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Abstract. 
Tripled fixed points are extensions of the idea of coupled fixed points introduced in a recent paper by Berinde and Borcut, 2011. Here using a separate methodology we extend this result to a triple coincidence point theorem in partially ordered metric spaces. We have defined several concepts pertaining to our results. The main results have several corollaries and an illustrative example. The example shows that the extension proved here is actual and also the main theorem properly contains all its corollaries.


1. Introduction and Preliminaries
In recent times coupled fixed point theory has experienced a rapid growth in partially ordered metric spaces. The speciality of this line of research is that the problems herein utilize both order theoretic and analytic methods. References [1–19] are some instances of these works. 
Definition 1.1 (see [14]). A function 
	
		
			
				𝑔
				∶
				𝑅
				→
				𝑅
			

		
	
 is said to be monotone nondecreasing (or increasing) if 
	
		
			
				𝑥
				≥
				𝑦
			

		
	
 implies 
	
		
			
				𝑔
				(
				𝑥
				)
				≥
				𝑔
				(
				𝑦
				)
			

		
	
.
Definition 1.2 (see [14]). Let 
	
		
			

				𝑋
			

		
	
 be a nonempty set. Let 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 be a mapping. An element 
	
		
			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 is called a coupled fixed point of 
	
		
			

				𝐹
			

		
	
 if
							
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
				=
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				)
				=
				𝑦
				.
			

		
	

 Recently, Berinde and Borcut [20] extended the idea of coupled fixed points to tripled fixed points. The definition is as follows.
Definition 1.3 (see [20]). Let 
	
		
			

				𝑋
			

		
	
 be a nonempty set. Let 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 be a mapping. An element 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 is called a tripled fixed point of 
	
		
			

				𝐹
			

		
	
 if
							
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑧
				.
			

		
	
They also extended the mixed monotone property to functions with three arguments.
Definition 1.4 (see [20]). Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set and 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
. The mapping 
	
		
			

				𝐹
			

		
	
 is said to have the mixed monotone property if for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	

	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				∈
				𝑋
				,
				𝑥
			

			

				1
			

			
				⪯
				𝑥
			

			

				2
			

			
				
				𝑥
				⟹
				𝐹
			

			

				1
			

			
				
				
				𝑥
				,
				𝑦
				,
				𝑧
				⪯
				𝐹
			

			

				2
			

			
				
				,
				𝑦
				,
				𝑦
				,
				𝑧
			

			

				1
			

			
				,
				𝑦
			

			

				2
			

			
				∈
				𝑋
				,
				𝑦
			

			

				1
			

			
				⪯
				𝑦
			

			

				2
			

			
				
				⟹
				𝐹
				𝑥
				,
				𝑦
			

			

				1
			

			
				
				
				,
				𝑧
				⪰
				𝐹
				𝑥
				,
				𝑦
			

			

				2
			

			
				
				,
				𝑧
				,
				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

			
				∈
				𝑋
				,
				𝑧
			

			

				1
			

			
				⪯
				𝑧
			

			

				2
			

			
				
				⟹
				𝐹
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				1
			

			
				
				
				⪯
				𝐹
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				2
			

			
				
				.
			

		
	

Our purpose here is to establish tripled coincidence point results in metric spaces with partial ordering. For that purpose we define mixed 
	
		
			

				𝑔
			

		
	
-monotone property in the following. Mixed g-monotone property was already defined in the context of coupled fixed points [14]. Here in the spirit of Definition 1.4 we have made an extension of that.
Definition 1.5. Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set. Let 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
. The mapping 
	
		
			

				𝐹
			

		
	
 is said to have the mixed 
	
		
			

				𝑔
			

		
	
-monotone property if for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
. 							
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				∈
				𝑋
				,
				𝑔
				𝑥
			

			

				1
			

			
				⪯
				𝑔
				𝑥
			

			

				2
			

			
				
				𝑥
				⟹
				𝐹
			

			

				1
			

			
				
				
				𝑥
				,
				𝑦
				,
				𝑧
				⪯
				𝐹
			

			

				2
			

			
				
				,
				𝑦
				,
				𝑦
				,
				𝑧
			

			

				1
			

			
				,
				𝑦
			

			

				2
			

			
				∈
				𝑋
				,
				𝑔
				𝑦
			

			

				1
			

			
				⪯
				𝑔
				𝑦
			

			

				2
			

			
				
				⟹
				𝐹
				𝑥
				,
				𝑦
			

			

				1
			

			
				
				
				,
				𝑧
				⪰
				𝐹
				𝑥
				,
				𝑦
			

			

				2
			

			
				
				,
				𝑧
				,
				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

			
				∈
				𝑋
				,
				𝑔
				𝑧
			

			

				1
			

			
				⪯
				𝑔
				𝑧
			

			

				2
			

			
				
				⟹
				𝐹
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				1
			

			
				
				
				⪯
				𝐹
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				2
			

			
				
				.
			

		
	

Coupled coincidence point was defined by Lakshmikantham and Ćirić [14]. We also extend the concept of coupled coincidence point to tripled coincidence point in the following.
Definition 1.6. Let 
	
		
			

				𝑋
			

		
	
 be any nonempty set. Let 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
. An element 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 is called a tripled coincidence point of 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 if
							
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑔
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑔
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑔
				𝑧
				.
			

		
	

We extend the concept of commuting mappings given by Lakshmikantham and Ćirić [14], in the following definition.
Definition 1.7. Let 
	
		
			

				𝑋
			

		
	
 be a nonempty set. Then one says that the mappings 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 are commuting if for all 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	

	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				𝑔
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				)
				=
				𝐹
				(
				𝑔
				𝑥
				,
				𝑔
				𝑦
				,
				𝑔
				𝑧
				)
				.
			

		
	

The following is the definition of compatible mappings which is an extension of the compatibility defined by Choudhury and Kundu in [8].
Definition 1.8 (see [8]).  Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a metric space. The mappings 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
, where 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 are said to be compatible if
							
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				
				𝑥
				𝑔
				𝐹
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				
				,
				𝐹
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				
				𝑦
				𝑔
				𝐹
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝐹
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				
				𝑧
				𝑔
				𝐹
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝐹
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				=
				0
				,
			

		
	

						whenever 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑦
			

			

				𝑛
			

			
				}
				,
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 are sequences in 
	
		
			

				𝑋
			

		
	
 such that 
							
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐹
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				=
				𝑔
				𝑥
			

			

				𝑛
			

			
				=
				𝑥
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐹
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				=
				𝑔
				𝑦
			

			

				𝑛
			

			
				=
				𝑦
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐹
				
				𝑧
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				=
				𝑔
				𝑧
			

			

				𝑛
			

			
				=
				𝑧
				.
			

		
	

2. Main Results
Theorem 2.1.  Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set and suppose there is a metric 
	
		
			

				𝑑
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space. Suppose 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 are such that, 
	
		
			

				𝑔
			

		
	
 is monotone increasing, 
	
		
			

				𝐹
			

		
	
 has the mixed 
	
		
			

				𝑔
			

		
	
-monotone property and 
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				𝑑
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝐹
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
				)
				≤
				𝜓
				(
				m
				a
				x
				{
				𝑑
				(
				𝑔
				𝑥
				,
				𝑔
				𝑢
				)
				,
				𝑑
				(
				𝑔
				𝑦
				,
				𝑔
				𝑣
				)
				,
				𝑑
				(
				𝑔
				𝑧
				,
				𝑔
				𝑤
				)
				}
				)
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 for which 
	
		
			
				𝑔
				𝑥
				⪯
				𝑔
				𝑢
			

		
	
, 
	
		
			
				𝑔
				𝑦
				≽
				𝑔
				𝑣
			

		
	
 and 
	
		
			
				𝑔
				𝑧
				⪯
				𝑔
				𝑤
			

		
	
, where 
	
		
			
				𝜓
				∶
				[
				0
				,
				+
				∞
				)
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 is such that 
	
		
			
				𝜓
				(
				𝑡
				)
			

		
	
 is monotone, 
	
		
			
				𝜓
				(
				𝑡
				)
				<
				𝑡
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑟
				→
				𝑡
			

			

				+
			

			
				𝜓
				(
				𝑟
				)
				<
				𝑡
			

		
	
 for all 
	
		
			
				𝑡
				>
				0
			

		
	
. Suppose 
	
		
			
				𝐹
				(
				𝑋
				×
				𝑋
				×
				𝑋
				)
				⊆
				𝑔
				(
				𝑋
				)
			

		
	
, 
	
		
			

				𝑔
			

		
	
 is continuous, and 
	
		
			
				{
				𝑔
				,
				𝐹
				}
			

		
	
 is a compatible pair. Suppose either  (a)
	
		
			

				𝐹
			

		
	
is continuous or (b)
	
		
			

				𝑋
			

		
	
 has the following properties: (i)if a nondecreasing sequence 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				→
				𝛼
			

		
	
, then 
	
		
			

				𝛼
			

			

				𝑛
			

			
				⪯
				𝛼
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
,(ii)if a nonincreasing sequence 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			
				}
				→
				𝛽
			

		
	
, then 
	
		
			

				𝛽
			

			

				𝑛
			

			
				≽
				𝛽
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
.  If there exist 
	
		
			

				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				∈
				𝑋
			

		
	
 such that 
	
		
			
				𝑔
				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			

				)
			

		
	
, 
	
		
			
				𝑔
				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			
				𝑔
				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
, then there exist 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑔
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑔
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑔
				𝑧
				,
			

		
	

						that is, 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 have a tripled coincidence point.
Proof. By a condition of the theorem, there exist 
	
		
			

				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				∈
				𝑋
			

		
	
 such that 
	
		
			
				𝑔
				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			

				)
			

		
	
, 
	
		
			
				𝑔
				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			
				𝑔
				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
. Since 
	
		
			
				𝐹
				(
				𝑋
				×
				𝑋
				×
				𝑋
				)
				⊆
				𝑔
				(
				𝑋
				)
			

		
	
, we can choose 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑦
			

			

				1
			

			
				,
				𝑧
			

			

				1
			

			
				∈
				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			

				1
			

			
				
				𝑥
				=
				𝐹
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				
				,
				𝑔
				𝑦
			

			

				1
			

			
				
				𝑦
				=
				𝐹
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				
				,
				𝑔
				𝑧
			

			

				1
			

			
				
				𝑧
				=
				𝐹
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				
				.
			

		
	

						Continuing this process, we can construct sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				𝑥
				=
				𝐹
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				
				𝑦
				=
				𝐹
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				,
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				
				𝑧
				=
				𝐹
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				.
			

		
	

						Next we will show that, for 
	
		
			
				𝑛
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			

				𝑛
			

			
				⪯
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				⪰
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				⪯
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			

				.
			

		
	

						Since, 
	
		
			
				𝑔
				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				)
				,
				𝑔
				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			
				𝑔
				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
, by (2.3), we get 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			

				0
			

			
				⪯
				𝑔
				𝑥
			

			

				1
			

			
				,
				𝑔
				𝑦
			

			

				0
			

			
				⪰
				𝑔
				𝑦
			

			

				1
			

			
				,
				𝑔
				𝑧
			

			

				0
			

			
				⪯
				𝑔
				𝑧
			

			

				1
			

			

				,
			

		
	

						that is, (2.5) holds for 
	
		
			
				𝑛
				=
				0
			

		
	
.We presume that (2.5) holds for some 
	
		
			
				𝑛
				=
				𝑚
				>
				0
			

		
	
. As 
	
		
			

				𝐹
			

		
	
 has the mixed 
	
		
			

				𝑔
			

		
	
-monotone property and 
	
		
			
				𝑔
				𝑥
			

			

				𝑚
			

			
				⪯
				𝑔
				𝑥
			

			
				𝑚
				+
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑚
			

			
				≽
				𝑔
				𝑦
			

			
				𝑚
				+
				1
			

		
	
 and 
	
		
			
				𝑔
				𝑧
			

			

				𝑚
			

			
				⪯
				𝑔
				𝑧
			

			
				𝑚
				+
				1
			

		
	
, we obtain
							
	
 		
 			
				(
				2
				.
				7
				)
			
 			
				(
				2
				.
				8
				)
			
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			
				𝑚
				+
				1
			

			
				
				𝑥
				=
				𝐹
			

			

				𝑚
			

			
				,
				𝑦
			

			

				𝑚
			

			
				,
				𝑧
			

			

				𝑚
			

			
				
				
				𝑥
				⪯
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			

				𝑚
			

			
				,
				𝑧
			

			

				𝑚
			

			
				
				
				𝑥
				⪯
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			

				𝑚
			

			
				,
				𝑧
			

			
				𝑚
				+
				1
			

			
				
				
				𝑥
				⪯
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			
				𝑚
				+
				1
			

			
				,
				𝑧
			

			
				𝑚
				+
				1
			

			
				
				=
				𝑔
				𝑥
			

			
				𝑚
				+
				2
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				+
				1
			

			
				
				𝑦
				=
				𝐹
			

			

				𝑚
			

			
				,
				𝑥
			

			

				𝑚
			

			
				,
				𝑦
			

			

				𝑚
			

			
				
				
				𝑦
				⪰
				𝐹
			

			

				𝑚
			

			
				,
				𝑥
			

			

				𝑚
			

			
				,
				𝑦
			

			
				𝑚
				+
				1
			

			
				
				
				𝑦
				⪰
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑥
			

			

				𝑚
			

			
				,
				𝑦
			

			
				𝑚
				+
				1
			

			
				
				
				𝑦
				⪰
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			
				𝑚
				+
				1
			

			
				
				=
				𝑔
				𝑦
			

			
				𝑚
				+
				2
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				+
				1
			

			
				
				𝑧
				=
				𝐹
			

			

				𝑚
			

			
				,
				𝑦
			

			

				𝑚
			

			
				,
				𝑥
			

			

				𝑚
			

			
				
				
				𝑧
				⪯
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			

				𝑚
			

			
				,
				𝑥
			

			

				𝑚
			

			
				
				
				𝑧
				⪯
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			
				𝑚
				+
				1
			

			
				,
				𝑥
			

			

				𝑚
			

			
				
				
				𝑧
				⪯
				𝐹
			

			
				𝑚
				+
				1
			

			
				,
				𝑦
			

			
				𝑚
				+
				1
			

			
				,
				𝑥
			

			
				𝑚
				+
				1
			

			
				
				=
				𝑔
				𝑧
			

			
				𝑚
				+
				2
			

			

				.
			

		
	

						Thus, (2.5) holds for 
	
		
			
				𝑛
				=
				𝑚
				+
				1
			

		
	
. Then, by induction, we conclude that (2.5) holds for 
	
		
			
				𝑛
				≥
				1
			

		
	
. If for some 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
, 
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			

				𝑛
			

			
				=
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				=
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				=
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			

				,
			

		
	

						then, by (2.4), 
	
		
			
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			

				)
			

		
	
 is a tripled coincidence point of 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
. Therefore we assume, for any 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
, 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				≠
				
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				
				.
			

		
	

						Set 
	
		
			

				𝛿
			

			

				𝑛
			

			
				=
				m
				a
				x
				{
				𝑑
				(
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				)
				,
				𝑑
				(
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				)
				,
				𝑑
				(
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				)
				}
			

		
	
.Then
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑛
			

			
				>
				0
				∀
				𝑛
				≥
				0
				.
			

		
	

						Then, by (2.1), (2.4) and (2.5), we have
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑑
				
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝐹
				
				𝑥
				=
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				
				
				𝑥
				,
				𝐹
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑑
				
				
				
				
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				
				
				𝐹
				
				𝑦
				=
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑦
			

			
				𝑛
				−
				1
			

			
				
				
				𝑦
				,
				𝐹
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑑
				
				
				
				
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				
				
				𝐹
				
				𝑧
				=
				𝑑
			

			
				𝑛
				−
				1
			

			
				,
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				
				𝑧
				,
				𝐹
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑧
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				.
				
				
				
			

		
	

						Thus, from (2.13) we obtain that
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑛
			

			
				
				𝑑
				
				=
				m
				a
				x
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				−
				1
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				.
				
				
				
			

		
	

						It then follows from (2.12) and a property 
	
		
			

				𝜓
			

		
	
, that for all 
	
		
			
				𝑛
				≥
				1
			

		
	
,
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑛
			

			
				
				𝛿
				≤
				𝜓
			

			
				𝑛
				−
				1
			

			
				
				<
				𝛿
			

			
				𝑛
				−
				1
			

			

				.
			

		
	

						Thus, 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

		
	
 is a monotone decreasing sequence of nonnegative real numbers. So, there exist a 
	
		
			
				𝛿
				≥
				0
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				=
				𝛿
				.
			

		
	

						Suppose 
	
		
			
				𝛿
				>
				0
			

		
	
. Letting 
	
		
			
				𝑛
				→
				∞
			

		
	
 in (2.14),  using (2.15), (2.16), and a property of 
	
		
			

				𝜓
			

		
	
, we get 
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				𝛿
				≤
				𝜓
				(
				𝛿
				)
				<
				𝛿
				,
			

		
	

						which is a contradiction. Thus 
	
		
			
				𝛿
				=
				0
			

		
	
, or 
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				=
				0
				,
			

		
	

						or
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				=
				0
				.
			

		
	

						Now, we will prove that 
	
		
			
				{
				𝑔
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑔
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑔
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 are Cauchy sequences. Suppose, to the contrary, that at least one of 
	
		
			
				{
				𝑔
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑔
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑔
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 is not a Cauchy sequence. So, there exists an 
	
		
			
				𝜀
				>
				0
			

		
	
 for which we can find subsequences 
	
		
			
				{
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑔
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑔
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑔
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 with 
	
		
			
				𝑛
				(
				𝑘
				)
				>
				𝑚
				(
				𝑘
				)
				≥
				𝑘
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑘
			

			
				
				𝑑
				
				=
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				≥
				𝜀
				.
			

		
	

						Additionally, corresponding to 
	
		
			
				𝑚
				(
				𝑘
				)
			

		
	
, we may choose 
	
		
			
				𝑛
				(
				𝑘
				)
			

		
	
 such that it is the smallest integer satisfying (2.20). Then, for all 
	
		
			
				𝑘
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				
				𝑑
				
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				<
				𝜀
				.
			

		
	

						By using (2.20) and (2.21) we have for 
	
		
			
				𝑘
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				𝜀
				≤
				𝛼
			

			

				𝑘
			

			
				
				𝑑
				
				=
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				𝑑
				
				
				
				≤
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				𝑑
				
				
				
				≤
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				
				
				+
				𝜀
				≤
				𝛿
			

			
				𝑛
				(
				𝑘
				)
				−
				1
			

			
				+
				𝜀
				.
			

		
	

						Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in (2.22), and using (2.19), we get
							
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛼
			

			

				𝑘
			

			
				=
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				
				𝑑
				
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				=
				𝜀
				.
			

		
	

						Let, for 
	
		
			
				𝑘
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			

				𝛽
			

			

				𝑘
			

			
				
				𝑑
				
				=
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				.
				
				
			

		
	
Again, for all 
	
		
			
				𝑘
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑘
			

			
				
				𝑑
				
				=
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				𝑑
				
				
				
				≤
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				,
				𝑑
				
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				,
				𝑑
				
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				+
				𝑑
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				𝑑
				
				
				
				≤
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				𝑑
				
				
				
				+
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				𝑑
				
				
				
				+
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				≤
				𝛿
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				+
				𝛽
			

			

				𝑘
			

			
				+
				𝛿
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			

				.
			

		
	

						Analogously we have for 
	
		
			
				𝑘
				≥
				0
			

		
	
,
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			

				𝛽
			

			

				𝑘
			

			
				
				𝑑
				
				=
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				𝑑
				
				
				
				≤
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				
				
				+
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				+
				𝑑
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				,
				𝑑
				
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				
				
				+
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				+
				𝑑
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				,
				𝑑
				
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				
				
				+
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				+
				𝑑
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				𝑑
				
				
				
				≤
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				
				𝑑
				
				
				
				+
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				𝑑
				
				
				
				+
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				≤
				𝛿
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				+
				𝛼
			

			

				𝑘
			

			
				+
				𝛿
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			

				.
			

		
	

						Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in (2.25) and (2.26), we get that
							
	
 		
 			
				(
				2
				.
				2
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				
				𝑑
				
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				=
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛽
			

			

				𝑘
			

			
				=
				𝜀
				=
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛼
			

			

				𝑘
			

			

				.
			

		
	

						Since 
	
		
			
				𝑛
				(
				𝑘
				)
				>
				𝑚
				(
				𝑘
				)
			

		
	
, for 
	
		
			
				𝑘
				≥
				0
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				2
				8
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				⪰
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				⪯
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				⪰
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			

				.
			

		
	

						Then from (2.1), (2.4), and (2.28), we have for 
	
		
			
				𝑘
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				.
				2
				9
				)
			
 		
	

	
		
			
				𝑑
				
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				𝐹
				
				𝑥
				=
				𝑑
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑥
				,
				𝐹
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑑
				
				
				
				
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				𝐹
				
				𝑦
				=
				𝑑
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑦
				,
				𝐹
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑑
				
				
				
				
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
				+
				1
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
				+
				1
			

			
				
				
				𝐹
				
				𝑧
				=
				𝑑
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				
				
				𝑧
				,
				𝐹
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				,
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				𝑑
				
				
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				.
				
				
				
			

		
	

						From (2.29) for 
	
		
			
				𝑘
				≥
				0
			

		
	
, we get
							
	
 		
 			
				(
				2
				.
				3
				0
				)
			
 		
	

	
		
			

				𝛽
			

			

				𝑘
			

			
				
				
				𝑑
				
				≤
				𝜓
				m
				a
				x
				𝑔
				𝑥
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑥
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑦
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑦
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				
				,
				𝑑
				𝑔
				𝑧
			

			
				𝑛
				(
				𝑘
				)
			

			
				,
				𝑔
				𝑧
			

			
				𝑚
				(
				𝑘
				)
			

			
				
				𝛼
				
				
				
				=
				𝜓
			

			

				𝑘
			

			
				
				.
			

		
	

						Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
 in (2.30), using (2.20), (2.27), and a property of 
	
		
			

				𝜓
			

		
	
, we get 
							
	
 		
 			
				(
				2
				.
				3
				1
				)
			
 		
	

	
		
			
				𝜀
				≤
				𝜓
				(
				𝜀
				)
				<
				𝜀
				,
			

		
	

						which is a contradiction. This shows that 
	
		
			
				{
				𝑔
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑔
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑔
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 are Cauchy sequences.Since 
	
		
			

				𝑋
			

		
	
 is complete, there exist 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				𝑥
			

			

				𝑛
			

			
				=
				𝑥
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				𝑦
			

			

				𝑛
			

			
				=
				𝑦
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				𝑧
			

			

				𝑛
			

			
				=
				𝑧
				.
			

		
	

						From (2.4) and (2.32), using the continuity of 
	
		
			

				𝑔
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				3
				3
				)
			
 			
				(
				2
				.
				3
				4
				)
			
 			
				(
				2
				.
				3
				5
				)
			
 		
	

	
		
			
				𝑔
				𝑥
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝐹
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				,
				
				
				𝑔
				𝑦
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝑔
				𝑦
			

			
				𝑛
				+
				1
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝐹
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				
				
				𝑔
				𝑧
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝑔
				𝑧
			

			
				𝑛
				+
				1
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝐹
				
				𝑧
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				.
				
				
			

		
	

						Now we will show that 
	
		
			
				𝑔
				𝑥
				=
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝑔
				𝑦
				=
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
			

		
	
, and 
	
		
			
				𝑔
				𝑧
				=
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
			

		
	
.Since 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 are compatible,  in addition with (2.33), (2.34), and (2.35), respectively imply
							
	
 		
 			
				(
				2
				.
				3
				6
				)
			
 			
				(
				2
				.
				3
				7
				)
			
 			
				(
				2
				.
				3
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑔
				
				𝐹
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				𝑔
				
				𝑥
				
				
				,
				𝐹
			

			

				𝑛
			

			
				
				
				𝑦
				,
				𝑔
			

			

				𝑛
			

			
				
				
				𝑧
				,
				𝑔
			

			

				𝑛
			

			
				
				
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑔
				
				𝐹
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				𝑔
				
				𝑦
				
				
				,
				𝐹
			

			

				𝑛
			

			
				
				
				𝑥
				,
				𝑔
			

			

				𝑛
			

			
				
				
				𝑦
				,
				𝑔
			

			

				𝑛
			

			
				
				
				
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑑
				
				𝑔
				
				𝐹
				
				𝑧
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				𝑔
				
				𝑧
				
				
				,
				𝐹
			

			

				𝑛
			

			
				
				
				𝑦
				,
				𝑔
			

			

				𝑛
			

			
				
				
				𝑥
				,
				𝑔
			

			

				𝑛
			

			
				
				
				
				=
				0
				.
			

		
	

						Suppose now the assumption 
	
		
			
				(
				a
				)
			

		
	
 holds, that is, 
	
		
			

				𝐹
			

		
	
 is continuous.For all 
	
		
			
				𝑛
				≥
				0
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				3
				9
				)
			
 		
	

	
		
			
				𝑑
				
				
				𝑔
				𝑥
				,
				𝐹
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				
				𝐹
				
				𝑥
				
				
				≤
				𝑑
				𝑔
				𝑥
				,
				𝑔
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				𝑔
				
				𝐹
				
				𝑥
				
				
				
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				
				
				,
				𝐹
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				.
				
				
			

		
	

						Taking the limit as 
	
		
			
				𝑛
				→
				∞
			

		
	
, using (2.32), (2.33), (2.36), and the facts that 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 are continuous, we have 
	
		
			
				𝑑
				(
				𝑔
				𝑥
				,
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				)
				=
				0
			

		
	
.Similarly, by using (2.32), (2.34), and (2.37) and (2.32), (2.35), and (2.38), respectively,  and also the facts that 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 are continuous, we have 
	
		
			
				𝑑
				(
				𝑔
				𝑦
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				)
				=
				0
			

		
	
 and 
	
		
			
				𝑑
				(
				𝑔
				𝑧
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				)
				=
				0
			

		
	
.Thus we have proved that 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 have a tripled coincidence point. Suppose that the assumption 
	
		
			
				(
				b
				)
			

		
	
 holds. Since 
	
		
			
				{
				𝑔
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑔
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 are nondecreasing and 
	
		
			
				𝑔
				𝑥
			

			

				𝑛
			

			
				→
				𝑥
			

		
	
 with 
	
		
			
				𝑔
				𝑧
			

			

				𝑛
			

			
				→
				𝑧
			

		
	
 and also 
	
		
			
				{
				𝑔
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 is nonincreasing with 
	
		
			
				𝑔
				𝑦
			

			

				𝑛
			

			
				→
				𝑦
			

		
	
, by assumption 
	
		
			
				(
				b
				)
			

		
	
 we have for all 
	
		
			

				𝑛
			

		
	

	
 		
 			
				(
				2
				.
				4
				0
				)
			
 		
	

	
		
			
				𝑔
				𝑥
			

			

				𝑛
			

			
				⪯
				𝑥
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				⪰
				𝑦
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				⪯
				𝑧
				.
			

		
	

						By virtue of monotone increasing property of 
	
		
			

				𝑔
			

		
	
 we have
							
	
 		
 			
				(
				2
				.
				4
				1
				)
			
 		
	

	
		
			
				𝑔
				𝑔
				𝑥
			

			

				𝑛
			

			
				⪯
				𝑔
				𝑥
				,
				𝑔
				𝑔
				𝑦
			

			

				𝑛
			

			
				⪰
				𝑔
				𝑦
				,
				𝑔
				𝑔
				𝑧
			

			

				𝑛
			

			
				⪯
				𝑔
				𝑧
				.
			

		
	

						Now using (2.4) we have 
							
	
 		
 			
				(
				2
				.
				4
				2
				)
			
 		
	

	
		
			
				
				
				𝑑
				(
				𝑔
				𝑥
				,
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				)
				≤
				𝑑
				𝑔
				𝑥
				,
				𝑔
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				𝑔
				
				𝑔
				
				𝑥
				
				
				+
				𝑑
			

			
				𝑛
				+
				1
			

			
				
				
				
				
				
				,
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				≤
				𝑑
				𝑔
				𝑥
				,
				𝑔
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				𝑔
				
				𝐹
				
				𝑥
				
				
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				
				
				,
				𝐹
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				𝐹
				
				
				
				+
				𝑑
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				
				
				
				,
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				≤
				𝑑
				𝑔
				𝑥
				,
				𝑔
				𝑔
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				𝑔
				
				𝐹
				
				𝑥
				
				
				+
				𝑑
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				
				
				,
				𝐹
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				
				
				𝑑
				
				
				
				+
				𝜓
				m
				a
				x
				𝑔
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑔
				𝑥
				,
				𝑑
				𝑔
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝑔
				𝑦
				,
				𝑑
				𝑔
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
				
				
				
				,
				(
				b
				y
				(
				2
				.
				1
				)
				,
				(
				2
				.
				4
				1
				)
				)
				.
			

		
	

						Taking the limit as 
	
		
			
				𝑛
				→
				∞
			

		
	
 in the above inequality, using (2.33), (2.36), and (2.41) we have 
							
	
 		
 			
				(
				2
				.
				4
				3
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑔
				𝑥
				,
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				)
				≤
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜓
				
				
				𝑑
				
				m
				a
				x
				𝑔
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑔
				𝑥
				,
				𝑑
				𝑔
				𝑔
				𝑦
			

			

				𝑛
			

			
				
				
				,
				𝑔
				𝑦
				,
				𝑑
				𝑔
				𝑔
				𝑧
			

			

				𝑛
			

			
				.
				,
				𝑔
				𝑧
				
				
				
			

		
	

						By (2.33), (2.34), (2.35), and the property of 
	
		
			

				𝜓
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				4
				4
				)
			
 		
	

	
		
			
				𝑑
				(
				𝑔
				𝑥
				,
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				)
				≤
				𝜓
				(
				0
				)
				=
				0
				,
			

		
	

						that is 
							
	
 		
 			
				(
				2
				.
				4
				5
				)
			
 		
	

	
		
			
				𝑔
				𝑥
				=
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				.
			

		
	

						In a similar manner  using (2.33), (2.34), (2.35), and (2.36), (2.37), (2.38), respectively, we obtain 
							
	
 		
 			
				(
				2
				.
				4
				6
				)
			
 		
	

	
		
			
				𝑔
				𝑦
				=
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				,
				𝑔
				𝑧
				=
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				.
			

		
	

						Thus, we proved that 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 have a tripled coincidence point. This completes the proof of the theorem.
Corollary 2.2.  Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set and suppose there is a metric 
	
		
			

				𝑑
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space. Suppose 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 are such that 
	
		
			

				𝐹
			

		
	
 has the mixed 
	
		
			

				𝑔
			

		
	
-monotone property and 
							
	
 		
 			
				(
				2
				.
				4
				7
				)
			
 		
	

	
		
			
				𝑑
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝐹
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
				)
				≤
				𝜓
				(
				m
				a
				x
				{
				𝑑
				(
				𝑔
				𝑥
				,
				𝑔
				𝑢
				)
				,
				𝑑
				(
				𝑔
				𝑦
				,
				𝑔
				𝑣
				)
				,
				𝑑
				(
				𝑔
				𝑧
				,
				𝑔
				𝑤
				)
				}
				)
			

		
	

						for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 for which 
	
		
			
				𝑔
				𝑥
				⪯
				𝑔
				𝑢
			

		
	
, 
	
		
			
				𝑔
				𝑦
				≽
				𝑔
				𝑣
			

		
	
 and 
	
		
			
				𝑔
				𝑧
				⪯
				𝑔
				𝑤
			

		
	
, where 
	
		
			
				𝜓
				∶
				[
				0
				,
				+
				∞
				)
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 be such that 
	
		
			
				𝜓
				(
				𝑡
				)
			

		
	
 is monotone, 
	
		
			
				𝜓
				(
				𝑡
				)
				<
				𝑡
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑟
				→
				𝑡
			

			

				+
			

			
				𝜓
				(
				𝑟
				)
				<
				𝑡
			

		
	
 for all 
	
		
			
				𝑡
				>
				0
			

		
	
. Suppose 
	
		
			
				𝐹
				(
				𝑋
				×
				𝑋
				×
				𝑋
				)
				⊆
				𝑔
				(
				𝑋
				)
			

		
	
, 
	
		
			

				𝑔
			

		
	
 is continuous, and 
	
		
			

				𝐹
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 are commuting. Suppose either  (a)
	
		
			

				𝐹
			

		
	
 is continuous, or   (b)
	
		
			

				𝑋
			

		
	
 has the  following property: (i)if a nondecreasing sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				→
				𝑥
			

		
	
,  then 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⪯
				𝑥
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
,(ii)if a nonincreasing sequence  
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				}
				→
				𝑦
			

		
	
, then 
	
		
			

				𝑦
			

			

				𝑛
			

			
				≽
				𝑦
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
.  If there exist 
	
		
			

				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				∈
				𝑋
			

		
	
 such that 
	
		
			
				𝑔
				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			

				)
			

		
	
, 
	
		
			
				𝑔
				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			
				𝑔
				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
, then there exist 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				4
				8
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑔
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑔
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑔
				𝑧
				,
			

		
	

						that is, 
	
		
			

				𝐹
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 have a tripled coincidence point.
Proof. Since a commuting pair is also a compatible pair, the result of the Corollary 2.2 follows from Theorem 2.1.
Later, by an example, we will show that the Corollary 2.2 is properly contained in Theorem 2.1.
Corollary 2.3.  Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set and suppose there is a metric 
	
		
			

				𝑑
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space. Suppose 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 be such that 
	
		
			

				𝐹
			

		
	
 has the mixed monotone property and 
							
	
 		
 			
				(
				2
				.
				4
				9
				)
			
 		
	

	
		
			
				𝑑
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝐹
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
				)
				≤
				𝜓
				(
				m
				a
				x
				{
				𝑑
				(
				𝑥
				,
				𝑢
				)
				,
				𝑑
				(
				𝑦
				,
				𝑣
				)
				,
				𝑑
				(
				𝑧
				,
				𝑤
				)
				}
				)
			

		
	

						for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 for which 
	
		
			
				𝑥
				⪯
				𝑢
				,
				𝑦
				≽
				𝑣
			

		
	
 and 
	
		
			
				𝑧
				⪯
				𝑤
			

		
	
, where 
	
		
			
				𝜓
				∶
				[
				0
				,
				+
				∞
				)
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 be such that 
	
		
			
				𝜓
				(
				𝑡
				)
			

		
	
 is monotone, 
	
		
			
				𝜓
				(
				𝑡
				)
				<
				𝑡
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑟
				→
				𝑡
			

			

				+
			

			
				𝜓
				(
				𝑟
				)
				<
				𝑡
			

		
	
 for all 
	
		
			
				𝑡
				>
				0
			

		
	
. Suppose (a)
	
		
			

				𝐹
			

		
	
 is continuous, or(b)
	
		
			

				𝑋
			

		
	
 has the following property: (i)if a nondecreasing sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				→
				𝑥
			

		
	
, then 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⪯
				𝑥
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
,   (ii)if a nonincreasing sequence 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				}
				→
				𝑦
			

		
	
, then 
	
		
			

				𝑦
			

			

				𝑛
			

			
				≽
				𝑦
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
.    If there exist 
	
		
			

				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				∈
				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			

				)
			

		
	
, 
	
		
			

				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			

				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
, then there exist 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				5
				0
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑧
				,
			

		
	

						that is, 
	
		
			

				𝐹
			

		
	
 has a tripled fixed point.
Proof. Taking 
	
		
			
				𝑔
				(
				𝑥
				)
				=
				𝑥
			

		
	
 in Theorem 2.1  we obtain Corollary 2.3.
Corollary 2.4.  Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set and suppose there is a metric 
	
		
			

				𝑑
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space. Suppose 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 are such that 
	
		
			

				𝐹
			

		
	
 has the mixed monotone property and 
							
	
 		
 			
				(
				2
				.
				5
				1
				)
			
 		
	

	
		
			
				𝑑
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝐹
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
				)
				≤
				𝑘
				m
				a
				x
				{
				𝑑
				(
				𝑥
				,
				𝑢
				)
				,
				𝑑
				(
				𝑦
				,
				𝑣
				)
				,
				𝑑
				(
				𝑧
				,
				𝑤
				)
				}
			

		
	

						for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 for which 
	
		
			
				𝑥
				⪯
				𝑢
				,
				𝑦
				≽
				𝑣
			

		
	
 and 
	
		
			
				𝑧
				⪯
				𝑤
			

		
	
, where 
	
		
			
				0
				<
				𝑘
				<
				1
			

		
	
. Suppose either (a)
	
		
			

				𝐹
			

		
	
 is continuous,  or(b)
	
		
			

				𝑋
			

		
	
 has the following  property:(i)if a nondecreasing sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				→
				𝑥
			

		
	
, then  
	
		
			

				𝑥
			

			

				𝑛
			

			
				⪯
				𝑥
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
,(ii)if a nonincreasing sequence 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				}
				→
				𝑦
			

		
	
, then  
	
		
			

				𝑦
			

			

				𝑛
			

			
				≽
				𝑦
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
.  If there exist 
	
		
			

				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				∈
				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			

				)
			

		
	
, 
	
		
			

				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			

				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
, then there exist 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				5
				2
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑧
				,
			

		
	

						that is, 
	
		
			

				𝐹
			

		
	
 has a tripled coincidence point.
Proof. Taking 
	
		
			
				𝜓
				(
				𝑡
				)
				=
				𝑘
				𝑡
			

		
	
, 
	
		
			
				𝑡
				>
				0
			

		
	
 where 
	
		
			
				0
				<
				𝑘
				<
				1
			

		
	
, in Corollary 2.3 we obtain Corollary 2.4.
The following corollary is the result of Berinde and Borcut in [20].
Corollary 2.5.  Let 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 be a partially ordered set and suppose there is a metric 
	
		
			

				𝑑
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space. Suppose 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 be such that 
	
		
			

				𝐹
			

		
	
 has the mixed monotone property and 
							
	
 		
 			
				(
				2
				.
				5
				3
				)
			
 		
	

	
		
			
				𝑑
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝐹
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
				)
				≤
				𝑎
			

			

				1
			

			
				𝑑
				(
				𝑥
				,
				𝑢
				)
				+
				𝑎
			

			

				2
			

			
				𝑑
				(
				𝑦
				,
				𝑣
				)
				+
				𝑎
			

			

				3
			

			
				𝑑
				(
				𝑧
				,
				𝑤
				)
			

		
	

						for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 for which 
	
		
			
				𝑥
				⪯
				𝑢
				,
				𝑦
				≽
				𝑣
			

		
	
 and 
	
		
			
				𝑧
				⪯
				𝑤
			

		
	
, where 
	
		
			

				𝑎
			

			

				1
			

			
				+
				𝑎
			

			

				2
			

			
				+
				𝑎
			

			

				3
			

			
				<
				1
			

		
	
. Suppose either (a)
	
		
			

				𝐹
			

		
	
 is continuous, or(b)
	
		
			

				𝑋
			

		
	
 has the following property:(i)if a nondecreasing sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				→
				𝑥
			

		
	
, then 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⪯
				𝑥
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
(ii)if a nonincreasing sequence 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				}
				→
				𝑦
			

		
	
, then 
	
		
			

				𝑦
			

			

				𝑛
			

			
				≽
				𝑦
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
. If there exist 
	
		
			

				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				∈
				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			

				)
			

		
	
, 
	
		
			

				𝑦
			

			

				0
			

			
				≽
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			

				𝑧
			

			

				0
			

			
				⪯
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
, then there exist 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				5
				4
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑥
				,
				𝐹
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝑦
				,
				𝐹
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝑧
				,
			

		
	

						that is, 
	
		
			

				𝐹
			

		
	
 has a tripled fixed point. 
 Proof. The proof follows from Corollary 2.4, since the inequality in Corollary 2.5 implies that Corollary 2.4. 
Remark 2.6. The method used in the proof of Corollary 2.5 is different from that used by Berinde and Borcut [20]. 
Next we discuss an example.
Example 2.7. Let 
	
		
			
				𝑋
				=
				ℜ
			

		
	
. Then 
	
		
			
				(
				𝑋
				,
				⪯
				)
			

		
	
 is a partially ordered set with the partial ordering defined by 
	
		
			
				𝑥
				⪯
				𝑦
			

		
	
 if and only if 
	
		
			
				|
				𝑥
				|
				≤
				|
				𝑦
				|
			

		
	
 and 
	
		
			
				𝑥
				⋅
				𝑦
				≥
				0
			

		
	
. 
Let  
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				=
				|
				𝑥
				−
				𝑦
				|
			

		
	
 for 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℜ
			

		
	
. Then 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 is a complete metric space.
Let 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑋
			

		
	
 be defined as 
	
		
			
				𝑔
				(
				𝑥
				)
				=
				𝑥
			

			

				2
			

			
				/
				1
				0
				,
			

		
	
for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
.
Let 
	
		
			
				𝐹
				∶
				𝑋
				×
				𝑋
				×
				𝑋
				→
				𝑋
			

		
	
 be defined as
						
	
 		
 			
				(
				2
				.
				5
				5
				)
			
 		
	

	
		
			
				𝑥
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
			

			

				2
			

			
				−
				𝑦
			

			

				2
			

			
				+
				𝑧
			

			

				2
			

			
				
			
			
				9
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
				.
			

		
	

					Then F obeys the mixed 
	
		
			

				𝑔
			

		
	
-monotone property.
Let 
	
		
			
				𝜓
				∶
				[
				0
				,
				∞
				)
				→
				[
				0
				,
				∞
				)
			

		
	
 be defined as 
	
		
			
				𝜓
				(
				𝑡
				)
				=
				(
				1
				/
				3
				)
				𝑡
			

		
	
 for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				)
			

		
	
.
Let, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be three sequences in 
	
		
			

				𝑋
			

		
	
 such that
						
	
 		
 			
				(
				2
				.
				5
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐹
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝑥
			

			

				𝑛
			

			
				
				=
				𝑎
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐹
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝑦
			

			

				𝑛
			

			
				
				=
				𝑏
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐹
				
				𝑧
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝑔
				
				𝑧
			

			

				𝑛
			

			
				
				=
				𝑐
				.
			

		
	

					Then explicitly, 
						
	
 		
 			
				(
				2
				.
				5
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			
				2
				𝑛
			

			
				−
				𝑦
			

			
				2
				𝑛
			

			
				+
				𝑧
			

			
				2
				𝑛
			

			
				
			
			
				9
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑥
			

			
				2
				𝑛
			

			
				
			
			
				1
				0
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
				,
				o
				r
				,
				1
				0
				𝑎
				−
				1
				0
				𝑏
				+
				1
				0
				𝑐
			

			
				
			
			
				9
				=
				𝑎
				i
				m
				p
				l
				y
				𝑎
				−
				1
				0
				𝑏
				+
				1
				0
				𝑐
				=
				0
				.
			

		
	

					Again,
						
	
 		
 			
				(
				2
				.
				5
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑦
			

			
				2
				𝑛
			

			
				−
				𝑥
			

			
				2
				𝑛
			

			
				+
				𝑦
			

			
				2
				𝑛
			

			
				
			
			
				9
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑦
			

			
				2
				𝑛
			

			
				
			
			
				1
				0
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
				,
				o
				r
				,
				1
				0
				𝑏
				−
				1
				0
				𝑎
				+
				1
				0
				𝑏
			

			
				
			
			
				9
				=
				𝑏
				i
				m
				p
				l
				y
				1
				1
				𝑏
				−
				1
				0
				𝑎
				=
				0
				.
			

		
	

					And
						
	
 		
 			
				(
				2
				.
				5
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑧
			

			
				2
				𝑛
			

			
				−
				𝑦
			

			
				2
				𝑛
			

			
				+
				𝑥
			

			
				2
				𝑛
			

			
				
			
			
				9
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑧
			

			
				2
				𝑛
			

			
				
			
			
				1
				0
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
				,
				o
				r
				,
				1
				0
				𝑐
				−
				1
				0
				b
				+
				1
				0
				𝑎
			

			
				
			
			
				9
				=
				𝑐
				i
				m
				p
				l
				y
				𝑐
				−
				1
				0
				𝑏
				+
				1
				0
				𝑎
				=
				0
				.
			

		
	

					Then from the above relations we have, 
	
		
			
				𝑎
				=
				0
				,
				𝑏
				=
				0
			

		
	
, and 
	
		
			
				𝑐
				=
				0
			

		
	
.
Therefore,
						
	
 		
 			
				(
				2
				.
				6
				0
				)
			
 		
	

	
		
			
				𝑑
				
				𝑔
				
				𝐹
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				
				
				,
				𝐹
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑧
			

			

				𝑛
			

			
				𝑑
				
				𝑔
				
				𝐹
				
				𝑦
				
				
				⟶
				0
				a
				s
				𝑛
				⟶
				∞
				,
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				
				
				
				,
				𝐹
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				𝑑
				
				𝑔
				
				𝐹
				
				𝑧
				
				
				⟶
				0
				a
				s
				𝑛
				⟶
				∞
				,
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				
				
				
				,
				𝐹
				𝑔
				𝑧
			

			

				𝑛
			

			
				,
				𝑔
				𝑦
			

			

				𝑛
			

			
				,
				𝑔
				𝑥
			

			

				𝑛
			

			
				
				
				⟶
				0
				a
				s
				𝑛
				⟶
				∞
				.
			

		
	

					Hence, the pair 
	
		
			
				(
				𝑔
				,
				𝐹
				)
			

		
	
 is compatible in 
	
		
			

				𝑋
			

		
	
.
Also, 
	
		
			

				𝑥
			

			

				0
			

			
				=
				0
				,
				𝑧
			

			

				0
			

			
				=
				𝑐
				(
				>
				0
				)
			

		
	
, and 
	
		
			

				𝑦
			

			

				0
			

			
				=
				0
			

		
	
 are three points in 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				𝑔
				(
				𝑥
			

			

				0
			

			
				)
				=
				𝑔
				(
				0
				)
				=
				0
				<
				𝑐
			

			

				2
			

			
				/
				9
				=
				𝐹
				(
				0
				,
				0
				,
				𝑐
				)
				=
				𝐹
				(
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				)
				,
				𝑔
				(
				𝑦
			

			

				0
			

			
				)
				=
				𝑔
				(
				0
				)
				=
				0
				=
				𝐹
				(
				0
				,
				0
				,
				0
				)
				=
				𝐹
				(
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			

				)
			

		
	
, and 
	
		
			
				𝑔
				(
				𝑧
			

			

				0
			

			
				)
				=
				𝑔
				(
				𝑐
				)
				=
				𝑐
			

			

				2
			

			
				/
				1
				0
				<
				𝑐
			

			

				2
			

			
				/
				9
				=
				𝐹
				(
				𝑐
				,
				0
				,
				0
				)
				=
				𝐹
				(
				𝑧
			

			

				0
			

			
				,
				𝑦
			

			

				0
			

			
				,
				𝑥
			

			

				0
			

			

				)
			

		
	
.
 We next verify inequality (2.1) of Theorem 2.1. We take 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝑢
				,
				𝑣
				,
				𝑤
				∈
				𝑋
			

		
	
, such that 
	
		
			
				𝑔
				𝑥
				⪯
				𝑔
				𝑢
				,
				𝑔
				𝑧
				⪯
				𝑔
				𝑤
			

		
	
 and 
	
		
			
				𝑔
				𝑦
				≽
				𝑔
				𝑣
			

		
	
, that is, 
	
		
			

				𝑥
			

			

				2
			

			
				≤
				𝑢
			

			

				2
			

			
				,
				𝑧
			

			

				2
			

			
				≤
				𝑤
			

			

				2
			

		
	
, and 
	
		
			

				𝑦
			

			

				2
			

			
				≥
				𝑣
			

			

				2
			

		
	
.
 Let 
	
		
			
				𝐴
				=
				m
				a
				x
				{
				𝑑
				(
				𝑔
				𝑥
				,
				𝑔
				𝑢
				)
				,
				𝑑
				(
				𝑔
				𝑦
				,
				𝑔
				𝑣
				)
				,
				𝑑
				(
				𝑔
				𝑧
				,
				𝑔
				𝑤
				)
				}
				=
				m
				a
				x
				{
				|
				(
				𝑥
			

			

				2
			

			
				−
				𝑢
			

			

				2
			

			
				)
				|
				,
				|
				(
				𝑦
			

			

				2
			

			
				−
				𝑣
			

			

				2
			

			
				)
				|
				,
				|
				(
				𝑧
			

			

				2
			

			
				−
				𝑤
			

			

				2
			

			
				)
				|
				}
			

		
	
.
Then 
	
		
			
				𝑑
				(
				𝐹
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
				𝐹
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
				)
				=
				𝑑
				(
				(
				𝑥
			

			

				2
			

			
				−
				𝑦
			

			

				2
			

			
				+
				𝑧
			

			

				2
			

			
				)
				/
				9
				,
				(
				𝑢
			

			

				2
			

			
				−
				𝑣
			

			

				2
			

			
				+
				𝑤
			

			

				2
			

			
				)
				/
				9
				)
			

		
	
 
	
		
			
				=
				(
				|
				(
				𝑥
			

			

				2
			

			
				−
				𝑢
			

			

				2
			

			
				)
				−
				(
				𝑦
			

			

				2
			

			
				−
				𝑣
			

			

				2
			

			
				)
				+
				(
				𝑧
			

			

				2
			

			
				−
				𝑤
			

			

				2
			

			
				)
				)
				/
				3
				|
				≤
				(
				|
				(
				𝑥
			

			

				2
			

			
				−
				𝑢
			

			

				2
			

			
				)
				|
				+
				|
				(
				𝑦
			

			

				2
			

			
				−
				𝑣
			

			

				2
			

			
				)
				|
				+
				|
				(
				𝑧
			

			

				2
			

			
				−
				𝑤
			

			

				2
			

			
				)
				|
				)
				/
				9
				≤
				3
				𝐴
				/
				9
				=
				𝐴
				/
				3
				=
				𝜓
				(
				𝐴
				)
				=
				𝜓
				(
				m
				a
				x
				{
				𝑑
				(
				𝑔
				𝑥
				,
				𝑔
				𝑢
				)
				,
				𝑑
				(
				𝑔
				𝑦
				,
				𝑔
				𝑣
				)
				,
				𝑑
				(
				𝑔
				𝑧
				,
				𝑔
				𝑤
				)
				}
				)
			

		
	
.
Thus it is verified that the functions 
	
		
			
				𝑔
				,
				𝐹
			

		
	
, and 
	
		
			

				𝜓
			

		
	
 satisfy all the conditions of Theorem 2.1. Here 
	
		
			
				(
				0
				,
				0
				,
				0
				)
			

		
	
 is the tripled coincidence point of 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 in 
	
		
			

				𝑋
			

		
	
.
Remark 2.8.  It is observed that in Example 2.7 the function 
	
		
			

				𝐹
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 do not commute, but they are compatible. Hence Corollary 2.2 cannot be applied to this example. This shows that Theorem 2.1 properly contains Corollary 2.2. Also 
	
		
			
				𝑔
				≠
				𝐼
			

		
	
, so the results of Berinde and Borcut [20] cannot be applied to this example. This shows that result in [20] is effectively generalised. 
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