Research Article

Solution of Fuzzy Matrix Equation System

Mahmood Otadi and Maryam Mosleh

Department of Mathematics, Islamic Azad University, Firoozkooh Branch, Firoozkooh, Iran

Correspondence should be addressed to Mahmood Otadi, otadi@iaufb.ac.ir

Received 22 March 2012; Revised 30 August 2012; Accepted 30 August 2012

Copyright © 2012 M. Otadi and M. Mosleh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main is to develop a method to solve an arbitrary fuzzy matrix equation system by using the embedding approach. Considering the existing solution to $n \times n$ fuzzy matrix equation system is done. To illustrate the proposed model a numerical example is given, and obtained results are discussed.

1. Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations was first introduced by Zadeh [1], Dubois, and Prade [2]. We refer the reader to [3] for more information on fuzzy numbers and fuzzy arithmetic. Fuzzy systems are used to study a variety of problems including fuzzy metric spaces [4], fuzzy differential equations [5], fuzzy linear systems [6–8], and particle physics [9, 10].

One of the major applications of fuzzy number arithmetic is treating fuzzy linear systems [11–20], several problems in various areas such as economics, engineering, and physics boil down to the solution of a linear system of equations. Friedman et al. [21] introduced a general model for solving a fuzzy $n \times n$ linear system whose coefficient matrix is crisp, and the right-hand side column is an arbitrary fuzzy number vector. They used the parametric form of fuzzy numbers and replaced the original fuzzy $n \times n$ linear system by a crisp $2n \times 2n$ linear system and studied duality in fuzzy linear systems $Ax = Bx + y$ where A and B are real $n \times n$ matrix, the unknown vector x is vector consisting of n fuzzy numbers, and the constant y is vector consisting of n fuzzy numbers, in [22]. In [6–8, 23, 24] the authors presented conjugate gradient, LU decomposition method for solving general fuzzy linear systems, or symmetric fuzzy linear systems. Also, Abbasbandy et al. [25] investigated the existence of a minimal solution of general dual fuzzy linear equation system of the form $Ax + f = Bx + c$, where A and B are real $m \times n$ matrices, the unknown vector x is vector consisting of n fuzzy numbers, and the constants f and c are vectors consisting of m fuzzy numbers.
In this paper, we give a new method for solving a $n \times n$ fuzzy matrix equation system whose coefficients matrix is crisp, and the right-hand side matrix is an arbitrary fuzzy number matrix by using the embedding method given in Cong-Xin and Min [26] and replace the original $n \times n$ fuzzy linear system by two $n \times n$ crisp linear systems. It is clear that, in large systems, solving $n \times n$ linear system is better than solving $2n \times 2n$ linear system. Since perturbation analysis is very important in numerical methods. Recently, Ezzati [27] presented the perturbation analysis for $n \times n$ fuzzy linear systems. Now, according to the presented method in this paper, we can investigate perturbation analysis in two crisp matrix equation systems instead of $2n \times 2n$ linear system as the authors of Ezzati [27] and Wang et al. [28].

\section{Preliminaries}

Parametric form of an arbitrary fuzzy number is given in [29] as follows. A fuzzy number u in parametric form is a pair $(\underline{u}, \overline{u})$ of functions $\underline{u}(r), \overline{u}(r), 0 \leq r \leq 1$, which satisfy the following requirements:

1. $\underline{u}(r)$ is a bounded left continuous nondecreasing function over $[0, 1]$,
2. $\overline{u}(r)$ is a bounded left continuous nonincreasing function over $[0, 1]$, and
3. $\underline{u}(r) \leq \overline{u}(r), 0 \leq r \leq 1$.

The set of all these fuzzy numbers is denoted by E which is a complete metric space with Hausdorff distance. A crisp number α is simply represented by $\underline{u}(r) = \overline{u}(r) = \alpha, 0 \leq r \leq 1$.

For arbitrary fuzzy numbers $x = (\underline{x}(r), \overline{x}(r))$, $y = (\underline{y}(r), \overline{y}(r))$, and real number k, we may define the addition and the scalar multiplication of fuzzy numbers by using the extension principle as [29]

1. $x = y$ if and only if $\underline{x}(r) = \underline{y}(r)$ and $\overline{x}(r) = \overline{y}(r)$,
2. $x + y = (\underline{x}(r) + \underline{y}(r), \overline{x}(r) + \overline{y}(r))$, and
3. $kx = \begin{cases} (k\underline{x}, k\overline{x}), & k \geq 0, \\ (k\overline{x}, k\underline{x}), & k < 0. \end{cases}$

\textit{Definition 2.1.} The $n \times n$ linear system is as follows:

\begin{align*}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= y_1, \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= y_2, \\
&\vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= y_n,
\end{align*}

(2.1)

where the given matrix of coefficients $A = (a_{ij}), 1 \leq i, j \leq n$ is a real $n \times n$ matrix, the given $y_i \in E, 1 \leq i \leq n$, with the unknowns $x_j \in E, 1 \leq j \leq n$ is called a fuzzy linear system (FLS). The operations in (2.1) is described in next section.

Here, a numerical method for finding solution [21] of a fuzzy $n \times n$ linear system is given.
Definition 2.2 (see [21]). A fuzzy number vector \((x_1, x_2, \ldots, x_n)^t\) given by

\[x_j = \left(\underline{x}_j(r), \bar{x}_j(r) \right); \quad 1 \leq j \leq n, \quad 0 \leq r \leq 1 \]

is called a solution of the fuzzy linear system (2.1) if

\[
\sum_{j=1}^{n} a_{ij}x_j = \sum_{j=1}^{n} a_{ij}\underline{x}_j = y_i, \\
\sum_{j=1}^{n} a_{ij}x_j = \sum_{j=1}^{n} a_{ij}\bar{x}_j = \bar{y}_i.
\]

(2.3)

If, for a particular \(i\), \(a_{ij} > 0\), for all \(j\), we simply get

\[
\sum_{j=1}^{n} a_{ij}x_j = y_i, \quad \sum_{j=1}^{n} a_{ij}\underline{x}_j = \underline{y}_i.
\]

(2.4)

Finally, we conclude this section by a reviewing on the proposed method for solving fuzzy linear system [21].

The authors [21] wrote the linear system of (2.1) as follows:

\[SX = Y, \]

(2.5)

where \(s_{ij}\) are determined as follows:

\[
a_{ij} \geq 0 \Rightarrow s_{ij} = a_{ij}, \quad s_{i+n,j+n} = a_{ij}, \\
a_{ij} < 0 \Rightarrow s_{i,j+n} = -a_{ij}, s_{i+n,j} = -a_{ij},
\]

(2.6)

and any \(s_{ij}\) which is not determined by (2.1) is zero and

\[
X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ -\underline{x}_1 \\ \vdots \\ -\underline{x}_n \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ -\bar{y}_1 \\ -\bar{y}_n \end{bmatrix}.
\]

(2.7)

The structure of \(S\) implies that \(s_{ij} \geq 0, 1 \leq i, j \leq 2n\) and that

\[S = \begin{pmatrix} B & C \\ C & B \end{pmatrix}, \]

(2.8)
where \(B \) contains the positive entries of \(A \), and \(C \) contains the absolute values of the negative entries of \(A \), that is, \(A = B - C \).

Theorem 2.3 (see [21]). The inverse of nonnegative matrix

\[
S = \begin{pmatrix} B & C \\ C & B \end{pmatrix}
\]

is

\[
S^{-1} = \begin{pmatrix} D & E \\ E & D \end{pmatrix},
\]

where

\[
D = \frac{1}{2} \left[(B + C)^{-1} + (B - C)^{-1} \right], \quad E = \frac{1}{2} \left[(B + C)^{-1} - (B - C)^{-1} \right].
\]

Corollary 2.4 (see [30]). The solution of (2.5) is obtained by

\[
X = S^{-1}Y.
\]

3. Fuzzy Matrix Equation System

A matrix system such as

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} \\
 x_{21} & x_{22} & \cdots & x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nn}
\end{pmatrix}
= \begin{pmatrix}
 y_{11} & y_{12} & \cdots & y_{1n} \\
 y_{21} & y_{22} & \cdots & y_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{n1} & y_{n2} & \cdots & y_{nn}
\end{pmatrix},
\]

where \(a_{ij}, 1 \leq i, j \leq n \), are real numbers, the elements \(y_{ij} \) in the right-hand matrix are fuzzy numbers, and the unknown elements \(x_{ij} \) are ones, is called a fuzzy matrix equation system (FMES).

Using matrix notation, we have

\[
AX = Y.
\]

A fuzzy number matrix

\[
X = (x_1, \ldots, x_i, \ldots, x_n)
\]

is called a solution of the fuzzy matrix system (2.1) if

\[
Ax_j = y_j, \quad 1 \leq j \leq n.
\]
In this section, we propose a new method for solving FMES.

Theorem 3.1. Suppose that the inverse of matrix \(A \) exists and \(x_j = (x_{j1}, x_{j2}, \ldots, x_{jn})^T \) is a solution of this equation. Then \(x_j + \overline{x_j} = (x_{j1} + \overline{x_{j1}}, x_{j2} + \overline{x_{j2}}, \ldots, x_{jn} + \overline{x_{jn}})^T \) is the solution of the following systems:

\[
A \left(x_j + \overline{x_j} \right) = y_j + \overline{y_j}, \quad j = 1, 2, \ldots, n, \tag{3.5}
\]

where \(y_j + \overline{y_j} = (y_{j1} + \overline{y_{j1}}, y_{j2} + \overline{y_{j2}}, \ldots, y_{jn} + \overline{y_{jn}})^T, \quad j = 1, 2, \ldots, n. \)

Proof. It is the same as the proof of Theorem 3 in [27].

For solving (3.2), we first solve the following system:

\[
a_{11} (x_{j1} + \overline{x_{j1}}) + \cdots + a_{1n} (x_{jn} + \overline{x_{jn}}) = (y_{j1} + \overline{y_{j1}}),
\]

\[
a_{21} (x_{j1} + \overline{x_{j1}}) + \cdots + a_{2n} (x_{jn} + \overline{x_{jn}}) = (y_{j2} + \overline{y_{j2}}),
\]

\[
\vdots
\]

\[
a_{n1} (x_{j1} + \overline{x_{j1}}) + \cdots + a_{nn} (x_{jn} + \overline{x_{jn}}) = (y_{jn} + \overline{y_{jn}}),
\]

\[
j = 1, 2, \ldots, n. \tag{3.6}
\]

Using matrix notation, we have

\[
A \left(X + \overline{X} \right) = \left(Y + \overline{Y} \right). \tag{3.7}
\]

Suppose that the solution of (3.7) is as

\[
d_j = \begin{bmatrix} d_{j1} \\ d_{j2} \\ \vdots \\ d_{jn} \end{bmatrix} = x_j + \overline{x_j} = \begin{bmatrix} x_{j1} + \overline{x_{j1}} \\ x_{j2} + \overline{x_{j2}} \\ \vdots \\ x_{jn} + \overline{x_{jn}} \end{bmatrix}, \quad j = 1, 2, \ldots, n. \tag{3.8}
\]

Let matrices \(B \) and \(C \) have defined as Section 2. Now using matrix notation for (3.7), we get in parametric form \((B - C) (X(r) + \overline{X}(r)) = (Y(r) + \overline{Y}(r)) \). We can write this system as follows:

\[
B X(r) - C \overline{X}(r) = Y(r), \tag{3.9}
\]

\[
B \overline{X}(r) - C X(r) = \overline{Y}(r).
\]
By substituting \(\overline{X}(r) = D - \overline{X}(r) \) and \(\overline{X}(r) = D - \overline{X}(r) \) in the first and second equation of above system, respectively, we have

\[
\begin{align*}
(B + C)\overline{X}(r) &= \overline{Y}(r) + CD, \quad (3.10) \\
(B + C)\overline{X}(r) &= \overline{Y}(r) + CD, \quad (3.11)
\end{align*}
\]

therefore, we have

\[
\begin{align*}
\overline{X}(r) &= (B + C)^{-1}(\overline{Y}(r) + CD), \\
\overline{X}(r) &= (B + C)^{-1}(\overline{Y}(r) + CD).
\end{align*}
\]

Therefore, we can solve fuzzy matrix equation system (3.2) by solving (3.7)–(3.10).

Theorem 3.2. Let in (3.3) \(j = 1 \), also \(g \) and \(G \) are the number of multiplication operations that are required to calculate

\[
X = (x_1, x_2, \ldots, x_n, -\overline{x}_1, -\overline{x}_2, \ldots, -\overline{x}_n)^T = S^{-1}Y,
\]

(\textit{the proposed method in Friedman et al. [21]}) and

\[
x_j = (x_{j1}, x_{j2}, \ldots, x_{jn}, \overline{x}_{j1}, \overline{x}_{j2}, \ldots, \overline{x}_{jn})^T,
\]

from (3.7)–(3.10), respectively. Then \(G \leq g \) and \(g - G = n^2 \).

Proof. According to Section 2, we have

\[
S^{-1} = \begin{pmatrix} D & E \\ E & D \end{pmatrix},
\]

where

\[
D = \frac{1}{2}(B + C)^{-1} + (B - C)^{-1}, \quad E = \frac{1}{2}(B + C)^{-1} - (B - C)^{-1}.
\]

Therefore, for determining \(S^{-1} \), we need to compute \((B + C)^{-1} \) and \((B - C)^{-1} \). Now, assume that \(M \) is \(n \times n \) matrix and denote by \(h(M) \) the number of multiplication operations that are required to calculate \(M^{-1} \). It is clear that

\[
h(S) = h(B + C) + h(B - C) = 2h(A),
\]

and hence

\[
g = 2h(A) + 4n^2.
\]
For computing $x_j + \overline{x}_j = (\overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n)$ from (3.7) and $x_j = (x_{j1}, x_{j2}, \ldots, x_{jn})^T$ from (3.10) the number of multiplication operations is $h(A) + n^2$ and $h(B + C) + 2n^2$, respectively. Clearly $h(B + C) = h(A)$, so

$$G = 2h(A) + 3n^2,$$

(3.19)

and hence $g - G = n^2$. This proves theorem.

\begin{remark}
In (3.3) if $j = 1$, then this paper is similar to [27].
\end{remark}

\begin{example}
Consider the 2×2 fuzzy matrix equation system as follows:

$$\begin{pmatrix}
2 & -1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{pmatrix}
= \begin{pmatrix}
(3r - 3, 3 - 3r) & (4r - 4, 6 - 6r) \\
(2r + 1, 5 - 2r) & (3r, 7 - 4r)
\end{pmatrix}.
$$

(3.20)

By using (3.7) and (3.10), we have

$$\begin{pmatrix}
x_{11}(r) + \overline{x}_{11}(r) & x_{12}(r) + \overline{x}_{12}(r) \\
x_{21}(r) + \overline{x}_{21}(r) & x_{22}(r) + \overline{x}_{22}(r)
\end{pmatrix}
= \begin{pmatrix}
2 & 3 - r \\
4 & 4
\end{pmatrix},$$

(3.21)

$$\begin{pmatrix}
x_{11}(r) & x_{12}(r) \\
x_{21}(r) & x_{22}(r)
\end{pmatrix}
= \begin{pmatrix}
r & r \\
1 + r & 2r
\end{pmatrix},$$

and hence

$$\begin{pmatrix}
\overline{x}_{11}(r) & \overline{x}_{12}(r) \\
\overline{x}_{21}(r) & \overline{x}_{22}(r)
\end{pmatrix}
= \begin{pmatrix}
2 - r & 3 - 2r \\
3 - r & 4 - 2r
\end{pmatrix}.$$

(3.22)

Obviously, x_{11}, x_{12}, x_{21} and x_{22}, are fuzzy numbers.

\section{4. Conclusions}

In this paper, we propose a general model for solving fuzzy matrix equation system. The original system with matrix coefficient A is replaced by two $n \times n$ crisp matrix equation systems.

\section{References}

Submit your manuscripts at http://www.hindawi.com