Research Article

Generalized Altering Distances and Common Fixed Points in Ordered Metric Spaces

Hemant Kumar Nashine and Hassen Aydi

1 Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Mandir Hasaud, Raipur 492101, India
2 Institut Superior d’Informatique et des Technologies de Communication de Hammam Sousse, Route GP1-4011, Hammam Sousse, Tunisia

Correspondence should be addressed to Hassen Aydi, hassen.aydi@isima.rnu.tn

Received 27 March 2012; Revised 6 June 2012; Accepted 6 June 2012

Academic Editor: Teodor Bulboaca

Copyright © 2012 H. K. Nashine and H. Aydi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Coincidence point and common fixed point results with the concept of generalized altering distance functions in complete ordered metric spaces are derived. These results generalize the existing fixed point results in the literature. To illustrate our results and to distinguish them from the existing ones, we equip the paper with examples. As an application, we study the existence of a common solution to a system of integral equations.

1. Introduction and Preliminaries

The study of common fixed points of mappings satisfying certain contractive conditions has been researched extensively by many mathematicians since fixed point theory plays a major role in mathematics and applied sciences (see [1–40] and others). A new category of contractive fixed point problems was addressed by Khan et al. [1]. In this work, they introduced the notion of an altering distance function, which is a control function that alters distance between two points in a metric space.

Definition 1.1 (see [1]). A function \(\varphi : [0, +\infty) \to [0, +\infty) \) is called an altering distance function if and only if

(i) \(\varphi \) is continuous,
(ii) \(\varphi \) is nondecreasing,
(iii) \(\varphi(t) = 0 \iff t = 0. \)

Khan et al. [1] proved the following result.
Theorem 1.2 (see [1]). Let \((X,d)\) be a complete metric space, \(\varphi : [0, +\infty) \to [0, +\infty)\) an altering distance function, and \(T : X \to X\) a self-mapping which satisfies the following inequality:

\[\varphi(d(Tx,Ty)) \leq c\varphi(d(x,y))\]

(1.1)

for all \(x, y \in X\) and for some \(0 < c < 1\). Then \(T\) has a unique fixed point.

Putting \(\varphi(t) = t\) in Theorem 1.2, we retrieve immediately the Banach contraction principle.

This concept was extended to metric spaces by Rhoades in [3].

Definition 1.3. A mapping \(T : X \to X\), where \((X,d)\) is a metric space, is said to be weakly contractive if and only if

\[d(Tx,Ty) \leq d(x,y) - \varphi(d(x,y)), \quad \forall x,y \in X,\]

(1.2)

where \(\varphi : [0, +\infty) \to [0, +\infty)\) is an altering distance function.

Theorem 1.4 (see [3]). Let \((X,d)\) be a complete metric space and \(T : X \to X\) a weakly contractive map. Then, \(T\) admits a unique fixed point.

Weak inequalities of the above type have been used to establish fixed point results in a number of subsequent works, some of which are noted in [4–7, 20]. In [5], Choudhury introduced the concept of a generalized altering distance function for three variables.

Definition 1.5 (see [5]). A function \(\varphi : [0, +\infty) \times [0, +\infty) \times [0, +\infty) \to [0, +\infty)\) is said to be a generalized altering distance function if and only if

(i) \(\varphi\) is continuous,

(ii) \(\varphi\) is nondecreasing in all the three variables,

(iii) \(\varphi(x,y,z) = 0 \iff x = y = z = 0\).

In [5], Choudhury proved the following common fixed point theorem using altering distances for three variables.

Theorem 1.6 (see [5]). Let \((X,d)\) be a complete metric space and \(S,T : X \to X\) two self mappings such that the following inequality is satisfied:

\[\Phi_1(d(Sx,Ty)) \leq \varphi_1(d(x,y),d(x,Sx),d(y,Ty)) - \varphi_2(d(x,y),d(x,Sx),d(y,Ty))\]

(1.3)

for all \(x, y \in X\), where \(\varphi_1\) and \(\varphi_2\) are generalized altering distance functions and \(\Phi_1(x) = \varphi_1(x,x,x)\). Then \(S\) and \(T\) have a common fixed point.

In [31], Rao et al. generalized Theorem 1.6 for four mappings satisfying a generalized contractive condition and used the following generalized altering distance function for four variables.
Definition 1.7 (see [31]). A function \(\varphi : [0, +\infty) \times [0, +\infty) \times [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty) \) is said to be a generalized altering distance function if and only if

(i) \(\varphi \) is continuous,

(ii) \(\varphi \) is nondecreasing in all the three variables,

(iii) \(\varphi(t_1, t_2, t_3, t_4) = 0 \iff t_1 = t_2 = t_3 = t_4 = 0. \)

Let \(\Psi_4 \) denote the set of all functions \(\varphi \) satisfying (i)–(iii) in Definition 1.7.

Recently, there have been so many exciting developments in the field of existence of fixed point in partially ordered sets (see [8–19, 21–36] and the references cited therein). The first result in this direction was given by Turinici [36], where he extended the Banach contraction principle in partially ordered sets. Ran and Reurings [33] presented some applications of Turinici’s theorem to matrix equations. The obtained result by Turinici was further extended and refined in [28–32]. Subsequently, Harjani and Sadarangani [19] generalized their own results [18] by considering pair of altering functions \((\varphi, \varphi) \). Nashine and Altun [21] and Nashine and Altun [22] generalized the results of Harjani and Sadarangani [18, 19]. Also, Nashine and Altun [22] and Shatanawi and Samet [41] worked for a pair \((T, S)\) of weakly increasing mappings with respect to a third mapping \(R \). In another paper, Nashine et al. [24] prove coincidence point and common fixed point results for mappings satisfying a contractive inequality which involves two generalized altering distance functions for three variables in ordered complete metric spaces. As application, they studied the existence of a common solution to a system of integral equations.

The aim of this paper is to generalize the results of Nashine et al. [24] in the sense of four variables. We obtain coincidence point and common fixed point theorems in complete ordered metric spaces for mappings satisfying a contractive condition which involves two generalized altering distance functions in four variables. Presented theorems are ordered version of Theorem 2.1 of Rao et al. [31] for three mappings. In addition, an application to the study of the existence of a common solution to a system of integral equations is given.

2. Main Results

First we introduce some notations and definitions that will be used later.

2.1. Notations and Definitions

The following definition was introduced by Jungck in [37].

Definition 2.1 (see [37]). Let \((X, d) \) be a metric space and \(f, g : X \rightarrow X \). If \(w = fx = gx \), for some \(x \in X \), then \(x \) is called a coincidence point of \(f \) and \(g \), and \(w \) is called a point of coincidence of \(f \) and \(g \). The pair \(\{f, g\} \) is said to be compatible if and only if

\[
\lim_{n \to +\infty} d(fgx_n, gfx_n) = 0, \quad \text{whenever} \quad \{x_n\} \text{ is a sequence in} \ X \text{ such that} \lim_{n \to +\infty} fx_n = \lim_{n \to +\infty} gx_n = t \text{ for some} \ t \in X.
\]

Let \(X \) be a nonempty set and \(R : X \rightarrow X \) a given mapping. For every \(x \in X \), we denote by \(R^{-1}(x) \) the subset of \(X \) defined by

\[
R^{-1}(x) := \{ u \in X \mid Ru = x \}.
\] (2.1)
Definition 2.2 (see [23]). Let \((X, \preceq)\) be a partially ordered set and \(T, S, R : X \to X\) are given mappings such that \(TX \subseteq RX\) and \(SX \subseteq RX\). We say that \(S\) and \(T\) are weakly increasing with respect to \(R\) if and only if, for all \(x \in X\), we have

\[
Tx \preceq Sy, \quad \forall y \in R^{-1}(Tx), \tag{2.2}
\]

\[
Sx \preceq Ty, \quad \forall y \in R^{-1}(Sx).
\]

Remark 2.3. If \(R : X \to X\) is the identity mapping \((Rx = x\) for all \(x \in X)\), then \(S\) and \(T\) are weakly increasing with respect to \(R\) which implies that \(S\) and \(T\) are weakly increasing mappings. Note that the notion of weakly increasing mappings was introduced in [9] (also see [17, 38]).

Example 2.4. Let \(X = \{1, 2, 3\}\) be endowed with the partial order \(\preceq\) given by

\[
\leq = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 1), (2, 1)\}. \tag{2.3}
\]

Define the mappings \(T, S, R : X \to X\) by

\[
T_1 = T_3 = 1, \quad T_2 = 3,
\]

\[
S_1 = S_2 = S_3 = 1,
\]

\[
R_1 = 1, \quad R_2 = R_3 = 2. \tag{2.4}
\]

We will show that the mappings \(S\) and \(T\) are weakly increasing with respect to \(R\).

Let \(x, y \in X\) such that \(y \in R^{-1}(Tx)\). By the definition of \(S\), we have \(Sy = 1\). On the other hand, \(Tx = 1\) and \((1, 1), (3, 1) \in \leq\). Thus, we have \(Tx \preceq Sy\) for all \(y \in R^{-1}(Tx)\).

Let \(x, y \in X\) such that \(y \in R^{-1}(Sx)\). By the definitions of \(S\) and \(R\), we have \(R^{-1}(Sx) = R^{-1}(1) = \{1\}\). Then we have \(y = 1\). On the other hand, \(1 = Sx \preceq Ty = T_1 = 1\). Then, \(Sx \preceq Ty\) for all \(y \in R^{-1}(Sx)\).

Thus, we proved that \(S\) and \(T\) are weakly increasing with respect to \(R\).

Definition 2.5. Let \(X\) be a nonempty set. Then \((X, d, \preceq)\) is called an ordered metric space if and only if:

(i) \((X, d)\) is a metric space,

(ii) \((X, \preceq)\) is a partially ordered set.

2.2. Results

Our first result is the following.
Theorem 2.6. Let \((X, d, \preceq)\) be an ordered complete metric space. Let \(T, S, R : X \to X\) be given mappings satisfying for every pair \((x, y) \in X \times X\) such that \(Rx\) and \(Ry\) are comparable,

\[
\Phi_1(d(Sx, Ty)) \leq \varphi_1 \left(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty), \frac{1}{2} [d(Rx, Ty) + d(Ry, Sx)] \right) - \varphi_2 \left(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty), \frac{1}{2} [d(Rx, Ty) + d(Ry, Sx)] \right),
\]

where \(\varphi_1\) and \(\varphi_2\) are generalized altering distance functions (in \(\Psi_4\)) and \(\Phi_1(x) = \varphi_1(x, x, x, x)\). One assumes the following hypotheses:

(i) \(T, S,\) and \(R\) are continuous,
(ii) \(TX \subseteq RX, SX \subseteq RX,\)
(iii) \(T\) and \(S\) are weakly increasing with respect to \(R,\)
(iv) the pairs \(\{T, R\}\) and \(\{S, R\}\) are compatible.

Then, \(T, S,\) and \(R\) have a coincidence point, that is, there exists \(u \in X\) such that \(Ru = Tu = Su\).

Proof. Let \(x_0 \in X\) be an arbitrary point. Since \(TX \subseteq RX\), there exists \(x_1 \in X\) such that \(Rx_1 = Tx_0\). Since \(SX \subseteq RX\), there exists \(x_2 \in X\) such that \(Rx_2 = Sx_1\). Continuing this process, we can construct a sequence \(\{Rx_n\}\) in \(X\) defined by

\[
Rx_{2n+1} = Tx_{2n}, \quad Rx_{2n+2} = Sx_{2n+1}, \quad \forall n \in \mathbb{N}.
\]

We claim that

\[
Rx_n \preceq Rx_{n+1}, \quad \forall n \in \mathbb{N}.
\]

To this aim, we will use the increasing property of the mappings \(S\) and \(T\) with respect to \(R\). From (2.6), we have

\[
Rx_1 = Tx_0 \preceq S y, \quad \forall y \in R^{-1}(Tx_0).
\]

Since \(Rx_1 = Tx_0\), then \(x_1 \in R^{-1}(Tx_0)\), and we get

\[
Rx_1 = Tx_0 \preceq Sx_1 = Rx_2.
\]

Again,

\[
Rx_2 = Sx_1 \preceq Ty, \quad \forall y \in R^{-1}(Sx_1).
\]
Since $x_2 \in R^{-1}(Sx_1)$, we get

$$Rx_2 = Sx_1 \leq Tx_2 = Rx_3. \quad (2.11)$$

Hence, by induction, (2.7) holds.

Without loss of the generality, we can assume that

$$Rx_n \neq Rx_{n+1}, \quad \forall n \in \mathbb{N}. \quad (2.12)$$

Now, we will prove our result on three steps.

Step 1. We claim that

$$\lim_{n \to +\infty} d(Rx_{n+1}, Rx_{n+2}) = 0. \quad (2.13)$$

Putting $x = x_{2n+1}$ and $y = x_{2n}$, from (2.7) and the considered contraction (2.5), we have

$$\Phi_1(d(Rx_{2n+2}, Rx_{2n+1})) = \Phi_1(d(Sx_{2n+1}, Tx_{2n}))$$

$$\leq q_1 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Sx_{2n+1}), d(Rx_{2n}, Tx_{2n}), \right.$$

$$\left. \frac{1}{2} [d(Rx_{2n+1}, Tx_{2n}) + d(Rx_{2n}, Sx_{2n+1})] \right)$$

$$- q_2 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Sx_{2n+1}), d(Rx_{2n}, Tx_{2n}), \right.$$

$$\left. \frac{1}{2} [d(Rx_{2n+1}, Tx_{2n}) + d(Rx_{2n}, Sx_{2n+1})] \right) \quad (2.14)$$

$$= q_1 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \right.$$

$$\left. \frac{1}{2} d(Rx_{2n}, Rx_{2n+2}) \right)$$

$$- q_2 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \right.$$

$$\left. \frac{1}{2} d(Rx_{2n}, Rx_{2n+2}) \right).$$

Suppose, for some $n \in \mathbb{N}$, that

$$d(Rx_{2n+1}, Rx_{2n+2}) > d(Rx_{2n}, Rx_{2n+1}). \quad (2.15)$$

Using (2.15) and a triangular inequality, we have

$$\frac{1}{2} d(Rx_{2n}, Rx_{2n+2}) \leq \frac{1}{2} (d(Rx_{2n}, Rx_{2n+1}) + d(Rx_{2n+1}, Rx_{2n+2}) < d(Rx_{2n+1}, Rx_{2n+2}). \quad (2.16)$$
Using this and (2.15) together with a property of the generalized altering function φ_1, we get

$$
\varphi_1 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \frac{1}{2} d(Rx_{2n}, Rx_{2n+2}) \right) \\
\leq \Phi_1 (d(Rx_{2n+2}, Rx_{2n+1})).
$$

(2.17)

Hence, we obtain

$$
\Phi_1 (d(Rx_{2n+2}, Rx_{2n+1})) \\
\leq \Phi_1 (d(Rx_{2n+2}, Rx_{2n+1})) \\
- \varphi_2 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \frac{1}{2} d(Rx_{2n}, Rx_{2n+2}) \right).
$$

(2.18)

This implies that

$$
\varphi_2 \left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \frac{1}{2} d(Rx_{2n}, Rx_{2n+2}) \right) = 0,
$$

(2.19)

which yields that

$$
d(Rx_{2n+1}, Rx_{2n}) = 0.
$$

(2.20)

Hence, we obtain a contradiction with (2.12). We deduce that

$$
d(Rx_{2n+1}, Rx_{2n+2}) \leq d(Rx_{2n}, Rx_{2n+1}), \quad \forall n \in \mathbb{N}.
$$

(2.21)

Similarly, putting $x = x_{2n+1}$ and $y = x_{2n+2}$, from (2.7) and the considered contraction (2.5), we have

$$
\Phi_1 (d(Rx_{2n+2}, Rx_{2n+3})) \\
\leq \varphi_1 \left(d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+2}, Rx_{2n+3}), \frac{1}{2} d(Rx_{2n+1}, Rx_{2n+3}) \right) \\
- \varphi_2 \left(d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+2}, Rx_{2n+3}), \frac{1}{2} d(Rx_{2n+1}, Rx_{2n+3}) \right).
$$

(2.22)

Suppose, for some $n \in \mathbb{N}$, that

$$
d(Rx_{2n+2}, Rx_{2n+3}) > d(Rx_{2n+1}, Rx_{2n+2}).
$$

(2.23)
Then, by a triangular inequality, we have

$$\frac{1}{2}d(Rx_{2n+1}, Rx_{2n+2}) \leq \frac{1}{2}(d(Rx_{2n+1}, Rx_{2n+2}) + d(Rx_{2n+2}, Rx_{2n+3})) < d(Rx_{2n+2}, Rx_{2n+3}). \quad (2.24)$$

Hence, from this, (2.22), and (2.23), we obtain

$$\Phi_1(d(Rx_{2n+2}, Rx_{2n+3})) \leq \Phi_1(d(Rx_{2n+2}, Rx_{2n+3})) - \psi_2\left(d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+2}, Rx_{2n+3}), \frac{1}{2}d(Rx_{2n+1}, Rx_{2n+3})\right). \quad (2.25)$$

This implies that

$$\psi_2\left(d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n+2}, Rx_{2n+3}), \frac{1}{2}d(Rx_{2n+1}, Rx_{2n+3})\right) = 0, \quad (2.26)$$

which leads to

$$d(Rx_{2n+1}, Rx_{2n+2}) = 0. \quad (2.27)$$

Hence, we obtain a contradiction with (2.12). We deduce that

$$d(Rx_{2n+1}, Rx_{2n+2}) \geq d(Rx_{2n+2}, Rx_{2n+3}), \quad \forall n \in \mathbb{N}. \quad (2.28)$$

Combining (2.21) and (2.28), we obtain

$$d(Rx_{n+1}, Rx_{n+2}) \geq d(Rx_{n+2}, Rx_{n+3}), \quad \forall n \in \mathbb{N}. \quad (2.29)$$

Then, \(\{d(Rx_{n+1}, Rx_{n+2})\}\) is a nonincreasing sequence of positive real numbers. This implies that there exists \(r \geq 0\) such that

$$\lim_{n \to +\infty} d(Rx_{n+1}, Rx_{n+2}) = r. \quad (2.30)$$
By (2.14), we have

\[
\Phi_1(d(Rx_{2n+2}, Rx_{2n+1})) \leq \Phi_1\left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \frac{1}{2}d(Rx_{2n}, Rx_{2n+1}) \right) \\
- \Phi_2\left(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), \frac{1}{2}d(Rx_{2n}, Rx_{2n+1}) \right)
\]

\[
\leq \Phi_1(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n}, Rx_{2n+1}), d(Rx_{2n}, Rx_{2n+1})) \\
- \Phi_2(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), 0) \\
= \Phi_1(d(Rx_{2n}, Rx_{2n+1})) \\
- \Phi_2(d(Rx_{2n+1}, Rx_{2n}), d(Rx_{2n+1}, Rx_{2n+2}), d(Rx_{2n}, Rx_{2n+1}), 0).
\]

(2.31)

Letting \(n \to +\infty \) in (2.31) and using the continuities of \(\Phi_1 \) and \(\Phi_2 \), we obtain

\[
\Phi_1(r) \leq \Phi_1(r) - \Phi_2(r, r, 0),
\]

which implies that \(\Phi_2(r, r, 0) = 0 \), so \(r = 0 \). Hence

\[
\lim_{n \to +\infty} d(Rx_{n+1}, Rx_{n+2}) = 0.
\]

(2.33)

Hence, (2.13) is proved.

Step 2. We claim that \(\{ Rx_n \} \) is a Cauchy sequence.

From (2.13), it will be sufficient to prove that \(\{ Rx_n \} \) is a Cauchy sequence. We proceed by negation and suppose that \(\{ Rx_n \} \) is not a Cauchy sequence. Then, there exists \(\varepsilon > 0 \) for which we can find two sequences of positive integers \(\{ m(i) \} \) and \(\{ n(i) \} \) such that, for all positive integer \(i \),

\[
n(i) > m(i) > i, \quad d(Rx_{2m(i)}, Rx_{2m(i)}) \geq \varepsilon, \quad d(Rx_{2m(i)}, Rx_{2m(i)-2}) < \varepsilon.
\]

(2.34)

From (2.34) and using a triangular inequality, we get

\[
\varepsilon \leq d(Rx_{2m(i)}, Rx_{2n(i)}) \\
\leq d(Rx_{2m(i)}, Rx_{2n(i)-2}) + d(Rx_{2n(i)-2}, Rx_{2n(i)-1}) + d(Rx_{2n(i)-1}, Rx_{2n(i)}) \\
< \varepsilon + d(Rx_{2n(i)-2}, Rx_{2n(i)-1}) + d(Rx_{2n(i)-1}, Rx_{2n(i)}).
\]

(2.35)
Letting \(i \to +\infty \) in the previous inequality and using (2.13), we obtain

\[
\lim_{i \to +\infty} d(Rx_{2m(i)}, Rx_{2n(i)}) = \varepsilon. \tag{2.36}
\]

Again, a triangular inequality gives us

\[
|d(Rx_{2n(i)}, Rx_{2m(i)-1}) - d(Rx_{2n(i)}, Rx_{2m(i)})| \leq d(Rx_{2m(i)-1}, Rx_{2m(i)}). \tag{2.37}
\]

Letting \(i \to +\infty \) in the above inequality and using (2.13) and (2.36), we get

\[
\lim_{i \to +\infty} d(Rx_{2n(i)}, Rx_{2m(i)-1}) = \varepsilon. \tag{2.38}
\]

On the other hand, we have

\[
d(Rx_{2n(i)}, Rx_{2m(i)}) \leq d(Rx_{2n(i)}, Rx_{2n(i)+1}) + d(Rx_{2n(i)+1}, Rx_{2m(i)})
\]

\[
= d(Rx_{2n(i)}, Rx_{2n(i)+1}) + d(Tx_{2n(i)}, Sx_{2m(i)-1}). \tag{2.39}
\]

Then, from (2.13), (2.36), and the continuity of \(\Phi_1 \), we get by letting \(i \to +\infty \) in the above inequality

\[
\Phi_1(\varepsilon) \leq \lim_{i \to +\infty} \Phi_1(d(Sx_{2m(i)-1}, Tx_{2n(i)})). \tag{2.40}
\]

Now, using the considered contractive condition (2.5) for \(x = x_{2m(i)-1} \) and \(y = x_{2n(i)} \), we have

\[
\Phi_1(d(Sx_{2m(i)-1}, Tx_{2n(i)})) \leq \phi_1\left(d(Rx_{2m(i)-1}, Rx_{2n(i)}), d(Rx_{2m(i)-1}, Rx_{2m(i)}),
\right.

\[
\left.d(Rx_{2n(i)}, Rx_{2n(i)+1}),
\right)

\[
\frac{1}{2} [d(Rx_{2m(i)-1}, Rx_{2n(i)+1}) + d(Rx_{2n(i)}, Rx_{2m(i)})]
\]

\[
- \phi_2\left(d(Rx_{2m(i)-1}, Rx_{2n(i)}), d(Rx_{2m(i)-1}, Rx_{2m(i)}),
\right.

\[
\left.d(Rx_{2n(i)}, Rx_{2n(i)+1}),
\right)

\[
\frac{1}{2} [d(Rx_{2m(i)-1}, Rx_{2n(i)+1}) + d(Rx_{2n(i)}, Rx_{2m(i)})]
\right). \tag{2.41}
\]

Then, from (2.13), (2.38), and the continuities of \(\phi_1 \) and \(\phi_2 \), we get by letting \(i \to +\infty \) in the above inequality

\[
\lim_{i \to +\infty} \Phi_1(d(Sx_{2m(i)-1}, Tx_{2n(i)})) \leq \phi_1(\varepsilon, 0, 0, \varepsilon) - \phi_2(\varepsilon, 0, 0, \varepsilon) \leq \Phi_1(\varepsilon) - \phi_2(\varepsilon, 0, 0, \varepsilon). \tag{2.42}
\]
Now, combining (2.40) with the previous inequality, we get
\[\Phi_1(\varepsilon) \leq \Phi_1(\varepsilon) - \eta_2(\varepsilon, 0, 0, \varepsilon), \]
which implies that \(\eta_2(\varepsilon, 0, 0, \varepsilon) = 0 \), that is a contradiction since \(\varepsilon > 0 \). We deduce that \(\{R_{x_n}\} \) is a Cauchy sequence.

Step 3. We claim existence of a coincidence point.

Since \(\{R_{x_n}\} \) is a Cauchy sequence in the complete metric space \((X, d)\), there exists \(u \in X \) such that
\[
\lim_{n \to +\infty} R_{x_n} = u. \tag{2.44}
\]
From (2.44) and the continuity of \(R \), we get
\[
\lim_{n \to +\infty} R(R_{x_n}) = Ru. \tag{2.45}
\]
By the triangular inequality, we have
\[
d(Ru, Tu) \leq d(Ru, R(R_{x_{2n+1}})) + d(R(T_{x_{2n}}), T(R_{x_{2n}})) + d(T(R_{x_{2n}}), Tu). \tag{2.46}
\]
On the other hand, we have
\[
R_{x_{2n}} \to u, \quad T_{x_{2n}} \to u \quad \text{as} \quad n \to +\infty. \tag{2.47}
\]
Since \(R \) and \(T \) are compatible mappings, this implies that
\[
\lim_{n \to +\infty} d(R(T_{x_{2n}}), T(R_{x_{2n}})) = 0. \tag{2.48}
\]
Now, from the continuity of \(T \) and (2.44), we have
\[
\lim_{n \to +\infty} d(T(R_{x_{2n}}), Tu) = 0. \tag{2.49}
\]
Combining (2.45), (2.48), and (2.49) and letting \(n \to +\infty \) in (2.46), we obtain
\[
d(Ru, Tu) \leq 0, \tag{2.50}
\]
that is,
\[
Ru = Tu. \tag{2.51}
\]
Again, by a triangular inequality, we have
\[
d(Ru, Su) \leq d(Ru, R(R_{x_{2n+1}})) + d(R(S_{x_{2n+1}}), S(R_{x_{2n+1}})) + d(S(R_{x_{2n+1}}), Su). \tag{2.52}
\]
On the other hand, we have

\[R_{2n+1} \to u, \quad S_{2n+1} \to u \quad \text{as} \quad n \to +\infty. \]

(2.53)

Since \(R \) and \(S \) are compatible mappings, this implies that

\[\lim_{n \to +\infty} d(R(S_{2n+1}), S(R_{2n+1})) = 0. \]

(2.54)

Now, from the continuity of \(S \) and (2.44), we have

\[\lim_{n \to +\infty} d(S(R_{2n+1}), Su) = 0. \]

(2.55)

Combining (2.45), (2.54), and (2.55) and letting \(n \to +\infty \) in (2.52), we obtain

\[d(Ru, Su) \leq 0, \]

(2.56)

that is,

\[Ru = Su. \]

(2.57)

Finally, from (2.51) and (2.57), we have

\[Tu = Ru = Su, \]

(2.58)

that is, \(u \) is a coincidence point of \(T, S, \) and \(R \). This makes end to the proof. \(\square \)

In the next theorem, we omit the continuity hypotheses satisfied by \(T, S, \) and \(R \).

Definition 2.7. Let \((X, d, \leq)\) be a partially ordered metric space. We say that \(X \) is regular if and only if the following hypothesis holds: if \(\{z_n\} \) is a nondecreasing sequence in \(X \) with respect to \(\leq \) such that \(z_n \to z \in X \) as \(n \to +\infty \), then \(z_n \leq z \) for all \(n \in \mathbb{N} \).

Now, our second result is the following.

Theorem 2.8. Let \((X, d, \leq)\) be an ordered complete metric space. Let \(T, S, R : X \to X \) be given mappings satisfying for every pair \((x, y) \in X \times X\) such that \(Rx \) and \(Ry \) are comparable,

\[
\Phi_1(d(Sx, Ty)) \leq \varphi_1 \left(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty), \frac{1}{2} [d(Rx, Ty) + d(Ry, Sx)] \right) \\
- \varphi_2 \left(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty), \frac{1}{2} [d(Rx, Ty) + d(Ry, Sx)] \right),
\]

(2.59)
where \(\varphi_1 \) and \(\varphi_2 \) are generalized altering distance functions and \(\Phi_1(x) = \varphi_1(x, x, x) \). We assume the following hypotheses:

(i) \(X \) is regular,

(ii) \(T \) and \(S \) are weakly increasing with respect to \(R \),

(iii) \(RX \) is a complete subspace of \((X, d) \),

(iv) \(TX \subseteq RX, SX \subseteq RX \).

Then, \(T, S, \) and \(R \) have a coincidence point.

Proof. Following the proof of Theorem 2.6, we have \(\{Rx_n\} \) is a Cauchy sequence in \((RX, d) \). Since \(RX \) is a complete, there exists \(u = Rv, v \in X \) such that

\[
\lim_{n \to +\infty} Rx_n = u = Rv. \tag{2.60}
\]

Since \(\{Rx_n\} \) is a nondecreasing sequence and \(X \) is regular, it follows from (2.60) that \(Rx_n \leq Rv \) for all \(n \in \mathbb{N} \). Hence, we can apply the contractive condition (2.5). Then, for \(x = v \) and \(y = x_{2n} \), we obtain

\[
\Phi_1(d(Sv, Rx_{2n+1})) = \Phi_1(d(Sv, Tx_{2n})) \\
\leq \varphi_1 \left(d(Rv, Rx_{2n}), d(Rv, Sv), d(Rx_{2n}, Rx_{2n+1}) \right) \\
\quad - \varphi_2 \left(d(Rv, Rx_{2n}), d(Rv, Sv), d(Rx_{2n}, Rx_{2n+1}) \right) \\
\quad + \frac{1}{2} \left[d(Rv, Tx_{2n}) + d(Rx_{2n}, Sv) \right].
\]

Letting \(n \to +\infty \) in the above inequality and using (2.13), (2.60), and the properties of \(\varphi_1 \) and \(\varphi_2 \), we obtain

\[
\Phi_1(d(Sv, Rv)) \leq \varphi_1 \left(0, d(Rv, Sv), 0, \frac{1}{2} d(Rv, Sv) \right) - \varphi_2 \left(0, d(Rv, Sv), 0, \frac{1}{2} d(Rv, Sv) \right) \\
\quad \leq \Phi_1(d(Sv, Rv)) - \varphi_2 \left(0, d(Rv, Sv), 0, \frac{1}{2} d(Rv, Sv) \right). \tag{2.62}
\]

This implies that \(\varphi_2(0, d(Rv, Sv), 0, (1/2)d(Rv, Sv)) = 0 \), which gives us that \(d(Rv, Sv) = 0 \), that is,

\[
Rv = Sv. \tag{2.63}
\]
Similarly, for $x = x_{2n+1}$ and $y = v$, we obtain

$$
\Phi_1(d(Rx_{2n+2}, Tv)) = \Phi_1(d(Sx_{2n+1}, Tv))
\leq \psi_1 \left(d(Rx_{2n+2}, Rv), d(Rx_{2n+1}, Rx_{2n+2}), d(Rv, Tv), \frac{1}{2} [d(Rx_{2n+1}, Tv) + d(Rv, Sx_{2n+1})] \right)
- \psi_2 \left(d(Rx_{2n+2}, Rv), d(Rx_{2n+1}, Rx_{2n+2}), d(Rv, Tv), \frac{1}{2} [d(Rx_{2n+1}, Tv) + d(Rv, Sx_{2n+1})] \right)
$$

(2.64)

Letting $n \to +\infty$ in the above inequality, we get

$$
\Phi_1(d(Rv, Tv)) \leq \psi_1 \left(0, 0, d(Rv, Tv), \frac{1}{2} d(Rv, Tv) \right) - \psi_2 \left(0, 0, d(Rv, Tv), \frac{1}{2} d(Rv, Tv) \right)
\leq \Phi_1(d(Rv, Tv)) - \psi_2 \left(0, 0, d(Rv, Tv), \frac{1}{2} d(Rv, Tv) \right).
$$

(2.65)

This implies that $\psi_2(0, 0, d(Rv, Tv), (1/2)d(Rv, Tv)) = 0$, and then,

$$
Rv = Tv.
$$

(2.66)

Now, combining (2.63) and (2.66), we obtain

$$
Rv = Tv = Sv.
$$

(2.67)

Hence, v is a coincidence point of T, S, and R. This makes end to the proof.

Now, we give a sufficient condition that assures the uniqueness of the common coincidence point of $\{T, R\}$ and $\{S, R\}$.

Theorem 2.9. Under the hypotheses of Theorem 2.6 (resp., Theorem 2.8) and suppose that (SX, \preceq) is a totally ordered set and S is one-to-one mapping, then one obtains a unique common coincidence point of $\{T, R\}$ and $\{S, R\}$.

Proof. Following the proof of Theorem 2.6 (resp., Theorem 2.8), the set of common coincidence points of $\{T, R\}$ and $\{S, R\}$ is nonempty. Let $\mu, \nu \in X$ be two common coincidence points of $\{T, R\}$ and $\{S, R\}$, that is,

$$
T\mu = R\mu = S\mu, \quad Tv = Rv = Sv.
$$

(2.68)
This implies that \(R \mu, R \nu \in SX \), and then, \(R \mu \) and \(R \nu \) are comparable with respect to \(\leq \). Then, we can apply the contractive condition (2.5). We have

\[
\Phi_1(d(S\mu, T\nu)) \leq \varphi_1\left(d(R\mu, R\nu), d(R\mu, S\mu), d(R\nu, T\nu), \frac{1}{2} [d(R\mu, T\nu) + d(R\nu, S\mu)]\right)
\]

\[
- \varphi_2\left(d(R\mu, R\nu), d(R\mu, S\mu), d(R\nu, T\nu), \frac{1}{2} [d(R\mu, T\nu) + d(R\nu, S\mu)]\right)
\]

\[
= \varphi_1(d(S\mu, T\nu), 0, 0, d(S\mu, T\nu)) - \varphi_2(d(S\mu, T\nu), 0, 0, d(S\mu, T\nu))
\]

\[
\leq \Phi_1(d(S\mu, T\nu)) - \varphi_2(d(S\mu, T\nu), 0, 0, d(S\mu, T\nu)).
\]

(2.69)

This implies that \(\varphi_2(d(S\mu, T\nu), 0, 0, d(S\mu, T\nu)) \), which gives us that \(d(S\mu, T\nu) = 0 \), that is, \(S\mu = T\nu \). From (2.68), we get \(S\mu = S\nu \). Since \(S \) is one-to-one, we have \(\mu = \nu \). This makes end to the proof.

Now, it is easy to state a corollary of Theorem 2.6 or Theorem 2.8 involving contractions of integral type.

Corollary 2.10. Let \(R, S \) and \(T \) satisfy the conditions of Theorem 2.6 or Theorem 2.8, except that condition (2.5) is replaced by the following: there exists a positive Lebesgue integrable function \(u \) on \(\mathbb{R}_+ \) such that \(\int_0^\infty u(t)dt > 0 \) for each \(\varepsilon > 0 \) and that

\[
\int_0^\infty \phi_1(d(Sx, Ty)) u(t)dt \leq \int_0^\infty \varphi_1(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty), (1/2)[d(Rx, Ty) + d(Ry, Sx)]) u(t)dt - \int_0^\infty \varphi_2(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty), (1/2)[d(Rx, Ty) + d(Ry, Sx)]) u(t)dt.
\]

(2.70)

Then, \(T, S, \) and \(R \) have a coincidence point.

If \(R : X \to X \) is the identity mapping, we can deduce easily the following common fixed point results.

The next result is an immediate consequence of Theorem 2.6.

Corollary 2.11. Let \((X, d, \leq) \) be an ordered complete metric space. Let \(T, S : X \to X \) be given mappings satisfying for every pair \((x, y) \in X \times X \) such that \(x \) and \(y \) are comparable,

\[
\Phi_1(d(Sx, Ty)) \leq \varphi_1\left(d(x, y), d(x, Sx), d(y, Ty), \frac{1}{2} [d(x, Ty) + d(y, Sx)]\right)
\]

\[
- \varphi_2\left(d(x, y), d(x, Sx), d(y, Ty), \frac{1}{2} [d(x, Ty) + d(y, Sx)]\right),
\]

(2.71)
where \(\psi_1 \) and \(\psi_2 \) are generalized altering distance functions and \(\Phi_1(x) = \psi_1(x,x,x,x) \). One assumes the following hypotheses:

(i) \(T \) and \(S \) are continuous,

(ii) \(T \) and \(S \) are weakly increasing.

Then, \(T \) and \(S \) have a common fixed point, that is, there exists \(u \in X \) such that \(u = Tu = Su \).

The following result is an immediate consequence of Theorem 2.8.

Corollary 2.12. Let \((X,d,\leq) \) be an ordered complete metric space. Let \(T,S : X \to X \) be given mappings satisfying for every pair \((x,y) \in X \times X \) such that \(x \) and \(y \) are comparable,

\[
\Phi_1(d(Sx,Ty)) \leq \psi_1 \left(d(x,y), d(x,Sx), d(y,Ty), \frac{1}{2} [d(x,Ty) + d(y,Sx)] \right) \\
- \psi_2 \left(d(x,y), d(x,Sx), d(y,Ty), \frac{1}{2} [d(x,Ty) + d(y,Sx)] \right),
\]

(2.72)

where \(\psi_1 \) and \(\psi_2 \) are generalized altering distance functions and \(\Phi_1(x) = \psi_1(x,x,x,x) \). One assumes the following hypotheses:

(i) \(X \) is regular,

(ii) \(T \) and \(S \) are weakly increasing.

Then, \(T \) and \(S \) have a common fixed point.

Now, we give some examples to support our results.

Example 2.13. Let \(X = \{4,5,6\} \) be endowed with the usual metric \(d(x,y) = |x - y| \) for all \(x,y \in X \), and \(\leq = \{(4,4),(5,5),(6,6),(6,4)\} \). Consider the mappings

\[
S = T = \begin{pmatrix} 4 & 5 & 6 \\ 4 & 6 & 4 \\ 4 & 6 & 6 \end{pmatrix}, \quad R = \begin{pmatrix} 4 & 5 & 6 \\ 4 & 5 & 6 \\ 4 & 6 & 4 \end{pmatrix}.
\]

(2.73)

We define the functions \(\psi_1, \psi_2 : [0, +\infty)^4 \to [0, +\infty) \) by

\[
\psi_1(t_1,t_2,t_3,t_4) = \frac{1}{4} (t_1 + t_2 + t_3 + t_4), \\
\psi_2(t_1,t_2,t_3,t_4) = \frac{1}{16} (t_1 + t_2 + t_3 + t_4).
\]

(2.74)

Clearly, \(\Phi_1(t) = t \) for all \(t \geq 0 \). Now, we will check that all the hypotheses required by Theorem 2.8 are satisfied.

(i) \(X \) is regular.

Let \(\{z_n\} \) be a nondecreasing sequence in \(X \) with respect to \(\leq \) such that \(z_n \to z \in X \) as \(n \to +\infty \). We have \(z_n \leq z_{n+1} \) for all \(n \in \mathbb{N} \).

(a) If \(z_0 = 4 \), then \(z_0 = 4 \leq z_1 \). From the definition of \(\leq \), we have \(z_1 = 4 \). By induction, we get \(z_n = 4 \) for all \(n \in \mathbb{N} \) and \(z = 4 \). Then, \(z_n \leq z \) for all \(n \in \mathbb{N} \).
Thus, we proved that $z_0 = 5$. From the definition of \leq, we have $z_1 = 5$. By induction, we get $z_n = 5$ for all $n \in \mathbb{N}$ and $z = 5$. Then, $z_n \leq z$ for all $n \in \mathbb{N}$.

(c) If $z_0 = 6$, then $z_0 = 6 \leq z_1$. From the definition of \leq, we have $z_1 \in \{6, 4\}$. By induction, we get $z_n \in \{6, 4\}$ for all $n \in \mathbb{N}$. Suppose that there exists $p \geq 1$ such that $z_p = 4$. From the definition of \leq, we get $z_n = z_p = 4$ for all $n \geq p$. Thus, we have $z = 4$ and $z_n \leq z$ for all $n \in \mathbb{N}$. Now, suppose that $z_n = 6$ for all $n \in \mathbb{N}$. In this case, we get $z = 6$ and $z_n \leq z$ for all $n \in \mathbb{N}$.

Thus, we proved that, in all cases, we have $z_n \leq z$ for all $n \in \mathbb{N}$. Then, X is regular.

(ii) T and S are weakly increasing.

Since $S = T$, we have to check that $Tx \leq T(Tx)$ for all $x \in X$.

For $x = 4$, we have

$$T4 = 4 \leq T(T4) = T4 = 4.$$ (2.75)

For $x = 5$, we have

$$T5 = 6 \leq T(T5) = T6 = 4.$$ (2.76)

For $x = 6$, we have

$$T6 = 4 \leq T(T6) = T4 = 4.$$ (2.77)

Thus, we proved that T and S are weakly increasing.

On the other hand, it is very easy to show that (2.5) is satisfied for all $x, y \in X$ such that $Rx \leq Ry$.

Now, all the hypotheses of Theorem 2.8 are satisfied. Then R, S, and T have a coincidence point $u = 4$.

Note that inequality (2.5) is not satisfied for $x = 4$ and $y = 5$. Indeed,

$$q_1\left(d(R4, R5), d(R4, S4), d(R5, T5), \frac{1}{2}[d(R4, T5) + d(R5, S4)]\right)$$

$$- q_2\left(d(R4, R5), d(R4, S4), d(R5, T5), \frac{1}{2}[d(R4, T5) + d(R5, S4)]\right)$$

$$= q_1\left(1, 0, 1, \frac{3}{2}\right) - q_2\left(1, 0, 1, \frac{3}{2}\right)$$

$$= \frac{21}{32}$$

$$< \Phi_1(d(S4, T5)) = \Phi_1(2) = 2.$$ (2.78)

Then, Theorem 2.1 of Rao et al. [31] cannot be applied (for three maps) in this case.

Example 2.14. Let $X = \{(0,1), (1,0), (1,1)\} \subset \mathbb{R}^2$ with the Euclidean distance d_2. (X, d_2) is, obviously, a complete metric space. Moreover, we consider the order \leq in X given by
\[R = \{ (x, x), x \in X \}. \] Notice that the elements in \(X \) are only comparable to themselves, so \((X, \leq)\) is regular. Also we consider \(R, S, T : X \to X \) given by

\[
\begin{align*}
T(1, 0) &= S(1, 0) = R(1, 0) = (1, 0), \\
T(0, 1) &= S(0, 1) = (1, 0), \quad R(0, 1) = (0, 1), \\
T(1, 1) &= S(1, 1) = R(1, 1) = (1, 1).
\end{align*}
\] (2.79)

It is easy that, for all \(x \in X \), \(TSx \leq Sx \), and \(STx \leq Tx \), so the pair \(\{ S, T \} \) is weakly increasing. Define \(\psi_1, \psi_2 : [0, +\infty)^4 \to [0, +\infty) \) by

\[
\begin{align*}
\psi_1(t_1, t_2, t_3, t_4) &= \max\{t_1, t_2, t_3, t_4\}, \\
\psi_2(t_1, t_2, t_3, t_4) &= \frac{1}{2} \max\{t_1, t_2, t_3, t_4\}.
\end{align*}
\] (2.80)

Then, \(\psi_1(t) = t \) for all \(t \geq 0 \).

As the elements in \(X \) are only comparable to themselves, condition (2.5) appearing in Theorem 2.8 is, obviously, satisfied. Now, all the hypotheses of Theorem 2.8 are satisfied. \((1, 1)\) and \((1, 0)\) are the coincidence points of the mappings \(R, S, \) and \(T \).

On the other hand, the inequality (2.5) is not satisfied for \(x = (1, 0) \) and \(y = (1, 1) \). Indeed,

\[
\begin{align*}
\psi_1 \left(\frac{1}{2} [d_2(R(1, 0), R(1, 1)) + d_2(R(1, 0), S(1, 0)) + d_2(R(1, 1), T(1, 1))] \right) \\
- \psi_2 \left(\frac{1}{2} [d_2(R(1, 0), R(1, 1)) + d_2(R(1, 0), S(1, 0)) + d_2(R(1, 1), T(1, 1))] \right) \\
= \psi_1(1, 0, 0, 1) - \psi_2(1, 0, 0, 1) \\
= \frac{1}{2} \\
< \Phi_1(d_2(S(1, 0), T(1, 1))) = \Phi_1(1) = 1.
\end{align*}
\] (2.81)

Then, again Theorem 2.1 of Rao et al. [31] cannot be applied (for three maps) in this case.
A number of fixed point results may be obtained by assuming different forms for the functions ψ_1 and ψ_2. In particular, fixed point results under various contractive conditions may be derived from the above theorems. For example, if we consider

$$\psi_1(x, y, z, t) = k_1 x^s + k_2 y^s + k_3 z^s + k_4 t^s,$$

$$\psi_2(x, y, z, t) = (1 - k) \left[k_1 x^s + k_2 y^s + k_3 z^s + k_4 t^s \right],$$

where $s > 0$ and $0 < k = k_1 + k_2 + k_3 + k_4 < 1$, we obtain the following results.

The next result is an immediate consequence of Corollaries 2.11 and 2.12.

Corollary 2.15. Let (X, d, \preceq) be an ordered complete metric space. Let $T, S : X \to X$ be given mappings satisfying for every pair $(x, y) \in X \times X$ such that x and y are comparable,

$$[d(Sx, Ty)]^s \leq k_1 [d(x, y)]^s + k_2 [d(x, Sx)]^s + k_3 [d(y, Ty)]^s + k_4 \left\{ \frac{1}{2} (d(x, Ty) + d(y, Sx)) \right\}^s,$$

where $s > 0$ and $0 < k = k_1 + k_2 + k_3 + k_4 < 1$. One assumes the following hypotheses:

(i) T and S are continuous or X is regular,

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point, that is, there exists $u \in X$ such that $u = Tu = Su$.

Remark 2.16. Other fixed point results may also be obtained under specific choices of ψ_1 and ψ_2.

3. Application

Consider the integral equations:

$$u(t) = \int_0^t K_1(t, s, u(s))ds + g(t), \quad t \in [0, T],$$

$$u(t) = \int_0^t K_2(t, s, u(s))ds + g(t), \quad t \in [0, T],$$

where $T > 0$.

The purpose of this section is to give an existence theorem for common solution of (3.1) using Corollary 2.15. This application is inspired by [9].

Previously, we consider the space $X = C(I)(I = [0, T])$ of continuous functions defined on I. Obviously, this space with the metric given by

$$d(x, y) = \sup_{t \in I} |x(t) - y(t)|, \quad \forall x, y \in C(I),$$
is a complete metric space. $C(I)$ can also be equipped with the partial order \preceq given by
\[
x, y \in C(I), \quad x \preceq y \iff x(t) \leq y(t), \quad \forall t \in I. \tag{3.3}
\]

Moreover, in [28], it is proved that $(C(I), \preceq)$ is regular.

Now, we will prove the following result.

Theorem 3.1. Suppose that the following hypotheses hold:

(i) $K_1, K_2 : I \times I \times \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are continuous,

(ii) for all $t, s \in I$,
\[
K_1(t, s, u(t)) \leq K_2\left(t, s, \int_0^T K_1(s, \tau, u(\tau)) d\tau + g(s)\right),
\]
\[
K_2(t, s, u(t)) \leq K_1\left(t, s, \int_0^T K_2(s, \tau, u(\tau)) d\tau + g(s)\right),
\]

(iii) there exist $k_1, k_2, k_3 \geq 0$ such that
\[
|G_x(t) - F_y(t)| \leq k_1 |y(t) - x(t)| + k_2 |x(t) - G_x(t) - g(t)| + k_3 |y(t) - F_y(t) - g(t)|,
\]

where
\[
F_x(t) = \int_0^T K_1(t, s, x(s)) ds, \quad t \in I, \quad G_x(t) = \int_0^T K_2(t, s, x(s)) ds, \quad t \in I,
\]

and $k_1 + k_2 + k_3 < 1$, for every $x, y \in X$ and $x \preceq y$ and $t \in I$.

Then, the integral equations (3.1) have a solution $u^* \in C(I)$.

Proof. Define $T, S : C(I) \to C(I)$ by
\[
Tx(t) = F_x(t) + g(t), \quad t \in I,
\]
\[
Sx(t) = G_x(t) + g(t), \quad t \in I. \tag{3.7}
\]

Now, we will prove that T and S are weakly increasing. From (ii), for all $t \in I$, we have
\[
Tx(t) = \int_0^T K_1(t, s, x(s)) ds + g(t)
\]
\[
\leq \int_0^T K_2\left(t, s, \int_0^T K_1(s, \tau, x(\tau)) d\tau + g(s)\right) ds + g(t)
\]
\[
= \int_0^T K_2(t, s, Tx(s)) ds + g(t)
\]
\[
= STx(t).
\]
Similarly,

\[
Sx(t) = \int_0^T K_2(t, s, x(s))ds + g(t)
\]

\[
\leq \int_0^T K_1 \left(t, s, \int_0^T K_2(s, \tau, x(\tau))d\tau + g(s)\right)ds + g(t)
= \int_0^T K_1(t, s, Sx(s))ds + g(t)
= TSx(t).
\]

Then, we have \(Tx \leq STx\) and \(Sx \leq TSx\) for all \(x \in C(I)\). This implies that \(T\) and \(S\) are weakly increasing.

Now, for all \(x, y \in C(I)\) such that \(x \leq y\), by (iii), we have

\[
|Sx(t) - Ty(t)| = |G_x(t) - F_y(t)|
\]

\[
\leq k_1 |y(t) - x(t)| + k_2 |x(t) - G_x(t) - g(t)| + k_3 |y(t) - F_y(t) - g(t)|.
\]

Hence

\[
d(Sx, Ty) = \sup_{t \in [0,T]} |Sx(t) - Ty(t)|
\]

\[
\leq k_1 \sup_{t \in [0,T]} |x(t) - y(t)| + k_2 \sup_{t \in [0,T]} |x(t) - G_x(t) - g(t)| + k_3 \sup_{t \in [0,T]} |y(t) - F_y(t) - g(t)|
= k_1 \sup_{t \in [0,T]} |x(t) - y(t)| + k_2 \sup_{t \in [0,T]} |x(t) - Sx(t)| + k_3 \sup_{t \in [0,T]} |y(t) - Ty(t)|.
\]

Then

\[
d(Sx, Ty) \leq k_1 d(x, y) + k_2 d(x, Sx) + k_3 d(y, Ty)
\]

for all \(x, y \in X\) such that \(y \leq x\).

This implies that, for all \(x, y \in C(I)\) such that \(x \leq y\),

\[
d(Sx, Ty) \leq k_1 d(x, y) + k_2 d(x, Sx) + k_3 d(y, Ty).
\]

Hence the contractive condition required by Corollary 2.15 is satisfied with \(s = 1, k_4 = 0\), and \(k_1 + k_2 + k_3 < 1\).

Now, all the required hypotheses of Corollary 2.15 are satisfied. Then, there exists \(u^* \in C(I)\), a common fixed point of \(T\) and \(S\), that is, \(u^*\) is a solution to (3.1). \(\square\)
References

