Research Article

On GCR-Lightlike Product of Indefinite Cosymplectic Manifolds

Varun Jain,1 Rakesh Kumar,2 and R. K. Nagaich3

1 Department of Mathematics, Multani Mal Modi College, Patiala 147001, India
2 Department of Basic & Applied Sciences, University College of Engineering, Punjabi University Patiala, Patiala 147002, India
3 Department of Mathematics, Punjabi University Patiala, Patiala 147002, India

Correspondence should be addressed to Rakesh Kumar, dr.rk37c@yahoo.co.in

Received 26 March 2012; Revised 15 May 2012; Accepted 10 July 2012

Academic Editor: Hernando Quevedo

Copyright © 2012 Varun Jain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define GCR-lightlike submanifolds of indefinite cosymplectic manifolds and give an example. Then, we study mixed geodesic GCR-lightlike submanifolds of indefinite cosymplectic manifolds and obtain some characterization theorems for a GCR-lightlike submanifold to be a GCR-lightlike product.

1. Introduction

To fill the gaps in the general theory of submanifolds, Duggal and Bejancu [1] introduced lightlike (degenerate) geometry of submanifolds. Since the geometry of CR-submanifolds has potential for applications in mathematical physics, particularly in general relativity, and the geometry of lightlike submanifolds has extensive uses in mathematical physics and relativity, Duggal and Bejancu [1] clubbed these two topics and introduced the theory of CR-lightlike submanifolds of indefinite Kaehler manifolds and then Duggal and Sahin [2], introduced the theory of CR-lightlike submanifolds of indefinite Sasakian manifolds, which were further studied by Kumar et al. [3]. But CR-lightlike submanifolds do not include the complex and real subcases contrary to the classical theory of CR-submanifolds [4]. Thus, later on, Duggal and Sahin [5] introduced a new class of submanifolds, generalized-Cauchy-Riemann-(GCR-) lightlike submanifolds of indefinite Kaehler manifolds and then of indefinite Sasakian manifolds in [6]. This class of submanifolds acts as an umbrella of invariant, screen real, contact CR-lightlike subcases and real hypersurfaces. Therefore, the study of GCR-lightlike submanifolds is the topic of main discussion in the present scenario. In [7], the present
authors studied totally contact umbilical GCR-lightlike submanifolds of indefinite Sasakian manifolds.

In present paper, after defining GCR-lightlike submanifolds of indefinite cosymplectic manifolds, we study mixed geodesic GCR-lightlike submanifolds of indefinite cosymplectic manifolds. In [8, 9], Kumar et al. obtained some necessary and sufficient conditions for a GCR-lightlike submanifold of indefinite Kaehler and Sasakian manifolds to be a GCR-lightlike product, respectively. Thus, in this paper, we obtain some characterization theorems for a GCR-lightlike submanifold of indefinite cosymplectic manifold to be a GCR-lightlike product.

2. Lightlike Submanifolds

Let V be a real m-dimensional vector space with a symmetric bilinear mapping $g : V \times V \to \mathbb{R}$. The mapping g is called degenerate on V if there exists a vector $\xi \neq 0$ of V such that

$$g(\xi, v) = 0, \quad \forall v \in V, \quad (2.1)$$

otherwise g is called nondegenerate. It is important to note that a non-degenerate symmetric bilinear form on V may induce either a non-degenerate or a degenerate symmetric bilinear form on a subspace of V. Let W be a subspace of V and $g \mid W$ degenerate; then W is called a degenerate (lightlike) subspace of V.

Let $(\overline{M}, \overline{g})$ be a real $(m + n)$-dimensional semi-Riemannian manifold of constant index q such that $m, n \geq 1, 1 \leq q \leq m + n - 1$, and let (M, g) be an m-dimensional submanifold of \overline{M} and g the induced metric of \overline{g} on M. Thus, if \overline{g} is degenerate on the tangent bundle TM of M, then M is called a lightlike (degenerate) submanifold of \overline{M} (for detail see [1]). For a degenerate metric g on M, TM^\perp is also a degenerate n-dimensional subspace of $T_x\overline{M}$. Thus, both T_xM and T_xM^\perp are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $\text{Rad } T_xM = T_xM \cap T_xM^\perp$, which is known as radical (null) subspace. If the mapping $\text{Rad } TM : x \in M \to \text{Rad } T_xM$ defines a smooth distribution on M of rank $r > 0$, then the submanifold M of \overline{M} is called an r-lightlike submanifold and $\text{Rad } TM$ is called the radical distribution on M. Then, there exists a non-degenerate screen distribution $S(TM)$ which is a complementary vector subbundle to $\text{Rad } TM$ in TM. Therefore,

$$TM = \text{Rad } TM \perp S(TM), \quad (2.2)$$

where \perp denotes orthogonal direct sum. Let $S(TM^\perp)$, called screen transversal vector bundle, be a non-degenerate complementary vector subbundle to $\text{Rad } TM$ in TM^\perp. Let $\text{tr}(TM)$ and $\text{ltr}(TM)$ be complementary (but not orthogonal) vector bundles to TM in $T\overline{M}|_M$ and to $\text{Rad } TM$ in $S(TM^\perp)$, called transversal vector bundle and lightlike transversal vector bundle of M, respectively. Then, we have

$$\text{tr}(TM) = \text{ltr}(TM) \perp S(TM^\perp), \quad (2.3)$$

$$T\overline{M}|_M = TM \oplus \text{tr}(TM) = (\text{Rad } TM \oplus \text{ltr}(TM)) \perp S(TM) \perp S(TM^\perp). \quad (2.4)$$
Let u be a local coordinate neighborhood of M and consider the local quasiorthonormal fields of frames of \overline{M} along M on u as $\{\xi_1, \ldots, \xi_r, W_{r+1}, \ldots, W_n, N_1, \ldots, N_r, X_{r+1}, \ldots, X_m\}$, where $\{\xi_1, \ldots, \xi_r\}$ and $\{N_1, \ldots, N_r\}$ are local lightlike bases of $\Gamma(\text{Rad } TM|_u)$ and $\Gamma(\text{ltr } TM|_u)$ and $\{W_{r+1}, \ldots, W_n\}$ and $\{X_{r+1}, \ldots, X_m\}$ are local orthonormal bases of $\Gamma(S(TM^1)|_u)$ and $\Gamma(S(TM)|_u)$, respectively. For these quasiorthonormal fields of frames, we have the following theorem.

Theorem 2.1 (see [1]). Let $(M, g, S(TM), S(TM^1))$ be an r-lightlike submanifold of a semi-Riemannian manifold $(\overline{M}, \overline{g})$. Then, there exist a complementary vector bundle $\text{ltr } TM$ of $\text{Rad } TM$ in $S(TM^1)^\perp$ and a basis of $\Gamma(\text{ltr } TM|_u)$ consisting of smooth section $\{N_i\}$ of $S(TM^1)^\perp|_u$, where u is a coordinate neighborhood of M, such that

$$\widetilde{g}(N_i, \xi_j) = \delta_{ij}, \quad \overline{g}(N_i, N_j) = 0, \quad \text{for any } i, j \in \{1, 2, \ldots, r\},$$

where $\{\xi_1, \ldots, \xi_r\}$ is a lightlike basis of $\Gamma(\text{Rad } TM)$.

Let $\overline{\nabla}$ be the Levi-Civita connection on \overline{M}. Then, according to decomposition (2.4), the Gauss and Weingarten formulas are given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \overline{\nabla}_X U = -A_U X + \nabla_X^\perp U,$$ \tag{2.6}

for any $X, Y \in \Gamma(TM)$ and $U \in \Gamma(\text{tr } TM)$, where $\{\nabla_X Y, A_U X\}$ and $\{h(X, Y), \nabla_X^\perp U\}$ belong to $\Gamma(TM)$ and $\Gamma(\text{tr } TM)$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(TM)$ that is called second fundamental form, and A_U is a linear operator on M, known as shape operator.

According to (2.3), considering the projection morphisms L and S of $\text{tr } TM$ on $\text{ltr } TM$ and $\text{S}(TM^1)$, respectively, then (2.6) gives

$$\overline{\nabla}_X Y = \nabla_X Y + h^t(X, Y) + h^s(X, Y), \quad \overline{\nabla}_X U = -A_U X + D^t_X U + D^s_X U,$$ \tag{2.7}

where we put $h^t(X, Y) = L(h(X, Y))$, $h^s(X, Y) = S(h(X, Y))$, $D^t_X U = L(\nabla_X^\perp U)$, $D^s_X U = S(\nabla_X^\perp U)$.

As h^t and h^s are $\Gamma(\text{ltr } TM)$-valued and $\Gamma(S(TM^1))$-valued, respectively, they are called the lightlike second fundamental form and the screen second fundamental form on M. In particular,

$$\overline{\nabla}_X N = -A_N X + \nabla^i_X N + D^s(X, N), \quad \overline{\nabla}_X W = -A_W X + \nabla^i_X W + D^t(X, W),$$ \tag{2.8}

where $X \in \Gamma(TM)$, $N \in \Gamma(\text{ltr } TM)$, and $W \in \Gamma(S(TM^1))$. By using (2.3)-(2.4) and (2.7)-(2.8), we obtain

$$\overline{g}(h^t(X, Y), W) + \overline{g}(Y, D^t(X, W)) = g(A_W X, Y),$$ \tag{2.9}

$$\overline{g}(h^t(X, Y), \xi) + \overline{g}(Y, h^t(X, \xi)) + g(Y, \nabla_X \xi) = 0,$$ \tag{2.10}

for any $\xi \in \Gamma(\text{Rad } TM)$, $W \in \Gamma(S(TM^1))$, and $N, N' \in \Gamma(\text{ltr } TM)$.
Let P be the projection morphism of TM on $S(TM)$. Then, using (2.2), we can induce some new geometric objects on the screen distribution $S(TM)$ on M as

$$\nabla_X PY = \nabla_X^* PY + h^*(X, Y), \quad \nabla_X \xi = -A_X^* \xi + \nabla_X^t \xi,$$ \hfill (2.11)

for any $X,Y \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$, where $\{\nabla_X^* PY, A_X^* X\}$ and $\{h^*(X, Y), \nabla_X^t \xi\}$ belong to $\Gamma(S(TM))$ and $\Gamma(Rad(TM))$, respectively. ∇^* and ∇^t are linear connections on complementary distributions $S(TM)$ and $Rad(TM)$, respectively. Then, using (2.7), (2.8), and (2.11), we have

$$\bar{g}(h^*(X, PY)\xi) = g(A_X^* X, PY), \quad \bar{g}(h^*(X, PY), N) = g(A_N X, PY).$$ \hfill (2.12)

Next, an odd-dimensional semi-Riemannian manifold \overline{M} is said to be an indefinite almost contact metric manifold if there exist structure tensors (ϕ, V, η, \bar{g}), where ϕ is a $(1, 1)$ tensor field, V is a vector field called structure vector field, η is a 1-form, and \bar{g} is the semi-Riemannian metric on \overline{M} satisfying (see [10])

$$\bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \eta(X)\eta(Y), \quad \bar{g}(X, V) = \eta(X),$$

$$\phi^2 X = -X + \eta(X)V, \quad \eta \circ \phi = 0, \quad \phi V = 0, \quad \eta(V) = 1,$$ \hfill (2.13)

for any $X, Y \in \Gamma(TM)$.

An indefinite almost contact metric manifold \overline{M} is called an indefinite cosymplectic manifold if (see [11])

$$\nabla_X \phi = 0,$$ \hfill (2.14)

$$\nabla_X V = 0.$$ \hfill (2.15)

3. Generalized Cauchy-Riemann Lightlike Submanifolds

Calin [12] proved that if the characteristic vector field V is tangent to $(M, g, S(TM))$, then it belongs to $S(TM)$. We assume that the characteristic vector V is tangent to M throughout this paper. Thus, we define the generalized Cauchy-Riemann lightlike submanifolds of an indefinite cosymplectic manifold as follows.

Definition 3.1. Let $(M, g, S(TM), S(TM^1))$ be a real lightlike submanifold of an indefinite cosymplectic manifold (\overline{M}, \bar{g}) such that the structure vector field V is tangent to M; then M is called a generalized-Cauchy-Riemann- (GCR-) lightlike submanifold if the following conditions are satisfied:

(A) there exist two subbundles D_1 and D_2 of $Rad(TM)$ such that

$$Rad(TM) = D_1 \oplus D_2, \quad \phi(D_1) = D_1, \quad \phi(D_2) \subset S(TM),$$ \hfill (3.1)
Let such that Rad \(TM \) is one-dimensional distribution spanned by \(V \), and \(L \) and \(S \) are vector subbundles of \(\text{ltr}(TM) \) and \(S(TM)^\perp \), respectively.

The following proposition shows that the class of GCR-lightlike submanifolds is an umbrella of invariant, contact CR and contact SCR-lightlike submanifolds.

Proposition 3.2. A GCR-lightlike submanifold \(M \) of an indefinite cosymplectic manifold \(\overline{M} \) is contact CR-submanifold (resp., contact SCR-lightlike submanifold) if and only if \(D_1 = \{0\} \) (resp., \(D_2 = \{0\} \)).

Proof. Let \(M \) be a contact CR-lightlike submanifold; then \(\phi \text{Rad} TM \) is a distribution on \(M \) such that \(\text{Rad} TM \cap \phi \text{Rad} TM = \{0\} \). Therefore, \(D_2 = \text{Rad} TM \) and \(D_1 = \{0\} \). Since \(\text{ltr}(TM) \cap \phi \text{ltr}(TM) = \{0\} \), this implies that \(\phi \text{ltr}(TM) \subset S(TM) \). Conversely, suppose that \(M \) is a GCR-lightlike submanifold of an indefinite Cosymplectic manifold such that \(D_1 = \{0\} \). Then, from (3.1), we have \(D_2 = \text{Rad}(TM) \), and therefore \(\text{Rad} TM \cap \phi \text{Rad} TM = \{0\} \). Hence, \(\phi \text{Rad} TM \) is a vector subbundle of \(S(TM) \). This implies that \(M \) is a contact CR-lightlike submanifold of an indefinite cosymplectic manifold. Similarly the other assertion follows.

The following construction helps in understanding the example of GCR-lightlike submanifold. Let \((R_{q^2}^{2m+1}, \phi_0, V, \eta, \overline{g}) \) be with its usual Cosymplectic structure and given by

\[
\eta = dz, \quad V = \delta z, \\
\overline{g} = \eta \otimes \eta - \frac{q}{2} \left(dx^i \otimes dx^i + dy^i \otimes dy^i \right) + \sum_{i=q+1}^{m} \left(dx^i \otimes dx^i + dy^i \otimes dy^i \right), \\
\phi_0(X_1, X_2, \ldots, X_{m-1}, X_m, Y_1, Y_2, \ldots, Y_{m-1}, Y_m, Z) \\
= (-X_2, X_1, \ldots, -X_m, X_{m-1}, -Y_2, Y_1, \ldots, -Y_m, Y_{m-1}, 0),
\]

where \((x^i; y^i; z)\) are the Cartesian coordinates. \(\square\)
Example 3.3. Let $\overline{M} = (R^{13}_4, \overline{g})$ be a semi-Euclidean space and M a 9-dimensional submanifold of \overline{M} that is given by

$$
x^4 = x^1 \cos \theta - y^1 \sin \theta, \quad y^4 = x^1 \sin \theta + y^1 \cos \theta, \quad x^2 = y^3, \quad x^5 = \sqrt{1 + (y^5)^2},
$$

(3.5)

where \overline{g} is of signature $(-, -, +, +, +, -, +, +, +, +)$ with respect to the canonical basis $\{d\theta, dx_1, dx_2, dx_3, dx_4, dx_5, dx_6, dy_1, dy_2, dy_3, dy_4, dy_5, dy_6, dz\}$. Then, the local frame of TM is given by

$$
\begin{align*}
\xi_1 &= \partial_x + \cos \theta \partial_y + \sin \theta \partial_z, \\
\xi_2 &= \partial_y, \\
\xi_3 &= \partial_z, \\
X_1 &= \partial_x - \partial_y, \\
X_2 &= \partial_x, \\
X_3 &= \partial_y, \\
X_4 &= y^5 \partial_x + x^5 \partial_y, \\
X_5 &= \partial_x + \partial_y, \\
X_6 &= V = \partial_z.
\end{align*}
$$

(3.6)

Hence, M is a 3-lightlike as $\text{Rad} TM = \text{span}\{\xi_1, \xi_2, \xi_3\}$. Also, $\phi_0 \xi_1 = -\xi_2$ and $\phi_0 \xi_3 = X_1$; these imply that $D_1 = \text{span}\{\xi_1, \xi_2\}$ and $D_2 = \text{span}\{\xi_3\}$, respectively. Since $\phi_0 X_2 = -X_3$, $D_0 = \text{span}\{X_2, X_3\}$. By straightforward calculations, we obtain

$$
S(TM) = \text{span}\{W = x^5 \partial_x - y^5 \partial_y\},
$$

(3.7)

where $\phi_0(W) = X_4$; this implies that $S = S(TM)$. Moreover, the lightlike transversal bundle $\text{ltr}(TM)$ is spanned by

$$
\begin{align*}
N_1 &= \frac{1}{2} (\partial_x + \cos \theta \partial_y + \sin \theta \partial_z), \\
N_2 &= \frac{1}{2} (-\sin \theta \partial_x - \partial_y + \cos \theta \partial_z), \\
N_3 &= \frac{1}{2} (-\partial_x + \partial_y),
\end{align*}
$$

(3.8)

where $\phi_0(N_1) = -N_2$, $\phi_0(N_3) = X_3$. Hence, $L = \text{span}\{N_3\}$. Therefore, $\overline{D} = \text{span}\{\phi_0(N_3), \phi_0(W)\}$. Thus, M is a GCR-lightlike submanifold of R^{13}_4.

Let Q, P_1, P_2 be the projection morphism on D, $\phi S = M_2$, $\phi L = M_1$, respectively; therefore

$$
X = QX + V + P_1 X + P_2 X,
$$

(3.9)

for $X \in \Gamma(TM)$. Applying ϕ to (3.9), we obtain

$$
\phi X = fX + \omega P_1 X + \omega P_2 X,
$$

(3.10)

where $fX \in \Gamma(D)$, $\omega P_1 X \in \Gamma(L)$, and $\omega P_2 X \in \Gamma(S)$, or, we can write (3.10) as

$$
\phi X = fX + \omega X,
$$

(3.11)

where fX and ωX are the tangential and transversal components of ϕX, respectively.
Similarly,
\[\phi U = BU + CU, \quad U \in \Gamma(\text{tr}(TM)), \quad (3.12) \]

where \(BU \) and \(CU \) are the sections of \(TM \) and \(\text{tr}(TM) \), respectively. Differentiating (3.10) and using (2.8)–(2.10) and (3.12), we have
\[\begin{align*}
D^s(X, \omega P_2 Y) &= -\nabla^s_X \omega P_1 Y + \omega P_1 \nabla_X Y - h^s(X, fY) + Ch^s(X, Y), \\
D^l(X, \omega P_1 Y) &= -\nabla^l_X \omega P_2 Y + \omega P_2 \nabla_X Y - h^l(X, fY) + Ch^l(X, Y),
\end{align*} \quad (3.13) \]

for all \(X, Y \in \Gamma(TM) \). By using, cosymplectic property of \(\nabla \) with (2.7), we have the following lemmas.

Lemma 3.4. Let \(M \) be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \(\overline{M} \); then one has
\[(\nabla_X f) Y = A_{\omega Y} X + Bh(X, Y), \quad (\nabla_X \omega) Y = Ch(X, Y) - h(X, fY), \quad (3.14) \]

where \(X, Y \in \Gamma(TM) \) and
\[(\nabla_X f) Y = \nabla_X f Y - f \nabla_X Y, \quad (\nabla_X \omega) Y = \nabla_X \omega Y - \omega \nabla_X Y. \quad (3.15) \]

Lemma 3.5. Let \(M \) be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \(\overline{M} \); then one has
\[(\nabla_X B) U = A_{CU} X - f A_{U} X, \quad (\nabla_X C) U = -\omega A_{U} X - h(X, BU), \quad (3.16) \]

where \(X \in \Gamma(TM) \) and \(U \in \Gamma(\text{tr}(TM)) \) and
\[(\nabla_X B) U = \nabla_X BU - B \nabla_X U, \quad (\nabla_X C) U = \nabla_X CU - C \nabla_X U. \quad (3.17) \]

4. **Mixed Geodesic GCR-Lightlike Submanifolds**

Definition 4.1. A GCR-lightlike submanifold of an indefinite cosymplectic manifold is called mixed geodesic GCR-lightlike submanifold if its second fundamental form \(h \) satisfies \(h(X, Y) = 0 \), for any \(X \in \Gamma(D \oplus V) \) and \(Y \in \Gamma(D) \).

Definition 4.2. A GCR-lightlike submanifold of an indefinite cosymplectic manifold is called GCR geodesic GCR-lightlike submanifold if its second fundamental form \(h \) satisfies \(h(X, Y) = 0 \), for any \(X, Y \in \Gamma(D) \).

Theorem 4.3. Let \(M \) be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \(\overline{M} \). Then, \(M \) is mixed geodesic if and only if \(A^s_X \) and \(A^l_X \not\in \Gamma(M \perp \phi D) \), for any \(X \in \Gamma(D \oplus V), W \in \Gamma(S(TM^\perp)) \) and \(\xi \in \Gamma(\text{Rad}(TM)) \).
Proof. Using, definition of GCR-lightlike submanifolds, M is mixed geodesic if and only if
g(h(X,Y),W) = g(h(X,Y),ξ) = 0, for $X ∈ \Gamma(D ⊕ V), Y ∈ \Gamma(\overline{D}), W ∈ \Gamma(S(TM^⊥))$, and $ξ ∈ \Gamma(\text{Rad}(TM))$. Using (2.8) and (2.11), we get

$$\overline{g}(h(X,Y),W) = \overline{g}(-\nabla_XY, W) = -g(Y, \nabla_XW) = g(Y, A_WX),$$

$$\overline{g}(h(X,Y),ξ) = \overline{g}(-\nabla_XY, ξ) = -g(Y, \nabla_Xξ) = g(Y, A^*_ξX).$$

Therefore, from (4.1), the proof is complete. □

Theorem 4.4. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. Then, M is \overline{D} geodesic if and only if $A^*_ξX$ and $A_WX ∉ \Gamma(M_D \perp ωD_2)$, for any $X ∈ \Gamma(\overline{D}), ξ ∈ \Gamma(\text{Rad}(TM))$, and $W ∈ \Gamma(S(TM^⊥))$.

Proof. The proof is similar to the proof of Theorem 4.3. □

Lemma 4.5. Let M be a mixed geodesic GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. Then $A^*_ξX ∈ \Gamma(ωD_2)$, for any $X ∈ \Gamma(\overline{D}), ξ ∈ \Gamma(D_2)$.

Proof. For $X ∈ \Gamma(\overline{D})$ and $ξ ∈ \Gamma(D_2)$, using (2.7) we have

$$h(φξ, X) = 0, \quad A^*_ξX = \Gamma(D_0 ⊕ \{V\} \perp ωD_2).$$

Since M is mixed geodesic, we obtain $φνXξ = νXφξ$. Here, using (2.11), we get $φ(-A^*_ξX + ν^*_Xφξ) = ν^*_Xφξ + h^*(X, φξ)$, and then, by virtue of (3.11), we obtain $-f A^*_ξX - ωA^*_ξX + φ(ν^*_Xφξ) = ν^*_Xφξ + h^*(X, φξ)$. Comparing the transversal components, we get $ωA^*_ξX = 0$; this implies that

$$A^*_ξX ∈ \Gamma(D_0 ⊕ \{V\} \perp ωD_2).$$

If $A^*_ξX ∈ D_0$, then the nondegeneracy of D_0 implies that there must exist a $Z_0 ∈ D_0$ such that $\overline{g}(A^*_ξX, Z_0) ≠ 0$. But using the hypothesis that M is a mixed geodesic with (2.7) and (2.11), we get

$$\overline{g}(A^*_ξX, Z_0) = -\overline{g}(νXξ, Z_0) = \overline{g}(ξ, νXZ_0) = \overline{g}(ξ, νXZ_0 + h(X, Z_0)) = 0. \quad (4.4)$$

Therefore,

$$A^*_ξX ∉ \Gamma(D_0). \quad (4.5)$$

Also using (2.13), and (2.15), we get

$$\overline{g}(A^*_ξX, V) = -\overline{g}(νXξ, V) = \overline{g}(ξ, νXV) = 0. \quad (4.6)$$
Therefore,

\[A^*_X \notin \{V\} \]

Hence, from (4.3), (4.5), and (4.7), the result follows.

Corollary 4.6. Let \(M \) be a mixed geodesic GCR-lightlike submanifold of an indefinite cosymplectic manifold \(\overline{M} \). Then, \(\overline{g}(h'(X, Y), \xi) = 0 \), for any \(X \in \Gamma(\overline{D}), Y \in \Gamma(M_2) \) and \(\xi \in \Gamma(D_2) \).

Proof. The result follows from (2.12) and Lemma 4.5.

Theorem 4.7. Let \(M \) be a mixed geodesic GCR-lightlike submanifold of an indefinite cosymplectic manifold \(\overline{M} \). Then, \(A_X \in \Gamma(D \oplus \{V\}) \) and \(\nabla^t_X U \in \Gamma(L \perp S) \), for any \(X \in \Gamma(D \oplus \{V\}) \) and \(U \in \Gamma(L \perp S) \).

Proof. Since \(M \) is mixed geodesic GCR-lightlike submanifold \(h(X, Y) = 0 \) for any \(X \in \Gamma(D \oplus \{V\}), Y \in \Gamma(\overline{D}) \), and thus (2.6) implies that

\[0 = \nabla_X Y - A_X Y. \]

(4.8)

Since \(\overline{D} \) is an anti-invariant distribution there exists a vector field \(U \in \Gamma(L \perp S) \) such that \(\phi U = Y \). Thus, from (2.8), (2.14), (3.11), and (3.12), we get

\[0 = \nabla_X U - \nabla_X Y = \phi(-A_X + \nabla^t_X U) - \nabla_X Y \]

\[= -f A_X + \omega A_X + B \nabla^t_X U + C \nabla^t_X U - \nabla_X Y. \]

(4.9)

Comparing the transversal components, we get \(\omega A_X = C \nabla^t_X U \). Since \(\omega A_X \in \Gamma(L \perp S) \) and \(C \nabla^t_X U \in \Gamma(L \perp S) \perp \), this implies that \(\omega A_X = 0 \) and \(C \nabla^t_X U = 0 \). Hence, \(A_X \in \Gamma(D \oplus \{V\}) \) and \(\nabla^t_X U \in \Gamma(L \perp S) \).

5. **GCR-Lightlike Product**

Definition 5.1. GCR-lightlike submanifold \(M \) of an indefinite cosymplectic manifold \(\overline{M} \) is called GCR-lightlike product if both the distributions \(D \oplus \{V\} \) and \(\overline{D} \) define totally geodesic foliation in \(M \).

Theorem 5.2. Let \(M \) be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \(\overline{M} \). Then, the distribution \(D \oplus \{V\} \) define a totally geodesic foliation in \(M \) if and only if \(Bh(X, \phi Y) = 0 \), for any \(X, Y \in D \oplus \{V\} \).
Proof. Since $\overline{D} = \phi(L \perp S)$, $D \oplus \{ V \}$ defines a totally geodesic foliation in M if and only if $g(\nabla_X Y, \phi \xi) = g(\nabla_X Y, \phi W) = 0$, for any $X, Y \in \Gamma(D \oplus \{ V \})$, $\xi \in \Gamma(D_2)$, and $W \in \Gamma(S)$. Using (2.7) and (2.14), we have

\[
g(\nabla_X Y, \phi \xi) = -\overline{g}(\overline{\nabla}_X \phi Y, \xi) = -\overline{g}(h'(X, fY), \xi), \tag{5.1}
\]

\[
g(\nabla_X Y, \phi W) = -\overline{g}(\overline{\nabla}_X \phi Y, W) = -\overline{g}(h^s(X, fY), W). \tag{5.2}
\]

Hence, from (5.1) and (5.2), the assertion follows.

Theorem 5.3. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. Then, the distribution \overline{D} defines a totally geodesic foliation in M if and only if $A_N X$ has no component in $\phi S \perp \phi D_2$ and $A_{\omega Y} X$ has no component in $D_2 \perp D_0$, for any $X, Y \in \Gamma(\overline{D})$ and $N \in \Gamma(\text{ltr}(TM))$.

Proof. From the definition of a GCR-lightlike submanifold, we know that \overline{D} defines a totally geodesic foliation in M if and only if

\[
g(\nabla_X Y, N) = g(\nabla_X Y, \phi N_1) = g(\nabla_X Y, V) = g(\nabla_X Y, \phi Z) = 0, \tag{5.3}
\]

for $X, Y \in \Gamma(\overline{D})$, $N \in \Gamma(\text{ltr}(TM))$, $Z \in \Gamma(D_0)$ and $N_1 \in \Gamma(L)$. Using (2.7) and (2.8), we have

\[
g(\nabla_X Y, N) = \overline{g}(\overline{\nabla}_X Y, N) = -\overline{g}(\overline{\nabla}_X Y, \overline{\nabla}_X N) = g(Y, A_N X). \tag{5.4}
\]

Using (2.7), (2.15), and (2.14), we obtain

\[
g(\nabla_X Y, \phi N_1) = -g(\phi \overline{\nabla}_X Y, N_1) = -g(\overline{\nabla}_X \omega Y, N_1) = g(A_{\omega Y} X, N_1), \tag{5.5}
\]

\[
g(\nabla_X Y, \phi Z) = -g(\phi \overline{\nabla}_X Y, Z) = -g(\overline{\nabla}_X \omega Y, Z) = g(A_{\omega Y} X, Z), \tag{5.6}
\]

\[
g(\nabla_X Y, V) = g(\overline{\nabla}_X Y, V) = -g(Y, \overline{\nabla}_X V) = 0. \tag{5.7}
\]

Thus, from (5.4)–(5.7), the result follows.

Theorem 5.4. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. If $(\nabla_X f) Y = 0$, then M is a GCR lightlike product.

Proof. Let $X, Y \in \Gamma(\overline{D})$; therefore $f Y = 0$. Then using (3.15) with the hypothesis, we get $f \nabla_X Y = 0$. Therefore the distribution \overline{D} defines a totally geodesic foliation. Next, let $X, Y \in D \oplus \{ V \}$; therefore $\omega Y = 0$. Then using (3.14), we get $B h(X, Y) = 0$. Therefore, $D \oplus \{ V \}$ defines a totally geodesic foliation in M. Hence, M is a GCR lightlike product.

Definition 5.5. A lightlike submanifold M of a semi-Riemannian manifold is said to be an irrotational submanifold if $\overline{\nabla}_X \xi \in \Gamma(TM)$, for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(\text{Rad}(TM))$. Thus, M is an irrotational lightlike submanifold if and only if $h'(X, \xi) = 0$ and $h^s(X, \xi) = 0$.
Theorem 5.6. Let M be an irrotational GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. Then, M is a GCR lightlike product if the following conditions are satisfied:

(A) $\nabla_X U \in \Gamma(S(TM^1))$, for all $X \in \Gamma(TM)$, and $U \in \Gamma(\text{tr}(TM))$,

(B) $A_0^1 Y \in \Gamma(\phi(S))$, for all $Y \in \Gamma(D)$.

Proof. Let (A) hold; then, using (2.8), we get $A_N X = 0$, $A_W X = 0$, $D^X(X,W) = 0$, and $\nabla_X N = 0$ for $X \in \Gamma(TM)$. These equations imply that the distribution \overline{D} defines a totally geodesic foliation in M, and, with (2.9), we get $\overline{g}(h^*(X,Y),W) = 0$. Hence, the nondegeneracy of $S(TM^1)$ implies that $h^*(X,Y) = 0$. Therefore, $h^*(X,Y)$ has no component in S. Finally, from (2.10) and the hypothesis that M is irrotational, we have $\overline{g}(h^*(X,Y),\xi) = \overline{g}(Y,A_0^1 X)$, for $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Assume that (B) holds; then $h^*(X,Y) = 0$. Therefore, $h^*(X,Y)$ has no component in L. Thus, the distribution $D \oplus \{V\}$ defines a totally geodesic foliation in M. Hence, M is a GCR lightlike product.

Definition 5.7 (see [13]). If the second fundamental form h of a submanifold, tangent to characteristic vector field V, of a Sasakian manifold \overline{M} is of the form

$$h(X,Y) = \{g(X,Y) - \eta(X)\eta(Y)\}a + \eta(X)h(Y,V) + \eta(Y)h(X,V), \quad (5.8)$$

for any $X,Y \in \Gamma(TM)$, where a is a vector field transversal to M, then M is called a totally contact umbilical submanifold of a Sasakian manifold.

Theorem 5.8. Let M be a totally contact umbilical GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. Then, M is a GCR-lightlike product if $Bh(X,Y) = 0$, for any $X,Y \in \Gamma(TM)$.

Proof. Let $X,Y \in \Gamma(D \oplus \{V\})$; then the hypothesis that $Bh(X,Y) = 0$ implies that the distribution $D \oplus \{V\}$ defines a totally geodesic foliation in M.

If we assume that $X,Y \in \Gamma(D)$, then, using (3.14), we have $-f \nabla_X Y = A_{\omega Y} X + Bh(X,Y)$, and taking inner product with $Z \in \Gamma(D_0)$ and using (2.6) and (2.14), we obtain

$$-g(f \nabla_X Y,Z) = g(A_{\omega Y} X + Bh(X,Y),Z) = g\left(\nabla_X Y,\phi Z\right) = -g(Y,\nabla_X Z'), \quad (5.9)$$

where $\phi Z = Z' \in \Gamma(D_0)$. For any $X \in \Gamma(\overline{D})$ from (3.14), we have $\omega P \nabla_X Z = h(X,f Z) - Ch(X,Z)$. Therefore, using the hypothesis with (5.8), we get $\omega P \nabla_X Z = 0$; this implies that $\nabla_X Z \in \Gamma(D)$, and thus (5.9) becomes $g(f \nabla_X Y,Z) = 0$. Then, the nondegeneracy of the distribution D_0 implies that the distribution \overline{D} defines a totally geodesic foliation in M. Hence, the assertion follows.

Theorem 5.9. Let M be a totally geodesic GCR-lightlike submanifold of an indefinite cosymplectic manifold \overline{M}. Suppose that there exists a transversal vector bundle of M which is parallel along \overline{D} with respect to Levi-Civita connection on M, that is, $\overline{\nabla}_X U \in \Gamma(\text{tr}(TM))$, for any $U \in \Gamma(\text{tr}(TM))$, $X \in \Gamma(\overline{D})$, Then, M is a GCR-lightlike product.

Proof. Since M is a totally geodesic GCR-lightlike $Bh(X,Y) = 0$, for $X,Y \in \Gamma(D \oplus \{V\})$; this implies $D \oplus \{V\}$ defines a totally geodesic foliation in M.

Next $\nabla_X U \in \Gamma(\text{tr}(TM))$ implies $A_X X = 0$, and hence, by Theorem 5.3, the distribution \mathcal{D} defines a totally geodesic foliation in M. Hence, the result follows.

Acknowledgment

The authors would like to thank the anonymous referee for his/her comments that helped them to improve this paper.

References

Submit your manuscripts at
http://www.hindawi.com