} \)

In this section, we first give a solvability condition and an expression of the general Hermitian solution to (1.5) over \(\mathbb{H} \), then consider the maximal and minimal ranks of four real matrices \(X_1, X_2, X_3, \) and \(X_4 \) in solution \(X = X_1 + X_2i + X_3j + X_4k \) to (1.5) over \(\mathbb{H} \), last, investigate the real and complex Hermitian solutions to (1.5) over \(\mathbb{H} \).

For an arbitrary matrix \(M_t = M_{i1} + M_{i2}i + M_{i3}j + M_{i4}k \in \mathbb{H}^{m \times n} \) where \(M_{i1}, M_{i2}, M_{i3}, \) and \(M_{i4} \) are real matrices, we define a map \(\phi(\cdot) \) from \(\mathbb{H}^{m \times n} \) to \(\mathbb{R}^{4m \times 4n} \) by

\[
\phi(M_t) = \begin{bmatrix} M_{i1} & M_{i2} & M_{i3} & M_{i4} \\ -M_{i2} & M_{i1} & M_{i4} & -M_{i3} \\ -M_{i3} & -M_{i4} & M_{i1} & M_{i2} \\ -M_{i4} & M_{i3} & -M_{i2} & M_{i1} \end{bmatrix}.
\]

(2.1)

By (2.1), it is easy to verify that \(\phi(\cdot) \) satisfies the following properties.

(a) \(M = N \iff \phi(M) = \phi(N) \).
(b) \(\phi(kM + IN) = k\phi(M) + 4i\phi(N) \), \(\phi(MN) = \phi(M)\phi(N) \), \(k, i \in \mathbb{R} \).
(c) \(\phi(M^*) = \phi^T(M) \), \(\phi(M^t) = \phi^t(M) \).
(d) \(\phi(M) = T_m^{-1}\phi(M)T_n = R_m^{-1}\phi(M)R_n = S_m^{-1}\phi(M)S_n \), where \(t = m, n, \)

\[
T_t = \begin{bmatrix} 0 & -I_t & 0 & 0 \\ I_t & 0 & 0 & 0 \\ 0 & 0 & I_t & 0 \\ 0 & 0 & -I_t & 0 \end{bmatrix}, \quad R_t = \begin{bmatrix} 0 & 0 & -I_t & 0 \\ 0 & 0 & 0 & -I_t \\ I_t & 0 & 0 & 0 \\ 0 & I_t & 0 & 0 \end{bmatrix}, \quad S_t = \begin{bmatrix} 0 & 0 & 0 & -I_t \\ 0 & 0 & I_t & 0 \\ 0 & I_t & 0 & 0 \\ I_t & 0 & 0 & 0 \end{bmatrix}.
\]

(2.2)

(e) \(r[\phi(M)] = 4r(M) \).
(f) \(M^* = M \iff \phi^T(M) = \phi(M), \quad M^* = -M \iff \phi^T(M) = -\phi(M) \).

The following lemmas provide us with some useful results over \(\mathbb{C} \), which can be generalized to \(\mathbb{H} \).
Lemma 2.1 (see [2, Lemma 2.1]). Let \(A \in \mathbb{H}^{m \times n} \), \(B = B^* \in \mathbb{H}^{m \times n} \) be known, \(X \in \mathbb{H}^{n \times n} \) unknown; then the system (1.3) has a Hermitian solution if and only if

\[
AA^\dagger B = B. \tag{2.3}
\]

In that case, the general Hermitian solution of (1.3) can be expressed as

\[
X = A^\dagger B (A^\dagger)^* + L_A V + V^* L_A, \tag{2.4}
\]

where \(V \) is arbitrary matrix over \(\mathbb{H} \) with compatible size.

Lemma 2.2 (see [12, Corollary 3.4]). Let \(A_1, C_1 \in \mathbb{H}^{m \times n}; B_1, C_2 \in \mathbb{H}^{m \times s}; A_3 \in \mathbb{H}^{s \times n}; C_3 \in \mathbb{H}^{r \times r} \) be known, \(X \in \mathbb{H}^{n \times n} \) unknown, and \(F = B_1^* L_{A_1}, M = S L_F, S = A_3 L_{A_1}, D = C_2 - B_1^* A_1^1 C_1, J = A_1^1 C_1 + F^* L_G, G = C_3 - A_3 (J + L_{A_1} L_F^* F^* A_3^*), C_3 = C_3^* \); then the system (1.5) have a Hermitian solution if and only if

\[
A_1 C_2 = C_1 B_1, \quad A_1 C_3 = C_1 A_1^1, \quad B_1^* C_2 = C_2^* B_1, \tag{2.5}
\]

\[
R_{A_1} C_1 = 0, \quad R_{F} D = 0, \quad R_{M} G = 0.
\]

In that case, the general Hermitian solution of (1.5) can be expressed as

\[
X = J + L_{A_1} L_F J^* + L_{A_1} L_F M^* G (M^* L_{A_1} + L_{A_1} L_F L_M V L_F L_{A_1} + L_{A_1} L_F V^* L_M L_F L_{A_1}), \tag{2.6}
\]

where \(V \) is arbitrary matrix over \(\mathbb{H} \) with compatible size.

Lemma 2.3 (see [21, Lemma 2.4]). Let \(A \in \mathbb{H}^{m \times n}, B \in \mathbb{H}^{m \times k}, C \in \mathbb{H}^{k \times n}, D \in \mathbb{H}^{k \times k}, \) and \(E \in \mathbb{H}^{k \times l} \). Then they satisfy the following rank equalities.

(a) \(r(CL_A) = r([A \ C]) - r(A) \).

(b) \(r(B A L_C) = r([B A \ C]) - r(C) \).

(c) \(r([C \ A \ B]) = r([A B \ C]) - r(B) \).

(d) \(r([A \ B] = r([A B \ C]) - r(D) - r(E) \).

Lemma 2.3 plays an important role in simplifying ranks of various block matrices.

Lemma 2.4 (see [11, Theorem 4.1, Corollary 4.2]). Let \(A = \pm A^* \in \mathbb{H}^{m \times n}, B \in \mathbb{H}^{m \times n}, \) and \(C \in \mathbb{H}^{p \times m} \) be given; then

\[
\max_{X \in \mathbb{H}^{m \times p}} r\left[A - B X C \mp (B X C)^*\right] = \min \left\{ r\left[A \ B \ C^*\right], r\left[A \ B^* \ 0\right], r\left[A \ C^* \ 0\right]\right\}, \tag{2.7}
\]

\[
\min_{X \in \mathbb{H}^{m \times p}} r\left[A - B X C \mp (B X C)^*\right] = 2r\left[A \ B \ C^*\right] + \max\{s_1, s_2\},
\]
where
\[
s_1 = r \begin{bmatrix} A & B \\ B^* & 0 \end{bmatrix} - 2r \begin{bmatrix} A & B & C^* \\ B^* & 0 & 0 \end{bmatrix},
\]
\[
s_2 = r \begin{bmatrix} A & C^* \\ C & 0 \end{bmatrix} - 2r \begin{bmatrix} A & B & C^* \\ C & 0 & 0 \end{bmatrix}.
\] (2.8)

If \(\mathcal{R}(B) \subseteq \mathcal{R}(C^*) \),
\[
\max_{X \in \mathbb{H}^{m \times p}} r[A - BXC - (BXC)^*] = \min \left\{ r[A \ C^*], r \begin{bmatrix} A & B \\ B^* & 0 \end{bmatrix} \right\},
\] (2.9)
\[
\min_{X \in \mathbb{H}^{m \times p}} r[A - BXC - (BXC)^*] = 2r[A \ C^*] + r \begin{bmatrix} A & B \\ B^* & 0 \end{bmatrix} - 2r \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}.
\] (2.10)

Lemma 2.5 (see [28, Theorem 3.1]). Let \(A \in \mathbb{H}^{m \times n}, B_1 \in \mathbb{H}^{m \times p_1}, B_3 \in \mathbb{H}^{m \times p_3}, B_4 \in \mathbb{H}^{m \times p_4}, C_2 \in \mathbb{H}^{q_2 \times n}, C_3 \in \mathbb{H}^{q_3 \times n}, \) and \(C_4 \in \mathbb{H}^{q_4 \times n} \) be given. Then the matrix equation
\[
B_1X_1 + X_2C_2 + B_3X_3C_3 + B_4X_4C_4 = A
\] (2.11)
is consistent if and only if
\[
\begin{bmatrix} A & B_1 \\ C_2 & 0 \\ C_3 & 0 \\ C_4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & B_1 \\ C_2 & 0 \\ C_3 & 0 \\ C_4 & 0 \end{bmatrix},
\]
\[
\begin{bmatrix} A & B_1 & B_3 & B_4 \\ C_2 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & B_1 & B_3 & B_4 \\ C_2 & 0 & 0 & 0 \end{bmatrix},
\] (2.12)
\[
\begin{bmatrix} A & B_4 \\ C_2 & 0 & 0 \\ C_4 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & B_1 & B_4 \\ C_2 & 0 & 0 \\ C_3 & 0 & 0 \end{bmatrix}.
\]

Theorem 2.6. System (1.5) has a Hermitian solution over \(\mathbb{H} \) if and only if the system of matrix equations
\[
\phi(A_1)(Y_{ij})_{4 \times 4} = \phi(C_1), \quad (Y_{ij})_{4 \times 4} \phi(B_1) = \phi(C_2), \quad \phi(A_3)(Y_{ij})_{4 \times 4} \phi^T(\phi(A_3)) = \phi(C_3),
\]
i, j = 1, 2, 3, 4,
(2.13)
has a symmetric solution over \(\mathbb{R} \). In that case, the general Hermitian solution of (1.5) over \(\mathbb{R} \) can be written as

\[
X = X_1 + X_2i + X_3j + X_4k
\]

\[
= \frac{1}{4}(Y_{11} + Y_{22} + Y_{33} + Y_{44}) + \frac{1}{4}(Y_{12} - Y_{12}^T + Y_{34} - Y_{34}^T)i
\]

\[
+ \frac{1}{4}(Y_{13} - Y_{13}^T + Y_{24} - Y_{24}^T)j + \frac{1}{4}(Y_{14} - Y_{14}^T + Y_{23} - Y_{23}^T)k,
\]

(2.14)

where \(Y_{tt} = Y_{tt}^T; t = 1, 2, 3, 4; Y_{11}^T = Y_{11}; j = 2, 3, 4; Y_{2j}^T = Y_{2j}; j = 3, 4; Y_{34}^T = Y_{43} \) are the general solutions of (2.13) over \(\mathbb{R} \). Written in an explicit form, \(X_1, X_2, X_3, \) and \(X_4 \) in (2.14) are

\[
X_1 = \frac{1}{4}P_1\phi(X_0)P_1^T + \frac{1}{4}P_2\phi(X_0)P_2^T + \frac{1}{4}P_3\phi(X_0)P_3^T + \frac{1}{4}P_4\phi(X_0)P_4^T
\]

\[
+ [P_1, P_2, P_3, P_4]L_{\phi(A_i)}L_{\phi(M)}V
\]

\[
\begin{bmatrix}
L_{\phi(f)}L_{\phi(A_i)}P_1^T \\
L_{\phi(f)}L_{\phi(A_i)}P_2^T \\
L_{\phi(f)}L_{\phi(A_i)}P_3^T \\
L_{\phi(f)}L_{\phi(A_i)}P_4^T
\end{bmatrix}
\]

(2.15)

\[
X_2 = \frac{1}{4}P_1\phi(X_0)P_2^T - \frac{1}{4}P_2\phi(X_0)P_1^T + \frac{1}{4}P_3\phi(X_0)P_4^T - \frac{1}{4}P_4\phi(X_0)P_3^T
\]

\[
+ [P_1, P_2, P_3, P_4]L_{\phi(A_i)}L_{\phi(f)}V
\]

\[
\begin{bmatrix}
L_{\phi(A_i)}P_1^T \\
L_{\phi(A_i)}P_2^T \\
L_{\phi(A_i)}P_3^T \\
L_{\phi(A_i)}P_4^T
\end{bmatrix}
\]

(2.16)

\[
X_3 = \frac{1}{4}P_1\phi(X_0)P_3^T - \frac{1}{4}P_2\phi(X_0)P_4^T + \frac{1}{4}P_3\phi(X_0)P_1^T - \frac{1}{4}P_4\phi(X_0)P_2^T
\]

\[
+ [P_1, P_2, P_3, P_4]L_{\phi(A_i)}L_{\phi(f)}V
\]

\[
\begin{bmatrix}
L_{\phi(A_i)}P_1^T \\
L_{\phi(A_i)}P_2^T \\
L_{\phi(A_i)}P_3^T \\
L_{\phi(A_i)}P_4^T
\end{bmatrix}
\]

\[
X_4 = \frac{1}{4}P_1\phi(X_0)P_4^T - \frac{1}{4}P_2\phi(X_0)P_3^T - \frac{1}{4}P_3\phi(X_0)P_2^T + \frac{1}{4}P_4\phi(X_0)P_1^T
\]

\[
+ [P_1, P_2, P_3, P_4]L_{\phi(A_i)}L_{\phi(f)}V
\]

\[
\begin{bmatrix}
L_{\phi(A_i)}P_1^T \\
L_{\phi(A_i)}P_2^T \\
L_{\phi(A_i)}P_3^T \\
L_{\phi(A_i)}P_4^T
\end{bmatrix}
\]
\[
X_3 = \frac{1}{4} P_1 \phi(X_0) P_3^T - \frac{1}{4} P_3 \phi(X_0) P_1^T + \frac{1}{4} P_4 \phi(X_0) P_2^T - \frac{1}{4} P_2 \phi(X_0) P_4^T
\]
\[
+ [P_1, -P_3, P_4, -P_2] L_{\phi(A_1)} L_{\phi(F)} L_{\phi(M)} V^T \begin{bmatrix}
L_{\phi(M)} L_{\phi(A_1)} P_3^T \\
L_{\phi(M)} L_{\phi(A_1)} P_1^T \\
L_{\phi(M)} L_{\phi(A_1)} P_2^T \\
L_{\phi(M)} L_{\phi(A_1)} P_4^T
\end{bmatrix},
\]
\[
X_4 = \frac{1}{4} P_1 \phi(X_0) P_4^T - \frac{1}{4} P_4 \phi(X_0) P_1^T + \frac{1}{4} P_2 \phi(X_0) P_3^T - \frac{1}{4} P_3 \phi(X_0) P_2^T
\]
\[
+ [P_1, -P_4, P_3, -P_2] L_{\phi(A_1)} L_{\phi(F)} L_{\phi(M)} V^T \begin{bmatrix}
L_{\phi(M)} L_{\phi(A_1)} P_4^T \\
L_{\phi(M)} L_{\phi(A_1)} P_3^T \\
L_{\phi(M)} L_{\phi(A_1)} P_2^T \\
L_{\phi(M)} L_{\phi(A_1)} P_1^T
\end{bmatrix},
\]
\[
+ [P_4, P_1, P_3, P_2] L_{\phi(A_1)} L_{\phi(F)} V^T \begin{bmatrix}
L_{\phi(M)} L_{\phi(A_1)} P_1^T \\
L_{\phi(M)} L_{\phi(A_1)} P_3^T \\
L_{\phi(M)} L_{\phi(A_1)} P_2^T \\
L_{\phi(M)} L_{\phi(A_1)} P_4^T
\end{bmatrix},
\]
\[
(2.17)
\]

where
\[
P_1 = [I_n, 0, 0, 0], \quad P_2 = [0, I_n, 0, 0], \quad P_3 = [0, 0, I_n, 0], \quad P_4 = [0, 0, 0, I_n],
\]
\[
(2.19)
\]

\(\phi(X_0)\) is a particular symmetric solution to (2.13), and \(V\) is arbitrary real matrices with compatible sizes.

Proof. Suppose that (1.5) has a Hermitian solution \(X\) over \(\mathbb{H}\). Applying properties (a) and (b) of \(\phi(\cdot)\) to (1.5) yields
\[
\phi(A_1) \phi(X) = \phi(C_1), \quad \phi(X) \phi(B_2) = \phi(C_2), \quad \phi(A_3) \phi(X) \phi^T(A_3) = \phi(C_3),
\]
\[
(2.20)
\]

implying that \(\phi(X)\) is a real symmetric solution to (2.13).

Conversely, suppose that (2.13) has a real symmetric solution
\[
Y = \tilde{Y}^T = (Y_{ij})_{4 \times 4}, \quad i, j = 1, 2, 3, 4.
\]
\[
(2.21)
\]
That is,

\[\phi(A_1)\tilde{Y} = \phi(C_1), \quad \tilde{Y}\phi(B_2) = \phi(C_2), \quad \phi(A_3)\tilde{Y}\phi^T(A_3) = \phi(C_3), \tag{2.22} \]

then by property \((d) \) of \(\phi(\cdot) \),

\[
\begin{align*}
T_m^{-1}\phi(A_1)T_n\tilde{Y} &= T_m^{-1}\phi(C_1)T_n, & \tilde{Y}T_n^{-1}\phi(B_2)T_s &= T_n^{-1}\phi(C_2)T_s, \\
T_r^{-1}\phi(A_3)T_n\tilde{Y}T_n^{-1}\phi^T(A_3)T_r &= T_r^{-1}\phi(C_3)T_r, \\
R_m^{-1}\phi(A_1)R_n\tilde{Y} &= R_m^{-1}\phi(C_1)R_n, & \tilde{Y}R_n^{-1}\phi(B_2)R_s &= R_n^{-1}\phi(C_2)R_s, \\
R_r^{-1}\phi(A_3)R_n\tilde{Y}R_n^{-1}\phi^T(A_3)R_r &= R_r^{-1}\phi(C_3)R_r, \\
S_m^{-1}\phi(A_1)S_n\tilde{Y} &= S_m^{-1}\phi(C_1)S_n, & \tilde{YS}_n^{-1}\phi(B_2)S_s &= S_n^{-1}\phi(C_2)S_s, \\
S_r^{-1}\phi(A_3)S_n\tilde{YS}_n^{-1}\phi^T(A_3)S_r &= S_r^{-1}\phi(C_3)S_r.
\end{align*}
\tag{2.23}
\]

Hence,

\[
\begin{align*}
\phi(A_1)T_n\tilde{Y}T_n^{-1} &= \phi(C_1), & T_n\tilde{YT}_n^{-1}\phi(B_2) &= \phi(C_2), & \phi(A_3)T_n\tilde{YT}_n^{-1}\phi^T(A_3) &= \phi(C_3), \\
\phi(A_1)R_n\tilde{Y}R_n^{-1} &= \phi(C_1), & R_n\tilde{YR}_n^{-1}\phi(B_2) &= \phi(C_2), & \phi(A_3)R_n\tilde{YR}_n^{-1}\phi^T(A_3) &= \phi(C_3), \\
\phi(A_1)S_n\tilde{YS}_n^{-1} &= \phi(C_1), & S_n\tilde{YS}_n^{-1}\phi(B_2) &= \phi(C_2), & \phi(A_3)S_n\tilde{YS}_n^{-1}\phi^T(A_3) &= \phi(C_3), \tag{2.24}
\end{align*}
\]

implying that \(T_n\tilde{YT}_n^{-1}, \ R_n\tilde{YR}_n^{-1}, \) and \(S_n\tilde{YS}_n^{-1} \) are also symmetric solutions of (2.13). Thus,

\[
\frac{1}{4}\left(\tilde{Y} + T_n\tilde{YT}_n^{-1} + R_n\tilde{YR}_n^{-1} + S_n\tilde{YS}_n^{-1} \right) \tag{2.25}
\]

is a symmetric solution of (2.13), where

\[
\begin{align*}
\tilde{Y} + T_n\tilde{YT}_n^{-1} + R_n\tilde{YR}_n^{-1} + S_n\tilde{YS}_n^{-1} &= \left(\tilde{Y}_{ij} \right)_{4 \times 4}', \quad i = 1, 2, 3, 4, \\
\tilde{Y}_{11} &= Y_{11} + Y_{22} + Y_{33} + Y_{44}, \quad \tilde{Y}_{12} = Y_{12} - Y_{12}^T + Y_{34} - Y_{34}^T, \\
\tilde{Y}_{13} &= Y_{13} - Y_{13}^T + Y_{24} - Y_{24}^T, \quad \tilde{Y}_{14} = Y_{14} - Y_{14}^T + Y_{23} - Y_{23}^T, \\
\tilde{Y}_{21} &= Y_{12}^T - Y_{12} + Y_{34}^T - Y_{34}, \quad \tilde{Y}_{22} = Y_{11} + Y_{22} + Y_{33} + Y_{44},
\end{align*}
\]
\[
\begin{align*}
\widetilde{Y}_{23} &= Y_{14} - Y_{14}^T + Y_{23} - Y_{23}^T, & \widetilde{Y}_{24} &= Y_{13} - Y_{13}^T + Y_{24} - Y_{24}^T, \\
\widetilde{Y}_{31} &= Y_{13}^T - Y_{13} + Y_{24} - Y_{24}^T, & \widetilde{Y}_{32} &= Y_{14} - Y_{14}^T + Y_{23} - Y_{23}^T, \\
\widetilde{Y}_{33} &= Y_{11} + Y_{22} + Y_{33} + Y_{44}, & \widetilde{Y}_{34} &= Y_{12} - Y_{12}^T + Y_{34} - Y_{34}^T, \\
\widetilde{Y}_{41} &= Y_{14}^T - Y_{14} + Y_{23} - Y_{23}^T, & \widetilde{Y}_{42} &= Y_{13} - Y_{13}^T + Y_{24} - Y_{24}^T, \\
\widetilde{Y}_{43} &= Y_{12} - Y_{12}^T + Y_{34} - Y_{34}^T, & \widetilde{Y}_{44} &= Y_{11} + Y_{22} + Y_{33} + Y_{44}.
\end{align*}
\]

(2.26)

Let
\[
\tilde{X} = \frac{1}{4} (Y_{11} + Y_{22} + Y_{33} + Y_{44}) + \frac{1}{4} \left(Y_{12} - Y_{12}^T + Y_{34} - Y_{34}^T \right) j
\]
\[
+ \frac{1}{4} \left(Y_{13} - Y_{13}^T + Y_{24} - Y_{24}^T \right) j + \frac{1}{4} \left(Y_{14} - Y_{14}^T + Y_{23} - Y_{23}^T \right) k.
\]

Then by (2.1),
\[
\phi \left(\tilde{X} \right) = \frac{1}{4} \left(\tilde{Y} + T_n \tilde{Y} T_n^{-1} + R_n \tilde{Y} R_n^{-1} + S_n \tilde{Y} S_n^{-1} \right).
\]

(2.28)

Hence, by the property (a), we know that \(\tilde{X} \) is a Hermitian solution of (1.5). Observe that \(Y_{ij}, \ i, j = 1, 2, 3, 4 \) in (2.13) can be written as
\[
Y_{ij} = P_i \tilde{Y} P_j^T.
\]

(2.29)

From Lemma 2.2, the general Hermitian solution to (2.13) can be written as
\[
\tilde{Y} = \phi (X_0) + 4L_{\phi(Ai)} L_{\phi(f)} L_{\phi(M)} V L_{\phi(Ai)} L_{\phi(f)} + 4L_{\phi(f)} L_{\phi(Ai)} V^T L_{\phi(M)} L_{\phi(f)} L_{\phi(Ai)},
\]

(2.30)

where \(V \in \mathbb{R} \) is arbitrary. Hence,
\[
Y_{ij} = P_i \phi (X_0) P_j^T + 4P_i L_{\phi(Ai)} L_{\phi(f)} L_{\phi(M)} V L_{\phi(Ai)} L_{\phi(f)} P_j^T
\]
\[
+ 4P_i L_{\phi(f)} L_{\phi(Ai)} V^T L_{\phi(M)} L_{\phi(f)} L_{\phi(Ai)} P_j^T,
\]

(2.31)

where \(i, j = 1, 2, 3, 4 \), substituting them into (2.14), yields the four real matrices \(X_1, X_2, X_3, \) and \(X_4 \) in (2.15)–(2.18).

Now we consider the maximal and minimal ranks of four real matrices \(X_1, X_2, X_3, \) and \(X_4 \) in solution \(X = X_1 + X_2 j + X_3 k + X_4 k \) to (1.5) over \(\mathbb{H} \).
Theorem 2.7. Suppose that system (1.5) over \mathbb{H} has a Hermitian solution, and $A_1 = A_{11} + A_{12}i + A_{13}j + A_{14}k$, $C_1 = C_{11} + C_{12}i + C_{13}j + C_{14}k \in \mathbb{H}^{mxn}$, $B_1 = B_{11} + B_{12}i + B_{13}j + B_{14}k$, $C_2 = C_{21} + C_{22}i + C_{23}j + C_{24}k \in \mathbb{H}^{nxr}$, $A_3 = A_{31} + A_{32}i + A_{33}j + A_{34}k \in \mathbb{H}^{rnx}$, $C_3 = C_{31} + C_{32}i + C_{33}j + C_{34}k \in \mathbb{H}^{rrr}$.

$$S_1 = \left\{ X_1 \in \mathbb{R}^{nxn} \mid A_1 X = C_1, \ XB_1 = C_2, \ A_3 X A_3^* = C_3 \right\}$$

$$S_2 = \left\{ X_2 \in \mathbb{R}^{pxq} \mid A_1 X = C_1, \ XB_1 = C_2, \ A_3 X A_3^* = C_3 \right\}$$

$$S_3 = \left\{ X_3 \in \mathbb{R}^{pxq} \mid A_1 X = C_1, \ XB_1 = C_2, \ A_3 X A_3^* = C_3 \right\}$$

$$S_4 = \left\{ X_4 \in \mathbb{R}^{pxq} \mid A_1 X = C_1, \ XB_1 = C_2, \ A_3 X A_3^* = C_3 \right\}$$

$$L_{21} = \begin{bmatrix} C_{21} \\ C_{22} \\ C_{23} \\ C_{24} \end{bmatrix}, \quad L_{11} = \begin{bmatrix} C_{11} \\ -C_{12} \\ -C_{13} \\ -C_{14} \end{bmatrix}, \quad M_{31} = \begin{bmatrix} A_{32} & A_{33} & A_{34} \\ A_{31} & A_{34} & -A_{33} \\ -A_{34} & A_{31} & A_{32} \\ A_{33} & -A_{32} & A_{31} \end{bmatrix}$$

$$M_{11} = \begin{bmatrix} A_{12} & A_{13} & A_{14} \\ A_{11} & A_{14} & -A_{13} \\ -A_{14} & A_{11} & A_{12} \\ A_{13} & -A_{12} & A_{11} \end{bmatrix}, \quad M_{12} = \begin{bmatrix} A_{11} & A_{13} & A_{14} \\ -A_{12} & A_{14} & -A_{13} \\ -A_{13} & A_{11} & A_{12} \\ -A_{14} & -A_{12} & A_{11} \end{bmatrix}$$

$$M_{13} = \begin{bmatrix} A_{11} & A_{12} & A_{14} \\ -A_{12} & A_{11} & -A_{13} \\ -A_{13} & -A_{14} & A_{12} \\ -A_{14} & A_{13} & A_{11} \end{bmatrix}, \quad M_{14} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ -A_{12} & A_{11} & A_{14} \\ -A_{13} & -A_{14} & A_{11} \\ -A_{14} & A_{13} & -A_{12} \end{bmatrix}$$

$$N_{11} = \begin{bmatrix} -B_{12} & B_{11} & B_{14} & -B_{13} \\ -B_{13} & -B_{14} & B_{11} & B_{12} \\ -B_{14} & B_{13} & -B_{12} & B_{11} \end{bmatrix}, \quad N_{12} = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ -B_{13} & -B_{14} & B_{11} & B_{12} \\ -B_{14} & B_{13} & -B_{12} & B_{11} \end{bmatrix}$$

$$N_{13} = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ -B_{12} & B_{11} & B_{14} & -B_{13} \\ -B_{14} & B_{13} & -B_{12} & B_{11} \end{bmatrix}, \quad N_{14} = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ -B_{12} & B_{11} & B_{14} & -B_{13} \\ -B_{13} & -B_{14} & B_{11} & B_{12} \end{bmatrix}$$
Then the maximal and minimal ranks of X_i, $i = 1, 2, 3, 4$, in Hermitian solution $X = X_1 + X_2i + X_3j + X_4k$ to (1.5) are given by

$$\max_{X \in S_i} r(X) = \min \{t_{1i}, t \},$$

$$\min_{X \in S_i} r(X) = 2t_{1i} + t - 2t_{2i},$$

where

$$t_{1i} = r \left[\begin{bmatrix} L_{11} & N_{1i}^T \\ L_{11} & M_{1i} \end{bmatrix} - 4r \begin{bmatrix} B_1^* \\ A_3 \end{bmatrix} \right] + n,$$

$$t = r \left[\begin{bmatrix} 0 & M_{1i}^T \\ M_{1i} & N_{1i} & M_{1i}^T \end{bmatrix} \right] - 8r \begin{bmatrix} A_3 \\ B_1^* \end{bmatrix} + 2n,$$

$$t_{2i} = r \left[\begin{bmatrix} 0 & M_{1i}^T \\ M_{1i} & N_{1i} & M_{1i}^T \end{bmatrix} \right] - 4r \begin{bmatrix} A_3 \\ B_1^* \end{bmatrix} - 4r \begin{bmatrix} B_1^* \\ A_1 \end{bmatrix} + 2n.$$

Proof. We only prove the case that $i = 1$. Similarly, we can get the results that $i = 2, 3, 4$. Let

$$\frac{1}{4} P_1 \phi(X_0) P_1^T + \frac{1}{4} P_2 \phi(X_0) P_2^T + \frac{1}{4} P_3 \phi(X_0) P_3^T + \frac{1}{4} P_4 \phi(X_0) P_4^T = A,$$

$$[P_1, P_2, P_3, P_4] L_{\phi(A)} L_{\phi(F)} L_{\phi(M)} = B,$$

$$\begin{bmatrix} L_{\phi(F)} L_{\phi(A)} P_1^T \\ L_{\phi(F)} L_{\phi(A)} P_2^T \\ L_{\phi(F)} L_{\phi(A)} P_3^T \\ L_{\phi(F)} L_{\phi(A)} P_4^T \end{bmatrix} = C;$$

note that L_M is Hermitian; then $L_{\phi(M)}$ is symmetric; hence (2.15) can be written as

$$X_1 = A + BVC + (BVC)^*,$$

Note that $A = A^*$ and $R(B) \subseteq R(C^*)$; applying (2.9) and (2.10) to (2.37) yields

$$\max_{X_1 \in S_1} r(X_1) = \min \left\{ r[A, C^*], r \begin{bmatrix} A & B \\ B^* & 0 \end{bmatrix} \right\},$$

$$\min_{X_1 \in S_1} r(X_1) = 2r[A, C^*] + r \begin{bmatrix} A & B \\ B^* & 0 \end{bmatrix} - 2r \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}.$$
Let
\[[P_1, P_2, P_3, P_4] = P, \]
\[a_i = \begin{bmatrix} \phi(A_i) & 0 & 0 & 0 \\ 0 & \phi(A_i) & 0 & 0 \\ 0 & 0 & \phi(A_i) & 0 \\ 0 & 0 & 0 & \phi(A_i) \end{bmatrix}, \quad i = 1, 3, \]
\[b_1 = \begin{bmatrix} \phi(B_1) & 0 & 0 & 0 \\ 0 & \phi(B_1) & 0 & 0 \\ 0 & 0 & \phi(B_1) & 0 \\ 0 & 0 & 0 & \phi(B_1) \end{bmatrix}. \]

Note that \(\phi(X_0) \) is a particular solution to (2.13), it is not difficult to find by Lemma 2.3, block Gaussian elimination, and property (e) of \(\phi(\cdot) \) that

\[
ra_{\cdot} = r \begin{bmatrix} A & P \\ 0 & b_1^T \\ 0 & a_1 \end{bmatrix} - 4r[\phi(A_1)] - 4r[\phi(F)]
\]

\[
= r \begin{bmatrix} 0 & 0 \\ -\frac{1}{4}\phi^T(C_2)P_1^T & \frac{1}{4}\phi^T(C_1)P_1^T \\ -\frac{1}{4}\phi(C_2)P_1^T & \frac{1}{4}\phi(C_1)P_1^T \\ 0 & 0 \\ P_1^T & 0 \end{bmatrix} b_1^T - 4r[\phi(B_1^*)] - 4r[\phi(A_1)]
\]

\[
= r \begin{bmatrix} 0 & [P_1, 0, 0, 0] \\ \phi(C_1)P_1^T & 0 \\ \phi(C_2)P_1^T & 0 \\ L_{11} & M_{11} \end{bmatrix} - 4r[\phi(B_1^*)] + 3r[\phi(B_1^*)] + n
\]

\[
= r \begin{bmatrix} L_{11} & N_{11}^T \\ L_{11} & M_{11} \end{bmatrix} - 4r[\phi(B_1^*)] + n.
\]

Note that \(L_A = R_A^* \), then \(L_{\phi(A)} = R_{\phi'(A)} \); hence

\[
r \begin{bmatrix} A & B \\ B^* & 0 \end{bmatrix} = r \begin{bmatrix} A & P & 0 & 0 & 0 \\ P^T & 0 & a_3^T & b_1 & a_1^T \\ 0 & a_3 & 0 & 0 & 0 \\ 0 & b_1^T & 0 & 0 & 0 \\ 0 & a_1 & 0 & 0 & 0 \end{bmatrix} - 8r[\phi(M)] - 8r[\phi(F)] - 8r[\phi(A_1)].
\]
Similarly, we can obtain

\[
\begin{align*}
\begin{bmatrix} 0 & M_{31}^T & N_{11} & M_{11}^T \\ M_{31} & \phi(C_3) & \phi(A_3)\phi(C_2) & \phi(A_3)\phi^T(C_1) \\ N_{11}^T & \phi^T(C_2)\phi^T(A_3) & \phi^T(C_2)\phi(B_1) & \phi^T(C_2)\phi^T(A_1) \\ M_{11} & \phi(C_1)\phi^T(A_3) & \phi(C_1)\phi(B_1) & \phi(C_1)\phi^T(A_1) \end{bmatrix}
&= r \begin{bmatrix} \phi(A_3) \\ \phi(B_1^*) \\ \phi(A_1) \end{bmatrix} + 6r \begin{bmatrix} \phi(A_3) \\ \phi(B_1^*) \\ \phi(A_1) \end{bmatrix} + 2n \\
&= r \begin{bmatrix} 0 & M_{31}^T & N_{11} & M_{11}^T \\ M_{31} & \phi(C_3) & \phi(A_3)\phi(C_2) & \phi(A_3)\phi^T(C_1) \\ N_{11}^T & \phi^T(C_2)\phi(B_1) & \phi^T(C_2)\phi^T(A_1) \\ M_{11} & \phi(C_1)\phi(B_1) & \phi(C_1)\phi^T(A_1) \end{bmatrix} - 8r \begin{bmatrix} A_3 \\ B_1^* \\ A_1 \end{bmatrix} + 2n.
\end{align*}
\]

Substituting (2.41) and (2.43) into (2.38) and (2.39) yields (2.33) and (2.34), that is \(i = 1\).

Corollary 2.8. Suppose system (1.5) over \(\mathbb{H}\) have a Hermitian solution. Then we have the following.

(a) System (1.5) has a real hermitian solution if and only if

\[
2r \begin{bmatrix} L_{21} & N_{11}^T \\ L_{11} & M_{11} \end{bmatrix} + r \begin{bmatrix} 0 & M_{31}^T & N_{11} & M_{11}^T \\ M_{31} & \phi(C_3) & \phi(A_3)\phi(C_2) & \phi(A_3)\phi^T(C_1) \\ N_{11}^T & \phi^T(C_2)\phi^T(A_3) & \phi^T(C_2)\phi(B_1) & \phi^T(C_2)\phi^T(A_1) \\ M_{11} & \phi(C_1)\phi^T(A_3) & \phi(C_1)\phi(B_1) & \phi(C_1)\phi^T(A_1) \end{bmatrix}
= 2r \begin{bmatrix} 0 & M_{31}^T \\ M_{31} & \phi(C_3)\phi(C_2) & \phi(C_3)\phi^T(C_1) \\ N_{11}^T & \phi^T(C_2)\phi(B_1) & \phi^T(C_2)\phi^T(A_1) \\ M_{11} & \phi(C_1)\phi(B_1) & \phi(C_1)\phi^T(A_1) \end{bmatrix}
\]

hold when \(i = 2, 3, 4\). In that case, the real solution of (1.5) can be expressed as \(X = X_1\) in (2.15).

(b) System (1.5) has a complex solution if and only if (2.44) hold when \(i = 3, 4\) or \(i = 2, 4\) or \(i = 2, 3\). In that case, the complex solutions of (1.5) can be expressed as \(X = X_1 + X_2i\) or \(X = X_1 + X_3j\).
or $X = X_1 + X_4k$, where $X_1, X_2, X_3,$ and X_4 are expressed as (2.15), (2.16), (2.17), and (2.18), respectively.

Proof. From (2.34) we can get the necessary and sufficient conditions for $X_i = 0$, $i = 1, 2, 3, 4$. Thus we can get the results of this Corollary.

3. Solvability Conditions for Real and Complex Hermitian Solutions to (1.6) Over \mathbb{H}

In this section, using the results of Theorem 2.6, Theorem 2.7, and Corollary 2.8, we give necessary and sufficient conditions for (1.6) over \mathbb{H} to have real and complex Hermitian solutions.

Theorem 3.1. Let $A_1, A_3, B_1, C_1, C_2,$ and C_3 be defined in Lemma 2.2, $A_4 \in \mathbb{H}^{d \times n}, C_4 \in \mathbb{H}^{d \times d},$ and suppose that system (1.5) and the matrix equation $A_4 Y A_4^* = C_4$ over \mathbb{H} have Hermitian solutions X and $Y \in \mathbb{H}^{n \times n}$, respectively. Then system (1.6) over \mathbb{H} has a real Hermitian solution if and only if (2.44) hold when $i = 2, 3, 4,$ and

$$r\begin{bmatrix} 0 & M_{31}^T \\ M_{31} & \phi(C_3) \end{bmatrix} = 2r(M_{31}),$$

$$r\begin{bmatrix} 0 & M_{41}^T \\ M_{41} & \phi(C_4) \end{bmatrix} = r(M_{41}) + r\begin{bmatrix} M_{41}^T & 0 \\ M_{411} & \phi(B_1) \end{bmatrix},$$

$$r\begin{bmatrix} 0 & M_{411}^T \\ M_{411} & \phi(C_1) \end{bmatrix} = r(M_{41}) + r\begin{bmatrix} M_{411}^T & 0 \\ M_{4111} & \phi(B_1) \end{bmatrix},$$

where

$$r\begin{bmatrix} 0 & M_{4111}^T \\ M_{4111} & \phi(C_1) \end{bmatrix} = 2r\begin{bmatrix} M_{41} & M_{411} \\ 0 & \phi(A_3) \end{bmatrix},$$

$$r\begin{bmatrix} 0 & M_{41111}^T \\ M_{41111} & \phi(C_1) \end{bmatrix} = 2r\begin{bmatrix} M_{41} & M_{4111} \\ 0 & \phi(B_1) \end{bmatrix}.$$
where

\[
M_{41} = \begin{bmatrix}
A_{42} & A_{43} & A_{44} \\
A_{41} & A_{44} & -A_{43} \\
-A_{44} & A_{41} & A_{42} \\
A_{43} & -A_{42} & A_{41}
\end{bmatrix}, \quad M_{411} = \begin{bmatrix}
A_{21} & 0 & 0 & 0 \\
-A_{22} & 0 & 0 & 0 \\
-A_{23} & 0 & 0 & 0 \\
-A_{24} & 0 & 0 & 0
\end{bmatrix}.
\]

Proof. From Corollary 2.8, system (1.5) over \(\mathbb{H}\) has a real Hermitian solution if and only if (2.44) hold when \(i = 2, 3, 4\). By (2.15), the real Hermitian solutions of (1.5) over \(\mathbb{H}\) can be expressed as

\[
X_1 = \frac{1}{4} P_1 \phi(X_0) P_1^T + \frac{1}{4} P_2 \phi(X_0) P_2^T + \frac{1}{4} P_3 \phi(X_0) P_3^T + \frac{1}{4} P_4 \phi(X_0) P_4^T
\]

\[
+ [P_1, P_2, P_3, P_4] L_{\phi(A_1)} L_{\phi((M)} V L_{\phi(A_1)}^T \begin{bmatrix}
L_{\phi(f)} L_{\phi(A_1)} P_1^T \\
L_{\phi(f)} L_{\phi(A_1)} P_2^T \\
L_{\phi(f)} L_{\phi(A_1)} P_3^T \\
L_{\phi(f)} L_{\phi(A_1)} P_4^T
\end{bmatrix}
\]

\[
+ [P_1, P_2, P_3, P_4] L_{\phi(A_1)} L_{\phi(f)} V^T L_{\phi(M)} L_{\phi(f)} L_{\phi(A_1)} P_1^T
\]

\[
+ [P_1, P_2, P_3, P_4] L_{\phi(A_1)} L_{\phi(f)} V^T L_{\phi(M)} L_{\phi(f)} L_{\phi(A_1)} P_2^T
\]

\[
+ [P_1, P_2, P_3, P_4] L_{\phi(A_1)} L_{\phi(f)} V^T L_{\phi(M)} L_{\phi(f)} L_{\phi(A_1)} P_3^T
\]

\[
+ [P_1, P_2, P_3, P_4] L_{\phi(A_1)} L_{\phi(f)} V^T L_{\phi(M)} L_{\phi(f)} L_{\phi(A_1)} P_4^T
\]

(3.5)

where \(V\) is arbitrary matrices with compatible sizes.

Let \(A_1, C_1 = 0; B_1, C_2 = 0; A_3 = A_4; C_3 = C_4\) in Corollary 2.8 and (2.15). It is easy to verify that the matrix equation \(A_4 Y A_4^* = C_4\) over \(\mathbb{H}\) has a real Hermitian solution if and only if (3.1) hold and the real Hermitian solution can be expressed as

\[
Y_1 = \frac{1}{4} P_1 \phi(Y_0) P_1^T + \frac{1}{4} P_2 \phi(Y_0) P_2^T + \frac{1}{4} P_3 \phi(Y_0) P_3^T + \frac{1}{4} P_4 \phi(Y_0) P_4^T
\]

\[
+ [P_1, P_2, P_3, P_4] L_{\phi(A_1)} U + U^T \begin{bmatrix}
L_{\phi(A_1)} P_1^T \\
L_{\phi(A_1)} P_2^T \\
L_{\phi(A_1)} P_3^T \\
L_{\phi(A_1)} P_4^T
\end{bmatrix}
\]

(3.6)
where $\phi(Y_0)$ is a particular solution to $\phi(A_4)(Y_0) = \phi(C_4)$ and U is arbitrary matrices with compatible sizes. The expression of Y_1 can also be obtained from Lemma 2.1. Let

$$[P_1, P_2, P_3, P_4] = P,$$

$$G = \frac{1}{4} P_1 \phi(X_0) P_1^T + \frac{1}{4} P_2 \phi(X_0) P_2^T + \frac{1}{4} P_3 \phi(X_0) P_3^T + \frac{1}{4} P_4 \phi(X_0) P_4^T$$

(3.7)

$$- \frac{1}{4} P_1 \phi(Y_0) P_1^T - \frac{1}{4} P_2 \phi(Y_0) P_2^T - \frac{1}{4} P_3 \phi(Y_0) P_3^T - \frac{1}{4} P_4 \phi(Y_0) P_4^T.$$

Equating X_1 and Y_1, we obtain the following equation:

$$X_1 - Y_1 = G + PL\phi(A_4)L\phi(F)L\phi(M)V + PL\phi(A_4)U - UT^T - PL\phi(A_4)U - UT^T.$$

(3.8)

It is obvious that system (1.5) and the matrix equation $A_4 Y A_4^* = C_4$ over \mathbb{H} have common real Hermitian solution if and only if $\min r(X_1 - Y_1) = 0$, that is, $X_1 - Y_1 = 0$. Hence, we have the matrix equation

$$G = PL\phi(A_4)U + UT^T - PL\phi(A_4)\phi(F)L\phi(M)V$$

(3.9)
We know by Lemma 2.5 that (3.9) is solvable if and only if the following four rank equalities hold

\[
\begin{bmatrix}
G & PL_{\phi(A_i)} \\
R_{\phi(A_i)}P^T & 0 \\
R_{\phi(f)}R_{\phi(A_i)}P^T & 0
\end{bmatrix} = \begin{bmatrix}
0 & PL_{\phi(A_i)} \\
R_{\phi(A_i)}P^T & 0 \\
R_{\phi(f)}R_{\phi(A_i)}P^T & 0
\end{bmatrix},
\]

\[
\begin{bmatrix}
G & PL_{\phi(A_i)} & PL_{\phi(A_i)}L_{\phi(f)} \\
R_{\phi(A_i)}P^T & 0 & 0 \\
R_{\phi(M)}R_{\phi(f)}R_{\phi(A_i)}P^T & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & PL_{\phi(A_i)} & PL_{\phi(A_i)}L_{\phi(f)}L_{\phi(M)} \\
R_{\phi(A_i)}P^T & 0 & 0 \\
R_{\phi(M)}R_{\phi(f)}R_{\phi(A_i)}P^T & 0 & 0
\end{bmatrix},
\]

\[
\begin{bmatrix}
G & PL_{\phi(A_i)} & PL_{\phi(A_i)}L_{\phi(f)} \\
R_{\phi(A_i)}P^T & 0 & 0 \\
R_{\phi(f)}R_{\phi(A_i)}P^T & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & PL_{\phi(A_i)} & PL_{\phi(A_i)}L_{\phi(f)} \\
R_{\phi(A_i)}P^T & 0 & 0 \\
R_{\phi(f)}R_{\phi(A_i)}P^T & 0 & 0
\end{bmatrix}.
\]

(3.10)

Under the conditions that the system (1.5) and the matrix equation \(A_4Y A^*_i = C_4\) over \(\mathbb{H}\) have Hermitian solutions, it is not difficult to show by Lemma 2.3 and block Gaussian elimination that (3.10) are equivalent to the four rank equalities (3.2) and (3.3), respectively. Note that the processes are too much tedious; we omit them here. Obviously, the system (1.5) and the matrix equation \(A_4Y A^*_i = C_4\) over \(\mathbb{H}\) have a common real Hermitian solution if and only if (3.2) and (3.3) hold. Thus, the system (1.6) over \(\mathbb{H}\) has a real Hermitian solution if and only if (2.44) hold when \(i = 2, 3, 4\), and (3.1)-(3.3) hold.

Similarly, from Corollary 2.8, we know that the system (1.5) over \(\mathbb{H}\) has a complex Hermitian solution if and only if (2.44) hold when \(i = 3, 4, i = 2, 4, \) or; \(i = 2, 3\); its complex Hermitian solutions can be expressed as \(X = X_1 + X_2i\), \(X = X_1 + X_3j\), or \(X = X_1 + X_4k\). It is also easy to derive the necessary and sufficient condition for the matrix equation \(A_4Y A^*_i = C_4\) over \(\mathbb{H}\) to have a complex Hermitian solution; its complex Hermitian solution can be expressed as \(Y = Y_1 + Y_2i\), \(Y = Y_1 + Y_3j\), or \(Y = Y_1 + Y_4k\). By equating \(X_1\) and \(Y_1\), \(X_2\) and \(Y_2\), \(X_3\), and \(Y_3\), \(X_4\) and \(Y_4\), respectively, we can derive the necessary and sufficient conditions for the system (1.6) over \(\mathbb{H}\) to have a complex Hermitian solution.

Acknowledgment

This research was supported by the Excellent Young Teacher Grant of East China University of Science and Technology (yk0157124) and the Natural Science Foundation of China (11001079).
References

Submit your manuscripts at http://www.hindawi.com